High-Intensity Focused Ultrasound Circular Cyclocoagulation in Glaucoma: A Step Forward for Cyclodestruction?

Rodolfo Mastropasqua, Vincenzo Fasanella, Alessandra Mastropasqua, Marco Ciancaglini, Luca Agnifili, Rodolfo Mastropasqua, Vincenzo Fasanella, Alessandra Mastropasqua, Marco Ciancaglini, Luca Agnifili

Abstract

The ciliary body ablation is still considered as a last resort treatment to reduce the intraocular pressure (IOP) in uncontrolled glaucoma. Several ablation techniques have been proposed over the years, all presenting a high rate of complications, nonselectivity for the target organ, and unpredictable dose-effect relationship. These drawbacks limited the application of cyclodestructive procedures almost exclusively to refractory glaucoma. High-intensity focused ultrasound (HIFU), proposed in the early 1980s and later abandoned because of the complexity and side effects of the procedure, was recently reconsidered in a new approach to destroy the ciliary body. Ultrasound circular cyclocoagulation (UC3), by using miniaturized transducers embedded in a dedicated circular-shaped device, permits to selectively treat the ciliary body in a one-step, computer-assisted, and non-operator-dependent procedure. UC3 shows a high level of safety along with a predictable and sustained IOP reduction in patients with refractory glaucoma. Because of this, the indication of UC3 was recently extended also to naïve-to-surgery patients, thus reconsidering the role and timing of ciliary body ablation in the surgical management of glaucoma. This article provides a review of the most used cycloablative techniques with particular attention to UC3, summarizing the current knowledge about this procedure and future possible developments.

Figures

Figure 1
Figure 1
UCCC procedure. HIFU device (new-generation probe) comprises two elements: the probe with the six piezoelectric transducers generating the ultrasound beam and the coupling cone (a). The correctly positioned cone must show a homogeneous ring of visible sclera; when this ring is regular, the cone is then maintained by a mild vacuum system (b). After verification of the effective suction, the probe is inserted and stabilized into the cone (c). During the procedure, the cone is continuously filled with saline solution (d), in order to allow the ultrasound transmission. The treatment starts in the superior sectors with a progressive activation of each transducer (e).
Figure 2
Figure 2
Anterior segment-optical coherence tomography of the sclera before insonification. Preoperative normal sclera presenting a relatively homogeneous stroma, with some scattered linear- (asterisk) or oval- (arrowhead) shaped hyporeflective spaces interspersed between the collagen fibres.
Figure 3
Figure 3
Anterior segment optical coherence tomography of scleral modifications after successful UCCC. (a–c) Second-generation probes (8-second treatment; 4 mm wide active area); (d–f) first-generation probes (6-second treatment; 2.5 mm wide active area). Intrascleral hyporeflective spaces (arrows and asterisks), with a different degree of internal reflectivity, are clearly recognizable within the stroma. These spaces are prominent after seven days from the treatment (a), and persist, even though reduced, after one (b) and three (c) months. No significant macroscopic differences are detectable between the two generation probes, even though the current probes seem to induce a greater scleral delamination. Scans were taken at the superior-temporal quadrants, 3 mm from the site of previous filtration surgery.
Figure 4
Figure 4
The image shows an ocular surface thermogram obtained with a digital infrared camera, of a representative patient during 6-second dose insonification, immediately after removal of the 6 o'clock hour transducer. A single evident circular red spot is well distinguishable (arrowheads), which corresponds to an area of increased temperature at the site of transducer. Asterisk indicates the nose of the patient.
Figure 5
Figure 5
In vivo confocal microscopy of the superior temporal conjunctiva in the same patient scheduled to undergo a 4-second dose UCCC (Group 1). (a) The baseline planar reconstruction shows small roundish microcysts, located at different levels within the epithelium, scattered, and sometimes clustered (arrowhead). (b) Microcysts increased density and area (arrow) thirty days after insonification. Bar represents 100 μm (from [88], with permission of the publisher).
