Heterogeneous MYCN amplification in neuroblastoma: a SIOP Europe Neuroblastoma Study

Ana P Berbegall, Dominik Bogen, Ulrike Pötschger, Klaus Beiske, Nick Bown, Valérie Combaret, Raffaella Defferrari, Marta Jeison, Katia Mazzocco, Luigi Varesio, Ales Vicha, Shifra Ash, Victoria Castel, Carole Coze, Ruth Ladenstein, Cormac Owens, Vassilios Papadakis, Ellen Ruud, Gabriele Amann, Angela R Sementa, Samuel Navarro, Peter F Ambros, Rosa Noguera, Inge M Ambros, Ana P Berbegall, Dominik Bogen, Ulrike Pötschger, Klaus Beiske, Nick Bown, Valérie Combaret, Raffaella Defferrari, Marta Jeison, Katia Mazzocco, Luigi Varesio, Ales Vicha, Shifra Ash, Victoria Castel, Carole Coze, Ruth Ladenstein, Cormac Owens, Vassilios Papadakis, Ellen Ruud, Gabriele Amann, Angela R Sementa, Samuel Navarro, Peter F Ambros, Rosa Noguera, Inge M Ambros

Abstract

Background: In neuroblastoma (NB), the most powerful prognostic marker, the MYCN amplification (MNA), occasionally shows intratumoural heterogeneity (ITH), i.e. coexistence of MYCN-amplified and non-MYCN-amplified tumour cell clones, called heterogeneous MNA (hetMNA). Prognostication and therapy allocation are still unsolved issues.

Methods: The SIOPEN Biology group analysed 99 hetMNA NBs focussing on the prognostic significance of MYCN ITH.

Results: Patients <18 months (18 m) showed a better outcome in all stages as compared to older patients (5-year OS in localised stages: <18 m: 0.95 ± 0.04, >18 m: 0.67 ± 0.14, p = 0.011; metastatic: <18 m: 0.76 ± 0.15, >18 m: 0.28 ± 0.09, p = 0.084). The genomic 'background', but not MNA clone sizes, correlated significantly with relapse frequency and OS. No relapses occurred in cases of only numerical chromosomal aberrations. Infiltrated bone marrows and relapse tumour cells mostly displayed no MNA. However, one stage 4s tumour with segmental chromosomal aberrations showed a homogeneous MNA in the relapse.

Conclusions: This study provides a rationale for the necessary distinction between heterogeneous and homogeneous MNA. HetMNA tumours have to be evaluated individually, taking age, stage and, most importantly, genomic background into account to avoid unnecessary upgrading of risk/overtreatment, especially in infants, as well as in order to identify tumours prone to developing homogeneous MNA.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Oncoplot summarising clinical and genetic data. All hetMNA tumours for the two age groups, below (a) and above (b) 18 months of age, are shown separately and arranged according to the absence or presence of segmental chromosome aberrations, indicating also ploidy, MNA clone sizes in the analysed samples and clinical data: INSS stage, treatment, the presence of relapse or progressions, and outcome. In case of no events, observation times are at least 3 years, with the exception for two patients which are indicated. NCA numerical chromosome aberrations, het typSCA heterogeneous typical segmental aberrations, atypSCA atypical segmental aberrations, typSCA typical segmental aberrations, ne not evaluable, nd no data, MNAMYCN amplification, INSS International Neuroblastoma Staging System, CTX cytotoxic therapy, D dead, not disease-related, DOD dead of disease, DOT dead of therapy. Note: MNA clone size categories: 1: <1; 2: 1–5; 3: 6–10; 4: 11–50; 5: >50%
Fig. 2
Fig. 2
Kaplan–Meier event-free survival curves by INSS stages, age and genomic status. Sixty-month event-free survivals (EFS) for stage (any stage, localised stages and metastatic stages) according to age (first row) and cumulative incidence of relapses (CIRs) (second row); 60-month EFS according to the genomic background (third row; left: according to presence or absence of numerical and typical segmental chromosome aberrations, NCA, SCA; right: according to ploidy); CIR according to genomic background, any age (fourth row); CIR according to NCA/SCA in the two age groups (fifth row); CIR according to ploidy in the two age groups (sixth row). pts patients, rel relapse; m months
Fig. 2
Fig. 2
Kaplan–Meier event-free survival curves by INSS stages, age and genomic status. Sixty-month event-free survivals (EFS) for stage (any stage, localised stages and metastatic stages) according to age (first row) and cumulative incidence of relapses (CIRs) (second row); 60-month EFS according to the genomic background (third row; left: according to presence or absence of numerical and typical segmental chromosome aberrations, NCA, SCA; right: according to ploidy); CIR according to genomic background, any age (fourth row); CIR according to NCA/SCA in the two age groups (fifth row); CIR according to ploidy in the two age groups (sixth row). pts patients, rel relapse; m months

