Timed Bromocriptine-QR Therapy Reduces Progression of Cardiovascular Disease and Dysglycemia in Subjects with Well-Controlled Type 2 Diabetes Mellitus

Bindu Chamarthi, J Michael Gaziano, Lawrence Blonde, Aaron Vinik, Richard E Scranton, Michael Ezrokhi, Dean Rutty, Anthony H Cincotta, Bindu Chamarthi, J Michael Gaziano, Lawrence Blonde, Aaron Vinik, Richard E Scranton, Michael Ezrokhi, Dean Rutty, Anthony H Cincotta

Abstract

Background: Type 2 diabetes (T2DM) patients, including those in good glycemic control, have an increased risk of cardiovascular disease (CVD). Maintaining good glycemic control may reduce long-term CVD risk. However, other risk factors such as elevated vascular sympathetic tone and/or endothelial dysfunction may be stronger potentiators of CVD. This study evaluated the impact of bromocriptine-QR, a sympatholytic dopamine D2 receptor agonist, on progression of metabolic disease and CVD in T2DM subjects in good glycemic control (HbA1c ≤ 7.0%).

Methods: 1834 subjects (1219 bromocriptine-QR; 615 placebo) with baseline HbA1c ≤ 7.0% derived from the Cycloset Safety Trial (this trial is registered with ClinicalTrials.gov Identifier: NCT00377676), a 12-month, randomized, multicenter, placebo-controlled, double-blind study in T2DM, were evaluated. Treatment impact upon a prespecified composite CVD endpoint (first myocardial infarction, stroke, coronary revascularization, or hospitalization for angina/congestive heart failure) and the odds of losing glycemic control (HbA1c >7.0% after 52 weeks of therapy) were determined.

Results: Bromocriptine-QR reduced the CVD endpoint by 48% (intention-to-treat; HR: 0.52 [0.28-0.98]) and 52% (on-treatment analysis; HR: 0.48 [0.24-0.95]). Bromocriptine-QR also reduced the odds of both losing glycemic control (OR: 0.63 (0.47-0.85), p = 0.002) and requiring treatment intensification to maintain HbA1c ≤ 7.0% (OR: 0.46 (0.31-0.69), p = 0.0002).

Conclusions: Bromocriptine-QR therapy slowed the progression of CVD and metabolic disease in T2DM subjects in good glycemic control.

Figures

Figure 1
Figure 1
Disposition of study subjects.
Figure 2
Figure 2
Kaplan-Meier estimates of the proportion of subjects by treatment that experienced an event within the composite CVD endpoint.
Figure 3
Figure 3
Occurrence of nausea (most commonly reported adverse event) by study week.