Figure 6
Figure 6
In vivo confocal microscopy of the superior temporal conjunctiva in the same patient scheduled to undergo a 6-second dose UCCC. (a) The baseline planar reconstruction shows features similar to those observed in Group 1. Somewhere, microcysts appear encapsulated (arrowhead) and filled with amorphous material or punctate reflective elements (asterisk). (b) Epithelial microcysts increased density and, especially, area (arrow) thirty days after UCCC. Microcysts may appear filled with amorphous material (black arrowhead) or reflective elements, probably representing inflammatory cells (arrows). Bar represents 100 μm (from [88], with permission of the publisher).

References

    1. Kim K. E., Jeoung J. W., Kim D. M., Ahn S. J., Park K. H., Kim S. H. Long-term follow-up in preperimetric open-angle glaucoma: progression rates and associated factors. American Journal of Ophthalmology. 2015;159(1):160–168. doi: 10.1016/j.ajo.2014.10.010.
    1. Leske M. C., Heijl A., Hyman L., et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965–1972. doi: 10.1016/j.ophtha.2007.03.016.
    1. Mastrobattista J. M., Luntz M. Ciliary body ablation: where are we and how did we get here? Survey of Ophthalmology. 1996;41(3):193–213. doi: 10.1016/S0039-6257(96)80023-3.
    1. De Roetth Jr A. Cryosurgery for the treatment of glaucoma. Transactions of the American Ophthalmological Society. 1965;63(3):189–204.
    1. Kosoko O., Gaasterland D. E., Pollack I. P., Enger C. L. Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology. 1993;103(8):1294–1302.
    1. Vernon S. A., Koppens J. M., Menon G. J., Negi A. K. Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature. Clinical and Experimental Ophthalmology. 2006;34(5):411–420. doi: 10.1111/j.1442-9071.2006.01241.x.
    1. Finger P. T., Smith P. D., Paglione R. W., Perry H. D. Transscleral microwave cyclodestruction. Investigative Ophthalmology & Visual Science. 1990;31(10):2151–2155.
    1. Maus M., Katz L. J. Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium: YAG laser cyclophotocoagulation. Ophthalmology. 1990;97(1):69–72. doi: 10.1016/S0161-6420(90)32640-4.
    1. Coleman D. J., Lizzi F. L., Silverman R. H., et al. Therapeutic ultrasound. Ultrasound in Medicine & Biology. 1986;12(8):633–638. doi: 10.1016/0301-5629(86)90184-5.
    1. Valtot F., Kopel J., Haut J. Treatment of glaucoma with high intensity focused ultrasound. International Ophthalmology. 1989;13(1-2):167–170. doi: 10.1007/BF02028659.
    1. Coleman D. J., Lizzi F. L., Driller J., et al. Therapeutic ultrasound in the treatment of glaucoma: I. experimental model. Ophthalmology. 1985;92(3):339–346. doi: 10.1016/S0161-6420(85)34029-0.
    1. Coleman D. J., Lizzi F. L., Driller J., et al. Therapeutic ultrasound in the treatment of glaucoma: II. Clinical applications. Ophthalmology. 1985;92(3):347–353. doi: 10.1016/S0161-6420(85)34028-9.
    1. Burgess S. E., Silverman R. H., Coleman D. J., et al. Treatment of glaucoma with high-intensity focused ultrasound. Ophthalmology. 1986;93(6):831–838. doi: 10.1016/S0161-6420(86)33672-8.
    1. Maskin S. L., Mandell A. I., Smith J. A., Wood R. C., Terry S. A. Therapeutic ultrasound for refractory glaucoma: a three-center study. Ophthalmic Surgery. 1989;20(3):86–192.
    1. Sterk C. C., van der Valk P. H., van Hees C. L., van Delft J. L., van Best J. A., Oosterhuis J. A. The effect of therapeutic ultrasound on the average of multiple intraocular pressures throughout the day in therapy-resistant glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology. 1989;227(1):36–38. doi: 10.1007/BF02169822.
    1. Aptel F., Charrel T., Lafon C., et al. Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Investigative Ophthalmology & Visual Science. 2011;52(12):8747–8753. doi: 10.1167/iovs.11-8137.
    1. Denis P., Aptel F., Rouland J. F., et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Investigative Ophthalmology & Visual Science. 2015;56(2):1089–1096. doi: 10.1167/iovs.14-14973.