References

    1. Schwab M, et al. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature. 1983;305:245–248. doi: 10.1038/305245a0.
    1. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984;224:1121–1124. doi: 10.1126/science.6719137.
    1. Cohn SL, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J. Clin. Oncol. 2009;27:289–297. doi: 10.1200/JCO.2008.16.6785.
    1. Maris JM. Recent advances in neuroblastoma. N. Engl. J. Med. 2010;362:2202–2211. doi: 10.1056/NEJMra0804577.
    1. Matthay KK, et al. Neuroblastoma. Nat. Rev. Dis. Prim. 2016;2:16078. doi: 10.1038/nrdp.2016.78.
    1. Ambros PF, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br. J. Cancer. 2009;100:1471–1482. doi: 10.1038/sj.bjc.6605014.
    1. Cheung NK, et al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma. JAMA. 2012;307:1062–1071. doi: 10.1001/jama.2012.228.
    1. Schleiermacher G, et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. Br. J. Cancer. 2012;107:1418–1422. doi: 10.1038/bjc.2012.375.
    1. Villamon E, et al. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE. 2013;8:e53740. doi: 10.1371/journal.pone.0053740.
    1. Cheung NK, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J. Clin. Oncol. 2012;30:3264–3270. doi: 10.1200/JCO.2011.41.3807.
    1. Pinto NR, et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 2015;33:3008–3017. doi: 10.1200/JCO.2014.59.4648.
    1. Ladenstein R, et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017;18:500–514. doi: 10.1016/S1470-2045(17)30070-0.
    1. Squire JA, et al. Identification of MYCN copy number heterogeneity by direct FISH analysis of neuroblastoma preparations. Mol. Diagn. 1996;1:281–289. doi: 10.1016/S1084-8592(96)70010-3.
    1. Lorenzana AN, et al. Heterogeneity of MYCN amplification in a child with stroma-rich neuroblastoma (ganglioneuroblastoma) Pediatr. Pathol. Lab. Med. 1997;17:875–883. doi: 10.1080/15513819709168751.
    1. Ambros PF, et al. Intratumoural heterogeneity of 1p deletions and MYCN amplification in neuroblastomas. Med. Pediatr. Oncol. 2001;36:1–4. doi: 10.1002/1096-911X(20010101)36:1<1::AID-MPO1002>;2-L.
    1. Kerbl R, et al. Neuroblastoma with focal MYCN amplification and bone marrow infiltration: a staging and treatment dilemma. Med. Pediatr. Oncol. 2002;38:109–111. doi: 10.1002/mpo.1281.
    1. Noguera R, et al. MYCN gain and MYCN amplification in a stage 4S neuroblastoma. Cancer Genet. Cytogenet. 2003;140:157–161. doi: 10.1016/S0165-4608(02)00677-5.
    1. Ambros IM, et al. Quality assessment of genetic markers used for therapy stratification. J. Clin. Oncol. 2003;21:2077–2084. doi: 10.1200/JCO.2003.03.025.
    1. Valent A, et al. Alternative pathways of MYCN gene copy number increase in primary neuroblastoma tumors. Cancer Genet. Cytogenet. 2004;153:10–15. doi: 10.1016/j.cancergencyto.2003.12.007.
    1. Spitz R, Hero B, Skowron M, Ernestus K, Berthold F. MYCN-status in neuroblastoma: characteristics of tumours showing amplification, gain, and non-amplification. Eur. J. Cancer. 2004;40:2753–2759. doi: 10.1016/j.ejca.2004.05.002.
    1. Thorner PS, Ho M, Chilton-MacNeill S, Zielenska M. Use of chromogenic in situ hybridization to identify MYCN gene copy number in neuroblastoma using routine tissue sections. Am. J. Surg. Pathol. 2006;30:635–642. doi: 10.1097/01.pas.0000202163.82525.5c.
    1. Sano H, et al. A case of composite neuroblastoma composed of histologically and biologically distinct clones. Pediatr. Dev. Pathol. 2007;10:229–232. doi: 10.2350/06-06-0117.1.
    1. Cañete A, et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J. Clin. Oncol. 2009;27:1014–1019. doi: 10.1200/JCO.2007.14.5839.
    1. Theissen J, et al. Heterogeneity of the MYCN oncogene in neuroblastoma. Clin. Cancer Res. 2009;15:2085–2090. doi: 10.1158/1078-0432.CCR-08-1648.
    1. Bishop MW, et al. Management of stage 4S composite neuroblastoma with a MYCN-amplified nodule. J. Pediatr. Hematol. Oncol. 2014;36:e31–e35. doi: 10.1097/MPH.0b013e3182847376.
    1. Berbegall AP, et al. Comparative genetic study of intratumoral heterogenous MYCN amplified neuroblastoma versus aggressive genetic profile neuroblastic tumors. Oncogene. 2016;35:1423–1432. doi: 10.1038/onc.2015.200.
    1. Berbegall AP, Navarro S, Noguera R. Diagnostic implications of intrapatient genetic tumor heterogeneity. Mol. Cell. Oncol. 2016;3:e1079671. doi: 10.1080/23723556.2015.1079671.
    1. Bogen D, et al. The genetic tumor background is an important determinant for heterogeneous MYCN-amplified neuroblastoma. Int. J. Cancer. 2016;139:153–163. doi: 10.1002/ijc.30050.
