Proteomic risk markers for coronary heart disease and stroke: validation and mediation of randomized trial hormone therapy effects on these diseases

Ross L Prentice, Shanshan Zhao, Melissa Johnson, Aaron Aragaki, Judith Hsia, Rebecca D Jackson, Jacques E Rossouw, JoAnn E Manson, Samir M Hanash, Ross L Prentice, Shanshan Zhao, Melissa Johnson, Aaron Aragaki, Judith Hsia, Rebecca D Jackson, Jacques E Rossouw, JoAnn E Manson, Samir M Hanash

Abstract

Background: We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes.

Methods: Five proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women's Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression.

Results: B2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation.

Conclusions: Plasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers.

Clinical trials registration: ClinicalTrials.gov identifier: NCT00000611.

References

    1. King HC, Hoyert DL, Xu JQ, Murphy SL. National Vital Statistics Reports. Vol. 5. Hyattsville, MD: National Center for Health Statistics; 2008. Deaths: Final Data for 2005.
    1. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;5:b1665. doi: 10.1136/bmj.b1665.
    1. Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, McKillop JH, Packard CJ. West of Scotland Coronary Prevention Study Group. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med. 1995;5:1301–1307. doi: 10.1056/NEJM199511163332001.
    1. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;5:2195–2207. doi: 10.1056/NEJMoa0807646.
    1. Gordon T, Kannel WB. Multiple risk function for predicting coronary heart disease: the concept, accuracy, and application. Am Heart J. 1982;5:1031–1039. doi: 10.1016/0002-8703(82)90567-1.
    1. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P. for the CHD Risk Prediction Group. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA. 2001;5:180–187. doi: 10.1001/jama.286.2.180.
    1. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;5:312–318. doi: 10.1161/01.STR.22.3.312.
    1. D’Agostino RB, Wolf PA, Belanger AJ, Kannel WB. Stroke risk profile: adjustment for antihypertensive medication. Stroke. 1994;5:40–43. doi: 10.1161/01.STR.25.1.40.
    1. Chambless LE, Heiss G, Shahar E, Earp MJ, Toole J. Prediction of ischemic stroke risk in the atherosclerosis risk in communities study. Am J Epidemiol. 2004;5:259–269. doi: 10.1093/aje/kwh189.
    1. Kim HC, Greenland P, Rossouw JE, Manson JE, Cochrane BB, Lasser NL, Limacher MC, Lloyd-Jones DM, Margolis KL, Robinson JG. Multimarker prediction of coronary heart disease risk. J Am Coll Cardiol. 2010;5:2080–2091. doi: 10.1016/j.jacc.2009.12.047.
    1. Manson JE, Hsia J, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, Trevisan M, Black HR, Heckbert SR, Detrano R, Strickland OL, Wong ND, Crouse JR, Stein E, Cushman M. Women’s Health Initiative Investigators. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med. 2003;5:523–534. doi: 10.1056/NEJMoa030808.
    1. Hsia J, Langer RD, Manson JE, Kuller L, Johnson KC, Hendrix SL, Pettinger M, Heckbert SR, Greep N, Crawford S, Eaton CB, Kostis JB, Caralis P, Prentice R. Women’s Health Initiative Investigators. Conjugated equine estrogens and coronary heart disease: The Women’s Health Initiative. Arch Intern Med. 2006;5:357–365. doi: 10.1001/archinte.166.3.357.
    1. Wassertheil-Smoller S, Hendrix SL, Limacher M, Heiss G, Kooperberg C, Baird A, Kotchen T, Curb JD, Black H, Rossouw JE, Aragaki A, Safford M, Stein E, Laowattana S, Mysiw WJ. WHI Investigators. Effect of estrogen plus progestin on stroke in postmenopausal women: the Women’s Health Initiative: A randomized trial. JAMA. 2003;5:2673–2684. doi: 10.1001/jama.289.20.2673.