    1. Aptel F., Dupuy C., Rouland J. F. Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series. Current Medical Research and Opinion. 2014;30(8):1599–1605. doi: 10.1185/03007995.2014.910509.
    1. Aptel F., Charrel T., Palazzi X., Chapelon J. Y., Denis P., Lafon C. Histologic effects of a new device for high-intensity focused ultrasound cyclocoagulation. Investigative Ophthalmology & Visual Science. 2010;51(10):5092–5098. doi: 10.1167/iovs.09-5135.
    1. Abdelrahman A. M. Noninvasive glaucoma procedures: current options and future innovations. Middle East African Journal of Ophthalmology. 2015;22(1):2–9. doi: 10.4103/0974-9233.148342.
    1. Melamed S., Goldenfeld M., Cotlear D., Skaat A., Moroz I. High-intensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study. European Journal of Ophthalmology. 2015;25(6):483–489. doi: 10.5301/ejo.5000620.
    1. Verhoeff F. H. Cyclectomy. A new operation for glaucoma. Archives of Ophthalmology. 1924;33:228–229.
    1. Sauter H., Demeler U. Antiglaucomatous ciliary body excision. American Journal of Ophthalmology. 1984;98(3):344–348. doi: 10.1016/0002-9394(84)90326-X.
    1. Weve H. Clinische lessen. Nederlands Tijdschrift voor Geneeskunde. 1932;76:5335–5336.
    1. Vogt A. Cyclodiathermy puncture in cases of glaucoma. The British Journal of Ophthalmology. 1940;24:288–297. doi: 10.1136/bjo.24.6.288.
    1. Stocker F. W. Response of chronic simple glaucoma to treatment with cyclodiathermy puncture. Archives of Ophthalmology. 1945;34(3):181–189. doi: 10.1001/archopht.1945.00890190181001.
    1. Walton U. S., Grant W. M. Penetrating cyclodiathermy for filtration. Archives of Ophthalmology. 1970;83(1):47–48. doi: 10.1001/archopht.1970.00990030049008.
    1. Benson M. T., Nelson M. E. Cyclocryotherapy: a review of cases over a 10-year period. The British Journal of Ophthalmology. 1990;74(2):103–105. doi: 10.1136/bjo.74.2.103.
    1. Bellows A. R., Grant W. M. Cyclocryotherapy of chronic open angle glaucoma in aphakic eyes. American Journal of Ophthalmology. 1978;85(5 pt 1):615–621.
    1. Kim B. S., Kim Y. J., Seo S. W., Yoo J. M., Kim S. J. Long-term results from cyclocryotherapy applied to the 3 o’clock and 9 o’clock positions in blind refractory glaucoma patients. Korean Journal of Ophthalmology. 2015;29(1):47–52. doi: 10.3341/kjo.2015.29.1.47.
    1. Sony P., Sharma N., Pangtey M. S. Dislocation of the lens: a complication after cyclocryotherapy. Clinical and Experimental Ophthalmology. 2002;30(6):442–443. doi: 10.1046/j.1442-9071.2002.00579.x.
    1. Freigassner P., Eckhardt M. Transscleral cyclophotocoagulation versus cyclocryotherapy in treatment of neovascular glaucoma: a retrospective analysis. Acta Ophthalmologica Scandinavica. 2003;81(6):674–675. doi: 10.1111/j.1395-3907.2003.00187.x.
    1. Koraszewska-Matuszewska B., Leszczyński R., Samochowiec-Donocik E., Nawrocka L. Cyclodestructive procedures in secondary glaucoma in children. Klinika Oczna. 2004;106(Supplement 1-2):199–200.
    1. Sinha A., Rahman A. Cyclocryotherapy in absolute glaucoma. Indian Journal of Ophthalmology. 1984;32(2):77–80.
    1. Feibel R. M., Bigger J. E. Rubeosis iridis and neovascular glaucoma. American Journal of Ophthalmology. 1972;74(5):862–867. doi: 10.1016/0002-9394(72)91206-8.
    1. Krupin T., Mitchell K. B., Becker B. Cyclocryotherapy in neovascular glaucoma. American Journal of Ophthalmology. 1978;86(1):24–26. doi: 10.1016/0002-9394(78)90008-9.
