Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses

Richard A Koup, Mario Roederer, Laurie Lamoreaux, Jennifer Fischer, Laura Novik, Martha C Nason, Brenda D Larkin, Mary E Enama, Julie E Ledgerwood, Robert T Bailer, John R Mascola, Gary J Nabel, Barney S Graham, VRC 009 Study Team, VRC 010 Study Team, Margaret McCluskey, Sarah Hubka, Lasonji Holman, Ingelise Gordon, Pamela Edmonds, Steve Rucker, Joseph Casazza, Andrew Catanzaro, Alan Fix, Richard A Koup, Mario Roederer, Laurie Lamoreaux, Jennifer Fischer, Laura Novik, Martha C Nason, Brenda D Larkin, Mary E Enama, Julie E Ledgerwood, Robert T Bailer, John R Mascola, Gary J Nabel, Barney S Graham, VRC 009 Study Team, VRC 010 Study Team, Margaret McCluskey, Sarah Hubka, Lasonji Holman, Ingelise Gordon, Pamela Edmonds, Steve Rucker, Joseph Casazza, Andrew Catanzaro, Alan Fix

Abstract

Background: Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies.

Methods: The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination.

Results: rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8(+) T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4(+) and CD8(+) T-cells expressed multiple functions and were predominantly long-term (CD127(+)) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition.

Conclusion: Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses.

Trial registration: ClinicalTrials.gov NCT00102089, NCT00108654.

Conflict of interest statement

Competing Interests: Gary J. Nabel is named on patent applications for the DNA and adenovirus vector components of this vaccine concept (patent #s E-173-2004/0-US-01, E-335-2003/0-US-01, and E-267-2004/0). This does not alter the authors' ability to adhere to all the PLoS ONE policies on sharing data and materials.

Figures

Figure 1. T cell responses to DNA…
Figure 1. T cell responses to DNA are boosted by rAd immunization.
(A) IFN-γ ELISpot responses in subjects 4 weeks after third dose of DNA or after a single dose of rAd5 vector only compared to peak response at 4–6 weeks following rAd5 vector boosting. The scale indicates spot-forming cells per million peripheral blood mononuclear cells. Individual subject responses are shown for recipients of 4-plasmid (VRC 004) or 6-plasmid (VRC 007) vaccines (left panel), the rAd5 vector (VRC 006) vaccine (center panel), and the combined DNA/rAd5 prime-boost (right panel). Results for peptide pool stimulation are shown for each peptide pool representing a single gene product in the vaccine shown on the x-axis. Boxplots represent the median and IQR. Longitudinal T cell responses to EnvA peptides were measured by IFN-γ ELISpot (B), CD4+ (C) and CD8+ (D) ICS and data are shown for all 14 subjects. The line graph shows the mean response at each time point. Some clinical time points were aggregated and are shown here as the mean value of the measurements for the grouped time points: The data following DNA injections #2 and #3 are the means of results from 2 and 4 weeks after the immunization time point; 6 month data post-DNA are the means of results from 16, 24, and 30 weeks after DNA injection #3; and the <6 week post-rAd5 time point data are means of results from 2, 4, and 6 weeks after rAd5 vector immunization.
Figure 2. Phenotype of vaccine-induced T cells.
Figure 2. Phenotype of vaccine-induced T cells.