References

    1. Kannel W. B., McGee D. L. Diabetes and cardiovascular disease. The Framingham Study. The Journal of the American Medical Association. 1979;241(19):2035–2038. doi: 10.1001/jama.241.19.2035.
    1. Sheetz M. J., King G. L. Molecular understanding of hyperglycemia's adverse effects for diabetic complications. The Journal of the American Medical Association. 2002;288(20):2579–2588. doi: 10.1001/jama.288.20.2579.
    1. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) The Lancet. 1998;352(9131):837–853. doi: 10.1016/s0140-6736(98)07019-6.
    1. The Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. The New England Journal of Medicine. 2008;358:2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Patel A., MacMahon S., Chalmers J., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. The New England Journal of Medicine. 2008;358(24):2560–2572.
    1. Duckworth W., Abraira C., Moritz T., et al. Glucose control and vascular complications in veterans with type 2 diabetes. The New England Journal of Medicine. 2009;360(2):129–139. doi: 10.1056/nejmoa0808431.
    1. Holman R. R., Paul S. K., Bethel M. A., Matthews D. R., Neil H. A. W. 10-Year follow-up of intensive glucose control in type 2 diabetes. The New England Journal of Medicine. 2008;359(15):1577–1589. doi: 10.1056/nejmoa0806470.
    1. Gerstein H. C., Miller M. E., Ismail-Beigi F., et al. Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. The Lancet. 1936;384(9958):1936–1941. doi: 10.1016/S0140-6736(14)60611-5.
    1. Riddle M. C., Ambrosius W. T., Brillon D. J., et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care. 2010;33(5):983–990. doi: 10.2337/dc09-1278.
    1. Zoungas S., Chalmers J., Ninomiya T., et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia. 2012;55(3):636–643. doi: 10.1007/s00125-011-2404-1.
    1. Chen Y., Huang Y., Li X., et al. Association of arterial stiffness with HbA1c in 1,000 type 2 diabetic patients with or without hypertension. Endocrine. 2009;36(2):262–267. doi: 10.1007/s12020-009-9221-z.
    1. Selvin E., Marinopoulos S., Berkenblit G., et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Annals of Internal Medicine. 2004;141(6):421–431.
    1. Selvin E., Coresh J., Golden S. H., Boland L. L., Brancati F. L., Steffes M. W. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the atherosclerosis risk in communities study. Diabetes Care. 2005;28(8):1965–1973. doi: 10.2337/diacare.28.8.1965.
    1. Zhang Y., Hu G., Yuan Z., Chen L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2012;7(8) doi: 10.1371/journal.pone.0042551.e42551
    1. Reusch J. E. B., Wang C. C. Cardiovascular disease in diabetes: where does glucose fit in? Journal of Clinical Endocrinology and Metabolism. 2011;96(8):2367–2376. doi: 10.1210/jc.2010-3011.
    1. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertension Research. 2006;29(11):839–847. doi: 10.1291/hypres.29.839.
    1. Lambert G. W., Straznicky N. E., Lambert E. A., Dixon J. B., Schlaich M. P. Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications. Pharmacology & Therapeutics. 2010;126(2):159–172. doi: 10.1016/j.pharmthera.2010.02.002.
    1. Tentolouris N., Liatis S., Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Annals of the New York Academy of Sciences. 2006;1083:129–152. doi: 10.1196/annals.1367.010.
    1. Kietadisorn R., Juni R. P., Moens A. L. Tackling endothelial dysfunction by modulating NOS uncoupling: new insights into its pathogenesis and therapeutic possibilities. The American Journal of Physiology—Endocrinology and Metabolism. 2012;302(5):E481–E495. doi: 10.1152/ajpendo.00540.2011.
    1. Santilli F., Cipollone F., Mezzetti A., Chiarelli F. The role of nitric oxide in the development of diabetic angiopathy. Hormone and Metabolic Research. 2004;36(5):319–335. doi: 10.1055/s-2004-814489.
    1. Magenta A., Greco S., Capogrossi M. C., Gaetano C., Martelli F. Nitric oxide, oxidative stress, and p66Shc interplay in diabetic endothelial dysfunction. BioMed Research International. 2014;2014:16. doi: 10.1155/2014/193095.193095
    1. Franchi F., Lazzeri C., Barletta G., Ianni L., Mannelli M. Centrally mediated effects of bromocriptine on cardiac sympathovagal balance. Hypertension. 2001;38(1):123–129. doi: 10.1161/01.HYP.38.1.123.
    1. Sowers J. R., Golub M. S., Berger M. E., Whitfield L. A. Dopaminergic modulation of pressor and hormonal responses in essential hypertension. Hypertension. 1982;4(3):424–430. doi: 10.1161/01.HYP.4.3.424.
    1. Gaziano J. M., Cincotta A. H., O'Connor C. M., et al. Randomized clinical trial of quick-release bromocriptine among patients with type 2 diabetes on overall safety and cardiovascular outcomes. Diabetes Care. 2010;33(7):1503–1508. doi: 10.2337/dc09-2009.
    1. Gaziano J. M., Cincotta A. H., Vinik A., Blonde L., Bohannon N., Scranton R. Effect of bromocriptine-QR (a quick-release formulation of bromocriptine mesylate) on major adverse cardiovascular events in type 2 diabetes subjects. Journal of the American Heart Association. 2012;1(5) doi: 10.1161/jaha.112.002279.e002279
    1. Defronzo R. A. Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care. 2011;34:789–794.
    1. Vinik A. I., Cincotta A. H., Scranton R. E., Bohannon N., Ezrokhi M., Gaziano J. M. Effect of Bromocriptine-QR on glycemic control in subjects with uncontrolled hyperglycemia on one or two oral anti-diabetes agents. Endocrine Practice. 2012;18(6):931–943. doi: 10.4158/ep12187.or.