    1. Fanlborn J., Hiister K. Ergebnisse der Zyklokryorherapir beim hamorrhagischen Glxrkorn. Klinische Monatsblätter für Augenheilkunde. 1973;162:513–518.
    1. Schwartz L. W., Moster M. R. Neodymium:YAG laser transscleral cyclodiathermy. Ophthalmic Laser Therapy. 1986;1(3):135–141.
    1. Trope G. E., Ma S. Mid-term effects of neodimium:YAG transscleral cyclocoagulation in glaucoma. Ophthalmology. 1990;97(1):73–75. doi: 10.1016/S0161-6420(90)32623-4.
    1. Suresha K. S., Narayan M. Cyclo-cryotherapy for the management of absolute glaucoma in rural areas. Indian Journal of Clinical and Experimental Ophthalmology. 2016;2(1):48–45.
    1. Lam S., Tessler H. H., La B. I., Wilensky J. T. High incidence of sympathetic ophthalmia after contact and non-contact neodymiun:YAG cyclotherapy. Ophthalmology. 1992;99(12):1818–1819. doi: 10.1016/S0161-6420(92)31719-1.
    1. Gieser R. G., Gieser D. K. Treatment of intravitreal ciliary body neovascularization. Ophthalmic Surgery. 1984;15(6):508–509.
    1. Shields M. B. Intraocular cyclophotocoagulation. Transactions of the Ophthalmological Societies of the United Kingdom. 1986;105(Pt. 2):237–241.
    1. Shields M. B., Chandler D. B., Hickingbotharn D., Klintworth G. K. Intraocular cyclophotocoagulation. Histopathologic evaluation in primates. Archives of Ophthalmology. 1985;103(11):1731–1735. doi: 10.1001/archopht.1985.01050110127040.
    1. Vogel A., Dlugos C., Nuffer R., Birngruber R. Optical properties of human sclera and their significance for transscleral laser use. Fortschritte Der Ophthalmologie. 1991;88(6):754–761.
    1. Coleman A. L., Jampel H. D., Javitt J. C., Brown A. E., Quigley H. A. Transscleral cyclophotocoagulation of human autopsy and monkey eyes. Ophthalmic Surgery. 1991;22(11):638–643.
    1. England C., van der Zypen E., Fankhauser F., Kwasniewska S. Ultrastructure of the rabbit ciliary body following transscleral cyclophotocoagulation with the free-running Nd:YAG laser: preliminary findings. Lasers in ophthalmology. 1986;1:61–72.
    1. Rosenberg L. F., Ruderman J. M., O’Grady R. B. Transscleral cyclophotocoagulation. Localization of ciliary process destruction (abstract) Investigative Ophthalmology & Visual Science. 1989;30(Supplement):353–356.
    1. Fankhauser F., Van der Zypen E., Kwasniewska S., Loertscher H. The effect of thermal mode Nd:YAG laser irradiation on vessels and ocular tissues. Ophthalmology. 1985;92(3):419–426. doi: 10.1016/S0161-6420(85)34037-X.
    1. Fankhauser F., Van der Zypen E., Kwasniewska S., Rol P., England C. Transscleral cyclophotocoagulation using a neodymium:YAG laser. Ophthalmic Surgery. 1986;17(2):94–99.
    1. Ilawkins T. A., Stewart W. C. One-year results of semiconductor transscleral cyclophotocoagulation in patients with glaucoma. Archives of Ophthalmology. 1993;111(4):488–491.
    1. Shields M. D., Shields S. E. Non-contact transscleral Nd:YAG cyclophotocoagulation – a long term follow-up of 500 patients. Transactions of the American Ophthalmological Society. 1994;92:271–283.
    1. Minckler D. S. Does Nd:YAG cyclotherapy cause sympathetic ophthalmia? Ophthalmic Surgery. 1989;20(8):p. 543.
    1. Latina M. A., Patel S., de Kater A. W., Goode S., Nishioka N. S., Puliafito C. A. Transscleral cyclophotocoagulation using a contact laser probe: a histologic and clinical study in rabbits. Lasers in Surgery and Medicine. 1989;9(5):465–470. doi: 10.1002/lsm.1900090507.