    1. Hendrix SL, Wassertheil-Smoller S, Johnson KC, Howard BV, Kooperberg C, Rossouw JE, Trevisan M, Aragaki A, Baird AE, Bray PF, Buring JE, Criqui MH, Herrington D, Lynch JK, Rapp SR, Torner J. WHI Investigators. Effects of conjugated equine estrogen on stroke in the Women’s Health Initiative. Circulation. 2006;5:2425–2434. doi: 10.1161/CIRCULATIONAHA.105.594077.
    1. Faca V, Coram M, Phanstiel D, Glukhova V, Zhang Q, Fitzgibbon M, McIntosh M, Hanash S. Quantitative analysis of acrylamide labeled serum proteins by LC-MS/MS. J Proteome Res. 2006;5:2009–2018. doi: 10.1021/pr060102+.
    1. The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials. 1998;5:61–109.
    1. Prentice RL, Paczesny SJ, Aragaki A, Amon LM, Chen L, Pitteri SJ, McIntosh M, Wang P, Busald Buson T, Hsia J, Jackson RD, Rossouw JE, Manson JE, Johnson K, Eaton C, Hanash SM. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome Med. 2010;5:48–60. doi: 10.1186/gm169.
    1. Rossouw JE, Cushman M, Greenland P, Lloyd-Jones DM, Bray P, Kooperberg C, Pettinger M, Robinson J, Hendrix S, Hsia J. Inflammatory, lipid, thrombotic, and genetic markers of coronary heart disease in the Women’s Health Initiative trials of hormone therapy. Arch Intern Med. 2008;5:2245–2253. doi: 10.1001/archinte.168.20.2245.
    1. Kooperberg C, Cushman M, Hsia J, Robinson JG, Aragaki AK, Lynch JK, Band AE, Johnson KC, Kuller LH, Beresford SAA, Rodriguez B. Can biomarkers identify women at increased stroke risk? The Women’s Health Initiative hormone trials. PLoS Clin Trials. 2007;5:e28. doi: 10.1371/journal.pctr.0020028.
    1. Curb JD, McTiernan A, Heckbert SR, Kooperberg C, Stanford J, Nevitt M, Johnson KC, Proulx-Burns L, Pastore L, Criqui M, Daugherty S. WHI Morbidity and Mortality Committee. Outcomes ascertainment and adjudication methods in the Women’s Health Initiative. Ann Epidemiol. 2003;5:122–128. doi: 10.1016/S1047-2797(03)00048-6.
    1. Rauch A, Bellew M, Eng J, Fitzgibbon M, Holzman T, Hussey P, Igra M, Maclean B, Lin CW, Detter A, Fang R, Faca V, Gafken P, Zhang H, Whiteaker J, States D, Hanash S, Paulovich A, McIntosh MW. Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res. 2006;5:112–121. doi: 10.1021/pr0503533.
    1. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B (Methodological) 1995;5:289–300.
    1. Katayama H, Pacznesny S, Prentice RL, Aragaki A, Faca VM, Pitteri SJ, Zhang Q, Wang H, Silva M, Kennedy J, Rossouw J, Jackson R, Hsia J, Chlebowski R, Manson J, Hanash S. Application of serum proteomics to the Women’s Health Initiative conjugated equine estrogens trial reveals a multitude of effects relevant to clinical findings. Genome Med. 2009;5:47.1–47.16.
    1. Pitteri SJ, Hanash SM, Aragaki A, Amon L, Chen L, Busald Buson T, Paczesny S, Katayama H, Wang H, Johnson MM, Zhang Q, McIntosh M, Wang P, Kooperberg C, Rossouw JE, Jackson R, Manson JE, Hsia J, Liu S, Martin L, Prentice RL. Postmenopausal estrogen and progestin effects on the serum proteome. Genome Med. 2009;5:121.1–121.14.
    1. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979;5:403–412. doi: 10.1093/biomet/66.3.403.
    1. Polat H, Yeksan M, Dalmaz M, Kaptanoglu B, Koşar A, Akkuş I. Serum amyloid A protein levels in haemodialysis patients. Nephrol Dial Transplant. 1996;5:1492–1493.