(A) Flow cytometric analysis of antigen-specific T cells. The top row of graphs shows the progressive gating to identify live CD3+CD4+ or CD3+CD8+ lymphocytes. For either CD4 or CD8 T cells, antigen-responsive cells (following in vitro stimulation) are identified by the production of IL2, IFN-γ, or TNF. This example shows EnvA-stimulated cells from one of the highest responders in the study; the phenotyping graphs illustrate the distribution of cells that make any cytokine (blue) overlaid on the total CD4 or CD8 population (grey). (B) The distribution of expression of a variety of cell surface markers on antigen-specific CD4 or CD8 T cells following vaccination. The colored bars represent the IQR for the distribution at different time points: 4 weeks post-DNA (blue); 6–18 months post DNA (red); 4 weeks post rAd5 boost (green); and 6 months post-boost (orange). (C) Two different phenotyping schemas, based on either CD27 or CCR7 expression in combination with CD45RO, were used to characterize antigen-specific T cells. The bar charts show the individual data points and IQR for the four time points following immunization. The pie charts summarize these distributions, showing the average proportion of the CD4 or CD8 vaccine-specific T cell response that is TCM (light grey), TEM (medium grey), or TEF (black). Asterisks indicate distributions that are different from the earliest time point (4 weeks post DNA) at p<0.05 (Student's T test).
Figure 3. Function of vaccine-induced T cells.
Figure 3. Function of vaccine-induced T cells.
The quality of the vaccine-elicited CD4 or CD8 T cell response is characterized by the proportion of cells making every possible combination of the three measured cytokines. The bar charts show the individual data points and IQR for four time points following immunization. Pie charts show the average proportion of the CD4 or CD8 vaccine-specific T cell response that is polyfunctional (black), producing two functions (medium grey), or is monofunctional (light grey). The memory time point had a significantly different quality of CD8 T cell response than earlier time points (SPICE permutation analysis).
Figure 4. The quality of the response…
Figure 4. The quality of the response within TCM, TEM, or TEF cells.
Data for each subject is averaged over time points (there was no statistically significant change in quality over time within each subset). TCM cells have significantly more polyfunctional T cells than TEM or TEF cells.
Figure 5. Clade coverage of epitope-specific responses.
Figure 5. Clade coverage of epitope-specific responses.
Seven responses (A through G) to five minimum CD8+ T cell epitopes as defined in Table 2 are shown for four VRC 009 volunteers. Volunteer identifiers are shown in far right panels. Left panel shows the minimum epitope and sequence variants that were tested. Left center panel shows the frequency of each variant as it occurs within HIV clades A, B, C, and D. ELISpot responses expressed as SFCs per million PBMC at multiple peptide dilutions (µg/ml) to the epitope variants are shown from 4 weeks after the third dose of DNA (right center panel) and 4 weeks after rAd boost (far right panel). *  =  only the major variant was tested due to cell limitations. ND  =  not done due to absence of cells for any peptide titrations.