    1. Schuman S. J., Puliafito C. A., Allingham R. R., et al. Contact transscleral Nd:YAG laser cyclophotocoagulation. Ophthalmology. 1990;97(5):571–580. doi: 10.1016/S0161-6420(90)32550-2.
    1. Brancato R., Giovanni L., Trabbuchi G., Pietroni C. Contact transscleral cyclophotocoagulation with Nd:YAG laser in uncontrolled glaucoma. Ophthalmic Surgery. 1989;20(8):547–551.
    1. Lin P., Wollstein G., Glavas I. P., Schuman J. S. Contact transscleral neodymium:yttrium-aluminum-garnet laser cyclophotocoagulation: long-term outcome. Ophthalmology. 2004;111(11):2137–2143. doi: 10.1016/j.ophtha.2004.05.027.
    1. Lai J. S., Tham C. C., Chan J. C., Lam D. S. Diode laser transscleral cyclophotocoagulation as primary surgical treatment for medically uncontrolled chronic angle closure glaucoma: long-term clinical outcomes. Journal of Glaucoma. 2005;14(2):114–119. doi: 10.1097/01.ijg.0000151890.41239.c5.
    1. Bloom P. A., Clement C. I., King A., et al. A comparison between tube surgery, ND:YAG laser and diode laser cyclophotocoagulation in the management of refractory glaucoma. BioMed Research International. 2013;2013:p. 11. doi: 10.1155/2013/371951.371951
    1. Dickens C. J., Nguyen N., Mora J. S., et al. Long-term results of noncontact transscleral neodymium:YAG cyclophotocoagulation. Ophthalmology. 1995;102(12):1771–1781.
    1. Grueb M., Rohrbach J. M., Bartz-Schmidt K. U., Schlote T. Transscleral diode laser cyclophotocoagulation as primary and secondary surgical treatment in primary open-angle and pseudoexfoliative glaucoma. Long-term clinical outcomes. Graefe's Archive for Clinical and Experimental Ophthalmology. 2006;244(10):1293–1299. doi: 10.1007/s00417-006-0280-z.
    1. Frezzotti P., Mittica V., Martone G., et al. Long term follow-up of diode laser transscleral cyclophotocoagulation in the treatment of refractory glaucoma. Acta Ophthalmologica. 2010;88(1):150–155. doi: 10.1111/j.1755-3768.2008.01354.x.
    1. Schlote T., Grüb M., Kynigopoulos M. Long-term results after transscleral diode laser cyclophotocoagulation in refractory posttraumatic glaucoma and glaucoma in aphakia. Graefe's Archive for Clinical and Experimental Ophthalmology. 2008;246(3):405–410. doi: 10.1007/s00417-007-0708-0.
    1. Shah P., Lee G. A., Kirwan J. K., et al. Cyclodiode photocoagulation for refractory glaucoma after penetrating keratoplasty. Ophthalmology. 2001;108(11):1986–1991. doi: 10.1016/S0161-6420(01)00767-9.
    1. Hampton C., Shields M. B., Miller K. N., Blasini M. Evaluation of a protocol for transscleral neodymium:YAG Cyclophotocoagulation in one hundred patients. Ophthalmology. 1990;97(7):910–917.
    1. Hamard P., Kopel J., Valtot F., Quesnot S., Hamard H., Haut J. Treatment of refractory glaucoma by diode semiconductor laser cyclophotocoagulation. Journal Français d'Ophtalmologie. 1995;18(6-7):447–454.
    1. Cyrlin M. N., Beckman H., Czedik C. Nd:YAG laser trans-scleral cyclocoagulation treatment for severe glaucoma (abstract) Investigative Ophthalmology & Visual Science. 1985;26(Supplement):p. 157.
    1. Drvenyi R. G., Trope G. E., Hunter W. H. Neodymium-YAG transscleral cyclocoagulation in rabbit eyes. The British Journal of Ophthalmology. 1987;71(6):441–444. doi: 10.1136/bjo.71.6.441.
    1. Trope G. E., Ma S. Mid-term effects of Nd:YAG transscleral cyclocoagulation in glaucoma. Ophthalmology. 1990;97:73–75. doi: 10.1016/S0161-6420(90)32623-4.
    1. Uram M. Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma. Ophthalmology. 1992;99(12):1823–1828. doi: 10.1016/S0161-6420(92)31718-X.