    1. Marrano P, Irwin MS, Thorner PS. Heterogeneity of MYCN amplification in neuroblastoma at diagnosis, treatment, relapse, and metastasis. Genes Chromosomes Cancer. 2017;56:28–41. doi: 10.1002/gcc.22398.
    1. Defferrari R, et al. Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br. J. Cancer. 2015;112:290–295. doi: 10.1038/bjc.2014.557.
    1. Mehes G, et al. Automatic detection and genetic profiling of disseminated neuroblastoma cells. Med. Pediatr. Oncol. 2001;36:205–209. doi: 10.1002/1096-911X(20010101)36:1<205::AID-MPO1050>;2-G.
    1. Scaruffi P, et al. Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genet. Cytogenet. 2007;177:20–29. doi: 10.1016/j.cancergencyto.2007.05.002.
    1. Combaret V, et al. Analysis of genomic alterations in neuroblastoma by multiplex ligation-dependent probe amplification and array comparative genomic hybridization: a comparison of results. Cancer Genet. 2012;205:657–664. doi: 10.1016/j.cancergen.2012.11.002.
    1. Ambros IM, Brunner C, Abbasi R, Frech C, Ambros PF. Ultra-high density SNParray in neuroblastoma molecular diagnostics. Front. Oncol. 2014;4:202. doi: 10.3389/fonc.2014.00202.
    1. Beiske K, et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br. J. Cancer. 2009;100:1627–1637. doi: 10.1038/sj.bjc.6605029.
    1. Burchill SA, et al. Recommendations for the standardization of bone marrow disease assessment and reporting in children with neuroblastoma; on behalf of the International Neuroblastoma Response Criteria Bone Marrow Working Group. Cancer. 2016;123:1095–1105. doi: 10.1002/cncr.30380.
    1. Marubini E, Valsecchi MG. Analysing Survival Data from Clinical Trials and Observational Studies. 1st edn. United Kingdom: John Wiley & Sons; 2004.
    1. London WB, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J. Clin. Oncol. 2005;23:6459–6465. doi: 10.1200/JCO.2005.05.571.
    1. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999;94:14. doi: 10.1080/01621459.1999.10474144.
    1. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501:355–364. doi: 10.1038/nature12627.
    1. Gay L, Baker AM, Graham TA. Tumour cell heterogeneity. F1000Res. 2016;5:F1000 Faculty Rev-238. doi: 10.12688/f1000research.7210.1.
    1. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–628. doi: 10.1016/j.cell.2017.01.018.
    1. Mengelbier LH, et al. Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer. Nat. Commun. 2015;6:6125. doi: 10.1038/ncomms7125.
    1. Cresswell GD, et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine. 2016;9:120–129. doi: 10.1016/j.ebiom.2016.05.029.
    1. Bellini A, et al. Deep sequencing reveals occurrence of subclonal ALK mutations in neuroblastoma at diagnosis. Clin. Cancer Res. 2015;21:4913–4921. doi: 10.1158/1078-0432.CCR-15-0423.
    1. Abbasi MR, et al. Impact of disseminated neuroblastoma cells on the identification of the relapse-seeding clone. Clin. Cancer Res. 2017;23:4224–4232. doi: 10.1158/1078-0432.CCR-16-2082.
    1. Williamson D, et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J. Clin. Oncol. 2005;23:880–888. doi: 10.1200/JCO.2005.11.078.
    1. Pfister S, et al. Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J. Clin. Oncol. 2009;27:1627–1636. doi: 10.1200/JCO.2008.17.9432.
    1. Williams RD, et al. Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in Wilms tumor. Genes Chromosomes Cancer. 2011;50:982–995. doi: 10.1002/gcc.20907.
    1. Theriault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin. Exp. Ophthalmol. 2014;42:33–52. doi: 10.1111/ceo.12132.
    1. Caren H, et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc. Natl. Acad. Sci. USA. 2010;107:4323–4328. doi: 10.1073/pnas.0910684107.
    1. De Bernardi B, et al. Treatment of localised resectable neuroblastoma. Results of the LNESG1 study by the SIOP Europe Neuroblastoma Group. Br. J. Cancer. 2008;99:1027–1033. doi: 10.1038/sj.bjc.6604640.
    1. Quetglas IM, Moeini A, Pinyol R, Llovet JM. Integration of genomic information in the clinical management of HCC. Best Pract. Res. Clin. Gastroenterol. 2014;28:831–842. doi: 10.1016/j.bpg.2014.08.004.
    1. Vance GH, et al. Genetic heterogeneity in HER2 testing in breast cancer: panel summary and guidelines. Arch. Pathol. Lab. Med. 2009;133:611–612.
    1. Seol H, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod. Pathol. 2012;25:938–948. doi: 10.1038/modpathol.2012.36.

Source: PubMed

3
Suscribir