    1. Garber A. J., Blonde L., Bloomgarden Z. T., Handelsman Y., Dagogo-Jack S. The role of bromocriptine-QR in the management of type 2 diabetes expert panel recommendations. Endocrine Practice. 2013;19(1):100–106. doi: 10.4158/EP12325.OR.
    1. Luo S., Luo J., Meier A. H., Cincotta A. H. Dopaminergic neurotoxin administration to the area of the suprachiasmatic nuclei induces insulin resistance. Neuroreport. 1997;8(16):3495–3499. doi: 10.1097/00001756-199711100-00016.
    1. Luo S., Liang Y., Cincotta A. H. Intracerebroventricular administration of bromocriptine ameliorates the insulin-resistant/glucose-intolerant state in hamsters. Neuroendocrinology. 1999;69(3):160–166. doi: 10.1159/000054415.
    1. Luo S., Luo J., Cincotta A. H. Chronic ventromedial hypothalamic infusion of norepinephrine and serotonin promotes insulin resistance and glucose intolerance. Neuroendocrinology. 1999;70(6):460–465. doi: 10.1159/000054508.
    1. Luo S., Luo J., Cincotta A. H. Suprachiasmatic nuclei monoamine metabolism of glucose tolerant versus intolerant hamsters. NeuroReport. 1999;10(10):2073–2077. doi: 10.1097/00001756-199907130-00015.
    1. Ezrokhi M., Luo S., Trubitsyna Y., Cincotta A. H. Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetology & Metabolic Syndrome. 2014;6(1):p. 104. doi: 10.1186/1758-5996-6-104.
    1. Ezrokhi M., Trubitsyna Y., Luo S., Cincotta A. H. Timed dopamine agonist treatment ameliorates both vascular nitrosative/oxidative stress pathology and aortic stiffness in arteriosclerotic, hypertensive SHR rats [abstract] Diabetes. 2010;59(supplement 1):p. A67.
    1. Cincotta A. H. Hypothalamic role in insulin resistance and insulin resistance syndrome. In: Hansen B., Shafrir E., editors. Frontiers in Animal Diabetes Research. London, UK: Taylor & Francis; 2002. pp. 271–312.
    1. Ezrokhi M., Luo S., Trubitsyna Y., H. Cincotta A. H. Weighted effects of bromocriptine treatment on glucose homeostasis during hyperglycemic versus euglycemic clamp conditions in insulin resistant hamsters: bromocriptine as a unique postprandial insulin sensitizer. Journal of Diabetes & Metabolism. 2012;(supplement 2, article 007) doi: 10.4172/2155-6156.s2-007.
    1. McEniery C. M., Wallace S., Mackenzie I. S., et al. Increased ambulatory pulse pressure is a strong risk factor for coronary endothelial vasomotor dysfunction. Journal of the American College of Cardiology. 2005;45:1461–1466.
    1. Gupta A. K., Ravussin E., Johannsen D. L., Stull A. J., Cefalu W. T., Johnson W. D. Endothelial dysfunction: an early cardiovascular risk marker in asymptomatic obese individuals with prediabetes. British Journal of Medicine and Medical Research. 2012;2(3):413–423. doi: 10.9734/bjmmr/2012/1479.
    1. Cincotta A. H., Meier A. H., Cincotta M., Jr. Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opinion on Investigational Drugs. 1999;8(10):1683–1707. doi: 10.1517/13543784.8.10.1683.
    1. Monti J. M., Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Medicine Reviews. 2007;11(2):113–133. doi: 10.1016/j.smrv.2006.08.003.
    1. Cincotta A. H., Meier A. H. Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus) Metabolism: Clinical and Experimental. 1995;44(10):1349–1355. doi: 10.1016/0026-0495(95)90041-1.
    1. Pijl H., Ohashi S., Matsuda M., et al. Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care. 2000;23(8):1154–1161. doi: 10.2337/diacare.23.8.1154.
    1. Liang Y., Lubkin M., Sheng H., Scislowski P. W. D., Cincotta A. H. Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochimica et Biophysica Acta. 1998;1405(1–3):1–13. doi: 10.1016/s0167-4889(98)00092-5.
    1. Meier A. H., Cincotta A. H. Circadian rhythms regulate the expression of the thrifty genotype/phenotype. Diabetes Reviews. 1996;4(4):464–487.
    1. Coomans C. P., Van Den Berg S. A. A., Lucassen E. A., et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity. Diabetes. 2013;62(4):1102–1108. doi: 10.2337/db12-0507.
    1. Bass J., Takahashi J. S. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–1354. doi: 10.1126/science.1195027.
    1. van de Giessen E., Celik F., Schweitzer D. H., van den Brink W., Booij J. Dopamine D2/3 receptor availability and amphetamine-induced dopamine release in obesity. Journal of Psychopharmacology. 2014;28(9):866–873. doi: 10.1177/0269881114531664.
    1. Chiodini I., Adda G., Scillitani A., et al. Cortisol secretion in patients with type 2 diabetes: relationship with chronic complications. Diabetes Care. 2007;30(1):83–88. doi: 10.2337/dc06-1267.
    1. Elenkov I. J., Wilder R. L., Chrousos G. P., Vizi E. S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacological Reviews. 2000;52(4):595–638.
    1. Hu A., Jiao X., Gao E., et al. Chronic β-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. Journal of Pharmacology and Experimental Therapeutics. 2006;318(2):469–475. doi: 10.1124/jpet.106.102160.
    1. Davis L. M., Pei Z., Trush M. A., et al. Bromocriptine reduces steatosis in obese rodent models. Journal of Hepatology. 2006;45(3):439–444. doi: 10.1016/j.jhep.2006.03.019.
    1. Nade V. S., Kawale L. A., Todmal U. B., Tajanpure A. B. Effect of bromocriptine on cardiovascular complications associated with metabolic syndrome in fructose fed rats. Indian Journal of Pharmacology. 2012;44(6):688–693. doi: 10.4103/0253-7613.103248.
    1. Carey R. M., van Loon G. R., Baines A. D., Kaiser D. L. Suppression of basal and stimulated noradrenergic activities by the dopamine agonist bromocriptine in man. Journal of Clinical Endocrinology and Metabolism. 1983;56(3):595–602. doi: 10.1210/jcem-56-3-595.

Source: PubMed

3
Suscribir