    1. Kaplovitz K., Kuei A., Klenofsky B., Abazari A., Honkanen R. The use of endoscopic cyclophotocoagulation for moderate to advanced glaucoma. Acta Ophthalmologica. 2015;93(5):395–401. doi: 10.1111/aos.12529.
    1. Lima F. E., Magacho L., Carvalho D. M., Susanna R., Jr, Avila M. P. A prospective, comparative study between endoscopic cyclophotocoagulation and the Ahmed drainage implant in refractory glaucoma. Journal of Glaucoma. 2004;13:233–237. doi: 10.1097/00061198-200406000-00011.
    1. Zarbin M. A., Michels R. S., DeBistros S., Quigley H. A., Patel A. Endolaser treatment of the ciliary body for severe glaucoma. Ophthalmology. 1988;95(12):1639–1648. doi: 10.1016/S0161-6420(88)32963-5.
    1. Yip L. W., Yong S. O., Earnest A., Ji J., Lim B. A. Endoscopic cyclophotocoagulation for the treatment of glaucoma: an Asian experience. Clinical & Experimental Ophthalmology. 2009;37(7):692–697. doi: 10.1111/j.1442-9071.2009.02120.x.
    1. Lima F. E., Beniz Neto J., Toscano D., Carvalho D. M. D., Avila M. P. D. Endoscopic cyclophotocoagulation in refractory glaucomas: a long term study. Revista Brasileira de Oftalmologia. 2009;68(3):146–151. doi: 10.1590/S0034-72802009000300005.
    1. Francis B. A., Kawji A. S., Vo N. T., Dustin L., Chopra V. Endoscopic cyclophotocoagulation (ECP) in the management of uncontrolled glaucoma with prior aqueous tube shunt. Journal of Glaucoma. 2009;20(8):523–527. doi: 10.1097/IJG.0b013e3181f46337.
    1. Fry W. J., Barnard J. W., Fry E. J., Krumins R. F., Brennan J. F. Ultrasonic lesions in the mammalian central nervous system. Science. 1955;122(3168):517–518. doi: 10.1126/science.122.3168.517.
    1. Lynn J. G., Zwemer R. L., Chick A. J., Miller A. E. A new method for the generation and use of focused ultrasound in experimental biology. The Journal of General Physiology. 1942;26(2):179–193. doi: 10.1085/jgp.26.2.179.
    1. Hynynen K., Lulu B. A. Hyperthermia in cancer treatment. Investigative Radiology. 1990;25(7):824–834. doi: 10.1097/00004424-199007000-00014.
    1. Baum G., Greenwood I. The application of ultrasonic locating techniques to ophthalmology; theoretic considerations and acoustic properties of ocular media. Reflective properties. American Journal of Ophthalmology. 1958;46(5):19–29.
    1. Purnell E. W., Sokollu A., Torchia R., Taner N. Focal chorioretinitis produced by ultrasound. Investigative Ophthalmology. 1964;3(6):657–664.
    1. Muratore R. A history of the Sonocare CST-100: the first FDA-approved HIFU device. AIP Conference Proceedings. 2006;829(1):p. 508.
    1. Margo C. E. Therapeutic ultrasound. Light and electron microscopic findings in an eye treated for glaucoma. Archives of Ophthalmology. 1986;104(5):735–738. doi: 10.1001/archopht.1986.01050170125037.
    1. Cao H., Xu Z., Long H., et al. Trans-catheter arterial chemoembolization in combination with high-intensity focused ultrasound for unresectable hepatocellular carcinoma: a systematic review and meta-analysis of the Chinese literature. Ultrasound in Medicine & Biology. 2011;37(7):1009–1016. doi: 10.1016/j.ultrasmedbio.2011.03.003.
    1. Crouzet S., Rouviere O., Martin X., Gelet A. High-intensity focused ultrasound as focal therapy of prostate cancer. Current Opinion in Urology. 2014;24(3):225–230. doi: 10.1097/MOU.0000000000000053.
    1. Li C. C., Wang Y. Q., Li Y. P., Li X. L. High-intensity focused ultrasound for treatment of pancreatic cancer: a systematic review. Journal of Evidence-Based Medicine. 2014;7(4):270–281. doi: 10.1111/jebm.12128.