    1. Saijo Y, Utsugi M, Yoshioka E, Horikawa N, Sato T, Gong Y, Kishi R. Relationship of B2-Microglobulin to arterial stiffness in Japanese subjects. Hypertens Res. 2005;5:505–511. doi: 10.1291/hypres.28.505.
    1. Wilson AM, Kimura E, Harada RK, Nair N, Narasimhan B, Meng X-Y, Zhang F, Beck KR, Olin JW, Fung ET, Cooke JP. B2-Microglobulin as a biomarker in peripheral arterial disease: proteomic profiling and clinical studies. Circulation. 2007;5:1396–1403. doi: 10.1161/CIRCULATIONAHA.106.683722.
    1. Liabeuf S, Lenglet A, Desjardins L, Neirynck N, Glorieux G, Lemke H-D, Vanholder R, Diouf M, Choukroun G, Massy ZA. on behalf of the European Uremic Toxin Work Group (EUTox) Plasma beta-2 microglobulin is associated with cardiovascular disease in uremic patients. Kidney Int. 2012;5:1297–1303. doi: 10.1038/ki.2012.301.
    1. Amighi J, Hoke M, Mlekusch W, Schlager O, Exner M, Haumer M, Pernicka E, Koppensteiner R, Minar E, Rumpold H, Schillinger M, Wagner O. Beta 2 microglobulin and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. Stroke. 2011;5:1826–1833. doi: 10.1161/STROKEAHA.110.600312.
    1. Shinkai S, Chaves PHM, Fujiwara Y, Watanabe S, Shibata H, Yoshida H, Suzuki T. B2-Microglobulin for risk stratification of total mortality in the elderly population. Comparison with Cystatin C and C-Reactive Protein. Arch Intern Med. 2008;5:200–206. doi: 10.1001/archinternmed.2007.64.
    1. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006;5:355–365.
    1. Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum Insulin-like Growth Factor I (IGF-1) and IGF-Binding Protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2004;5:114–120. doi: 10.1210/jc.2003-030967.
    1. Hsiao LL, Dangong F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanoupoulos G, Gullans SR. A compendium of dene expression in normal human tissues. Physiol Genomics. 2001;5:97–104.
    1. McLaughlin JN, Mazzoni MR, Cleator JH, Earls L, Perdigoto AL, Brooks JD, Muldowney JAS III, Vaughan DE, Hamm HE. Thrombin modulates the expression of a set of genes including thrombospondin-1 in human microvascular endothelial cells. J Biol Chem. 2005;5:22172–22180. doi: 10.1074/jbc.M500721200.
    1. Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev. 2005;5:916–943. doi: 10.1210/er.2004-0024.
    1. Kooijman R, Sarre S, Michotte Y, De Keyser J. Insulin-like growth factor I: a potential neuroprotective compound for the treatment of acute ischemic stroke? Stroke. 2009;5:e83–e88. doi: 10.1161/STROKEAHA.108.528356.
    1. Johnsen SP, Hundborg HH, Sorensen HT, Orskov H, Tjonneland A, Overvad K, Jorgensen JOL. Insulin-like Growth Factor (IGF) I, -II, and IGF Binding Protein-3 and risk of ischemic stroke. J Clin Endocrinol Metab. 2005;5:5937–5941. doi: 10.1210/jc.2004-2088.
    1. Denti L, Annoni V, Cattadori E, Salvagnini MA, Visioli S, Merli MF, Corradi F, Ceresini G, Valenti G, Hoffman AR, Ceda GP. Insulin-like growth factor 1 as a predictor of ischemic stroke outcome in the elderly. Am J Med. 2004;5:312–317. doi: 10.1016/j.amjmed.2004.02.049.
    1. Bondanelli M, Ambrosio MR, Onofri A, Bergonzoni A, Lavezzi S, Zatelli MC, Valle D, Basaglia N, degli Uberti EC. Predictive value of circulating insulin-like growth factor I levels in ischemic stroke outcome. J Clin Endocrinol Metab. 2006;5:3928–3934. doi: 10.1210/jc.2006-1040.
    1. Li RC, Saleem S, Zhen G, Cao W, Zhuang H, Lee J, Smith A, Altruda F, Tolosano E, Dore S. Heme-hemopexin complex attenuates neuronal cell death and stroke damage. J Cereb Blood Flow Metab. 2009;5:953–964. doi: 10.1038/jcbfm.2009.19.

Source: PubMed

3
Suscribir