References

    1. Pantaleo G, Koup RA. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat Med. 2004;10:806–810.
    1. Plotkin SA. Vaccines: correlates of vaccine-induced immunity. Clin Infect Dis. 2008;47:401–409.
    1. Mascola JR, Snyder SW, Weislow OS, Belay SM, Belshe RB, et al. Immunization with envelope subunit vaccine products elicits neutralizing antibodies against laboratory-adapted but not primary isolates of human immunodeficiency virus type 1. The National Institute of Allergy and Infectious Diseases AIDS Vaccine Evaluation Group. J Infect Dis. 1996;173:340–348.
    1. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol. 2004;5:233–236.
    1. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J Infect Dis. 2005;191:654–665.
    1. Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, et al. Correlation between immunologic responses to a recombinant glycoprotein 120 vaccine and incidence of HIV-1 infection in a phase 3 HIV-1 preventive vaccine trial. J Infect Dis. 2005;191:666–677.
    1. Graham BS, Mascola JR. Lessons from failure–preparing for future HIV-1 vaccine efficacy trials. J Infect Dis. 2005;191:647–649.
    1. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M, et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J Infect Dis. 2006;194:1661–1671.
    1. Johnston MI, Fauci AS. An HIV vaccine–evolving concepts. N Engl J Med. 2007;356:2073–2081.
    1. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994;68:6103–6110.
    1. Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol. 1994;68:4650–4655.
    1. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, et al. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–947.
    1. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97:2709–2714.
    1. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189:991–998.
    1. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283:857–860.
    1. Barouch DH, Kunstman J, Glowczwskie J, Kunstman KJ, Egan MA, et al. Viral escape from dominant simian immunodeficiency virus epitope-specific cytotoxic T lymphocytes in DNA-vaccinated rhesus monkeys. J Virol. 2003;77:7367–7375.
    1. Fernandez CS, Stratov I, De Rose R, Walsh K, Dale CJ, et al. Rapid viral escape at an immunodominant simian-human immunodeficiency virus cytotoxic T-lymphocyte epitope exacts a dramatic fitness cost. J Virol. 2005;79:5721–5731.
    1. Catanzaro AT, Koup RA, Roederer M, Bailer RT, Enama ME, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector. J Infect Dis. 2006;194:1638–1649.
    1. Catanzaro AT, Roederer M, Koup RA, Bailer RT, Enama ME, et al. Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine. Vaccine. 2007;25:4085–4092.
    1. Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J Infect Dis. 2006;194:1650–1660.
    1. Harari A, Bart PA, Stohr W, Tapia G, Garcia M, et al. An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. J Exp Med. 2008;205:63–77.
    1. Letvin NL, Mascola JR, Sun Y, Gorgone DA, Buzby AP, et al. Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys. Science. 2006;312:1530–1533.
    1. Mattapallil JJ, Douek DC, Buckler-White A, Montefiori D, Letvin NL, et al. Vaccination preserves CD4 memory T cells during acute simian immunodeficiency virus challenge. J Exp Med. 2006;203:1533–1541.
    1. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–4789.
    1. Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, et al. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med. 2006;203:2865–2877.
    1. Butman BT, Lizonova A, Brough DE, Sowers JM, Sheets R, et al. Comprehensive characterization of the 293-ORF6 cell line. Dev Biol (Basel) 2006;123:225–233; discussion 265-226.
    1. Roederer M, Koup RA. Optimized determination of T cell epitope responses. J Immunol Methods. 2003;274:221–228.
    1. Li Y, Migueles SA, Welcher B, Svehla K, Phogat A, et al. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med. 2007;13:1032–1034.
    1. Shu Y, Winfrey S, Yang ZY, Xu L, Rao SS, et al. Efficient protein boosting after plasmid DNA or recombinant adenovirus immunization with HIV-1 vaccine constructs. Vaccine. 2007;25:1398–1408.
    1. Moodie Z, Huang Y, Gu L, Hural J, Self SG. Statistical positivity criteria for the analysis of ELISpot assay data in HIV-1 vaccine trials. J Immunol Methods. 2006;315:121–132.
    1. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol. 2003;4:1191–1198.
    1. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997;186:1407–1418.
    1. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401:708–712.
    1. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101:2711–2720.
    1. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8:379–385.
    1. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med. 2007;13:843–850.
    1. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204:1405–1416.
    1. Korber BTM, Brander C, Haynes BF, Koup RA, Moore JP, et al. HIV Molecular Immunology 2006/2007; In: Korber BTM, Brander C, Haynes BF, Koup RA, Moore JP, editors. Los Alamos, NM: Los Alamos National Laboratory, Theoretical Biology and Biophysics; 2007.