    1. Pron G. Magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU) treatment of symptomatic uterine fibroids: an evidence-based analysis. Ontario Health Technology Assessment Series. 2015;15(4):1–86.
    1. Mastropasqua R., Agnifili L., Fasanella V., et al. Uveo-scleral outflow pathways after ultrasonic cyclocoagulation in refractory glaucoma: an anterior segment optical coherence tomography and in vivo confocal study. The British Journal of Ophthalmology. 2016;100(12):1668–1675. doi: 10.1136/bjophthalmol-2015-308069.
    1. Aptel F., Denis P., Rouland J. F., Renard J. P., Bron A. Multicenter clinical trial of high-intensity focused ultrasound treatment in glaucoma patients without previous filtering surgery. Acta Ophthalmologica. 2016;94(5):e268–e277. doi: 10.1111/aos.12913.
    1. Bushley D. M., Parmley V. C., Paglen P. Visual field defect associated with laser in situ keratomileusis. American Journal of Ophthalmology. 2000;129(5):668–671. doi: 10.1016/S0002-9394(00)00366-4.
    1. Cameron B. D., Saffra N. A., Strominger M. B. Laser in situ keratomileusis-induced optic neuropathy. Ophthalmology. 2001;108(4):660–665. doi: 10.1016/S0161-6420(00)00577-7.
    1. Aptel F., Béglé A., Razavi A., et al. Short- and long-term effects on the ciliary body and the aqueous outflow pathways of high-intensity focused ultrasound cyclocoagulation. Ultrasound in Medicine & Biology. 2014;40(9):2096–2106. doi: 10.1016/j.ultrasmedbio.2014.04.017.
    1. Agnifili L., Carpineto P., Fasanella V., et al. Conjunctival findings in hyperbaric and low-tension glaucoma: an in vivo confocal microscopy study. Acta Ophthalmologica. 2012;90(2):e132–e137. doi: 10.1111/j.1755-3768.2011.02255.x.
    1. Carpineto P., Agnifili L., Nubile M., et al. Conjunctival and corneal findings in bleb-associated endophthalmitis: an in vivo confocal microscopy study. Acta Ophthalmologica. 2011;89(4):388–395. doi: 10.1111/j.1755-3768.2009.01767.x.
    1. Ciancaglini M., Carpineto P., Agnifili L., et al. Conjunctival characteristics in primary open-angle glaucoma and modifications induced by trabeculectomy with mitomycin C: an in vivo confocal microscopy study. The British Journal of Ophthalmology. 2009;93(9):1204–1209. doi: 10.1136/bjo.2008.152496.
    1. Ciancaglini M., Carpineto P., Agnifili L., Nubile M., Fasanella V., Mastropasqua L. Conjunctival modifications in ocular hypertension and primary open angle glaucoma: an in vivo confocal microscopy study. Investigative Ophthalmology & Visual Science. 2008;49(7):3042–3048. doi: 10.1167/iovs.07-1201.
    1. Mastropasqua L., Agnifili L., Ciancaglini M., et al. In vivo analysis of conjunctiva in gold micro shunt implantation for glaucoma. The British Journal of Ophthalmology. 2010;94(12):1592–1596. doi: 10.1136/bjo.2010.179994.
    1. Mastropasqua L., Agnifili L., Salvetat M. L., et al. In vivo analysis of conjunctiva in canaloplasty for glaucoma. The British Journal of Ophthalmology. 2012;96(5):634–639. doi: 10.1136/bjophthalmol-2011-301058.
    1. Mastropasqua L., Agnifili L., Mastropasqua R., Fasanella V. Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Current Opinion in Pharmacology. 2013;13(1):56–64. doi: 10.1016/j.coph.2012.10.002.
    1. Mastropasqua R., Fasanella V., Pedrotti E., et al. Trans-conjunctival aqueous humor outflow in glaucomatous patients treated with prostaglandin analogues: an in vivo confocal microscopy study. Graefe's Archive for Clinical and Experimental Ophthalmology. 2014;252(9):1469–1476. doi: 10.1007/s00417-014-2664-9.

Source: PubMed

3
Suscribir