    1. Binley JM, Lybarger EA, Crooks ET, Seaman MS, Gray E, et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol. 2008;82:11651–11668.
    1. Mascola JR, D'Souza P, Gilbert P, Hahn BH, Haigwood NL, et al. Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol. 2005;79:10103–10107.
    1. Asmuth DM, Brown EL, DiNubile MJ, Sun X, del Rio C, et al. Comparative cell-mediated immunogenicity of DNA/DNA, DNA/adenovirus type 5 (Ad5), or Ad5/Ad5 HIV-1 clade B gag vaccine prime-boost regimens. J Infect Dis. 2010;201:132–141.
    1. Cooney EL, McElrath MJ, Corey L, Hu SL, Collier AC, et al. Enhanced immunity to human immunodeficiency virus (HIV) envelope elicited by a combined vaccine regimen consisting of priming with a vaccinia recombinant expressing HIV envelope and boosting with gp160 protein. Proc Natl Acad Sci U S A. 1993;90:1882–1886.
    1. Girard M, Kieny MP, Pinter A, Barre-Sinoussi F, Nara P, et al. Immunization of chimpanzees confers protection against challenge with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1991;88:542–546.
    1. Graham BS, Matthews TJ, Belshe RB, Clements ML, Dolin R, et al. Augmentation of human immunodeficiency virus type 1 neutralizing antibody by priming with gp160 recombinant vaccinia and boosting with rgp160 in vaccinia-naive adults. The NIAID AIDS Vaccine Clinical Trials Network. J Infect Dis. 1993;167:533–537.
    1. Hu SL, Abrams K, Barber GN, Moran P, Zarling JM, et al. Protection of macaques against SIV infection by subunit vaccines of SIV envelope glycoprotein gp160. Science. 1992;255:456–459.
    1. Letvin NL, Montefiori DC, Yasutomi Y, Perry HC, Davies ME, et al. Potent, protective anti-HIV immune responses generated by bimodal HIV envelope DNA plus protein vaccination. Proc Natl Acad Sci U S A. 1997;94:9378–9383.
    1. Irvine KR, Chamberlain RS, Shulman EP, Surman DR, Rosenberg SA, et al. Enhancing efficacy of recombinant anticancer vaccines with prime/boost regimens that use two different vectors. J Natl Cancer Inst. 1997;89:1595–1601.
    1. Leong KH, Ramsay AH, Ramshaw IA, Morin J, Robinson HL, et al. Generation of enhanced immune responses by consecutive immunization with DNA and recombinant fowl pox virus. In: Brown F, Chanock R, Ginsberg H, editors. Vaccines 95. Cold Spring Harbor: Cold Spring Harbor Press; 1995. pp. 327–331.
    1. Ramsay AJ, Leong KH, Ramshaw IA. DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunization with DNA and viral vectors. Immunol Cell Biol. 1997;75:382–388.
    1. Hanke T, Samuel RV, Blanchard TJ, Neumann VC, Allen TM, et al. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol. 1999;73:7524–7532.
    1. Dunachie SJ, Walther M, Epstein JE, Keating S, Berthoud T, et al. A DNA prime-modified vaccinia virus ankara boost vaccine encoding thrombospondin-related adhesion protein but not circumsporozoite protein partially protects healthy malaria-naive adults against Plasmodium falciparum sporozoite challenge. Infect Immun. 2006;74:5933–5942.
    1. Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ. Development of a preventive vaccine for Ebola virus infection in primates. Nature. 2000;408:605–609.
    1. Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature. 2002;415:331–335.
    1. Cox KS, Clair JH, Prokop MT, Sykes KJ, Dubey SA, et al. DNA gag/adenovirus type 5 (Ad5) gag and Ad5 gag/Ad5 gag vaccines induce distinct T-cell response profiles. J Virol. 2008;82:8161–8171.
    1. Barouch DH, Pau MG, Custers JH, Koudstaal W, Kostense S, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol. 2004;172:6290–6297.
    1. Li F, Malhotra U, Gilbert PB, Hawkins NR, Duerr AC, et al. Peptide selection for human immunodeficiency virus type 1 CTL-based vaccine evaluation. Vaccine. 2006;24:6893–6904.
    1. Malhotra U, Li F, Nolin J, Allison M, Zhao H, et al. Enhanced detection of human immunodeficiency virus type 1 (HIV-1) Nef-specific T cells recognizing multiple variants in early HIV-1 infection. J Virol. 2007;81:5225–5237.
    1. Malhotra U, Nolin J, Mullins JI, McElrath MJ. Comprehensive epitope analysis of cross-clade Gag-specific T-cell responses in individuals with early HIV-1 infection in the US epidemic. Vaccine. 2007;25:381–390.
    1. Yang OO. Assessing the antiviral activity of HIV-1-specific cytotoxic T lymphocytes. Methods Mol Biol. 2009;485:407–415.
    1. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, et al. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet. 2008;372:1894–1905.
    1. Migueles SA, Laborico AC, Imamichi H, Shupert WL, Royce C, et al. The differential ability of HLA B*5701+ long-term nonprogressors and progressors to restrict human immunodeficiency virus replication is not caused by loss of recognition of autologous viral gag sequences. J Virol. 2003;77:6889–6898.
    1. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008;372:1881–1893.
    1. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 2009;361:2209–2220.
    1. Fauci AS, Johnston MI, Dieffenbach CW, Burton DR, Hammer SM, et al. HIV vaccine research: the way forward. Science. 2008;321:530–532.
    1. Johnston MI, Fauci AS. An HIV vaccine–challenges and prospects. N Engl J Med. 2008;359:888–890.

Source: PubMed

3
Suscribir