Acute Stroke Biomarkers: Are We There Yet?

Marie Dagonnier, Geoffrey A Donnan, Stephen M Davis, Helen M Dewey, David W Howells, Marie Dagonnier, Geoffrey A Donnan, Stephen M Davis, Helen M Dewey, David W Howells

Abstract

Background: Distinguishing between stroke subtypes and knowing the time of stroke onset are critical in clinical practice. Thrombolysis and thrombectomy are very effective treatments in selected patients with acute ischemic stroke. Neuroimaging helps decide who should be treated and how they should be treated but is expensive, not always available and can have contraindications. These limitations contribute to the under use of these reperfusion therapies. Aim: An alternative approach in acute stroke diagnosis is to identify blood biomarkers which reflect the body's response to the damage caused by the different types of stroke. Specific blood biomarkers capable of differentiating ischemic from hemorrhagic stroke and mimics, identifying large vessel occlusion and capable of predicting stroke onset time would expedite diagnosis and increase eligibility for reperfusion therapies. Summary of Review: To date, measurements of candidate biomarkers have usually occurred beyond the time window for thrombolysis. Nevertheless, some candidate markers of brain tissue damage, particularly the highly abundant glial structural proteins like GFAP and S100β and the matrix protein MMP-9 offer promising results. Grouping of biomarkers in panels can offer additional specificity and sensitivity for ischemic stroke diagnosis. Unbiased "omics" approaches have great potential for biomarker identification because of greater gene, protein, and metabolite coverage but seem unlikely to be the detection methodology of choice because of their inherent cost. Conclusion: To date, despite the evolution of the techniques used in their evaluation, no individual candidate or multimarker panel has proven to have adequate performance for use in an acute clinical setting where decisions about an individual patient are being made. Timing of biomarker measurement, particularly early when decision making is most important, requires urgent and systematic study.

Keywords: acute; biomarker; microarray; review; stroke.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Dagonnier, Donnan, Davis, Dewey and Howells.

Figures

Figure 1
Figure 1
Sources of the major candidate biomarkers.

References

    1. Whiteley W, Tian Y, Jickling GC. Blood biomarkers in stroke: research and clinical practice. Int J Stroke. (2012) 7:435–9. 10.1111/j.1747-4949.2012.00784.x
    1. Biomarkers Definitions Working Group Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. (2001) 69:89–95. 10.1067/mcp.2001.113989
    1. Quinn DA, Fogel RB, Smith CD, Laposata M, Taylor Thompson B, Johnson SM, et al. D-dimers in the diagnosis of pulmonary embolism. Am J Respir Crit Care Med. (1999) 159:1445–9. 10.1164/ajrccm.159.5.9808094
    1. Daubert MA, Jeremias A. The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manage. (2010) 7:691–9. 10.2147/VHRM.S5306
    1. Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick J, et al. . Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet. (2004) 363:768–74. 10.1016/S0140-6736(04)15692-4
    1. Chen ZM, Sandercock P, Pan HC, Counsell C, Collins R, Liu LS, et al. . Indications for early aspirin use in acute ischemic stroke: a combined analysis of 40 000 randomized patients from the chinese acute stroke trial and the international stroke trial. Stroke. (2000) 31:1240–9. 10.1161/01.STR.31.6.1240
    1. Langhorne P, Williams BO, Gilchrist W, Howie K. Do stroke units save lives? Lancet. (1993) 342:395–8. 10.1016/0140-6736(93)92813-9
    1. Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. (2009) 8:326–33. 10.1016/S1474-4422(09)70047-X
    1. Goyal M, Menon BK, van Zwam WH, Dippel DWJ, Mitchell PJ, Demchuk AM, et al. . Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. (2016) 387:1723–31. 10.1016/S0140-6736(16)00163-X
    1. Ma H, Campbell BCV, Parsons M, Churilov L, Levi C, Hsu CY, et al. . Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. (2019) 380:1795–803. 10.1056/NEJMoa1813046
    1. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. . MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. (2018) 379:611–22. 10.1056/NEJMoa1804355
    1. Minnerup J, Wersching H, Ringelstein EB, Schilling M, Schäbitz WR, Wellmann J, et al. . Impact of the extended thrombolysis time window on the proportion of recombinant tissue-type plasminogen activator-treated stroke patients and on door-to-needle time. Stroke. (2011) 42:2838–43. 10.1161/STROKEAHA.111.616565
    1. Moradiya Y, Levine S. Comparison of short-term outcomes of thrombolysis for in-hospital stroke and out-of-hospital stroke in United States. Stroke. (2013) 44:1903–8. 10.1161/STROKEAHA.113.000945
    1. Dalloz MA, Bottin L, Muresan IP, Favrole P, Foulon S, Levy P, et al. Thrombolysis rate and impact of a stroke code: a French hospital experience and a systematic review. J Neurol Sci. (2012) 314:120–5. 10.1016/j.jns.2011.10.009
    1. Krogias C, Bartig D, Kitzrow M, Weber R, Eyding J. Trends of hospitalized acute stroke care in Germany from clinical trials to bedside. Comparison of nation-wide administrative data 2008-2012. J Neurol Sci. (2014) 345:202–8. 10.1016/j.jns.2014.07.048
    1. Moey A, Hamilton-Bruce M, Howell S, Leyden J, Chong W, Dodd L, et al. . Significant increase in thrombolysis therapy rates for stroke in South Australia. Int J Stroke. (2015) 10:E49. 10.1111/ijs.12498
    1. Howells DW, Donnan GA. Where will the next generation of stroke treatments come from? PLoS Med. (2010) 7:e1000224. 10.1371/journal.pmed.1000224
    1. Barber PA, Zhang J, Demchuk AM, Hill MD, Buchan AM. Why are stroke patients excluded from TPA therapy? An analysis of patient eligibility. Neurology. (2001) 56:1015–20. 10.1212/WNL.56.8.1015
    1. Fink JN, Kumar S, Horkan C, Linfante I, Selim MH, Caplan LR, et al. . The stroke patient who woke up. Clinical and radiological features, including diffusion and perfusion MRI. Stroke. (2002) 33:988–93. 10.1161/01.STR.0000014585.17714.67
    1. Faiz KW, Sundseth A, Thommessen B, Ronning OM. Reasons for low thrombolysis rate in a Norwegian ischemic stroke population. Neurol Sci. (2014) 35:1977–82. 10.1007/s10072-014-1876-4
    1. Albers GW, Amarenco P, Easton JD, Sacco RL, Teal P. Antithrombotic and thrombolytic therapy for ischemic stroke: American College of Chest Physicians evidence-based clinical practice guidelines (8th Edition). Chest. (2008) 133(6 Suppl):630S–69S. 10.1378/chest.08-0720
    1. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, et al. . 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. (2015) 46:3020–35. 10.1161/STR.0000000000000074
    1. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. . Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. (2018) 378:11–21. 10.1056/NEJMoa1706442
    1. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. . Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. (2018) 378:708–18. 10.1056/NEJMoa1713973
    1. Chia NH, Leyden JM, Newbury J, Jannes J, Kleinig TJ. Determining the number of ischemic strokes potentially eligible for endovascular thrombectomy: a population-based study. Stroke. (2016) 47:1377–80. 10.1161/STROKEAHA.116.013165
    1. McMeekin P, White P, James MA, Price CI, Flynn D, Ford GA. Estimating the number of UK stroke patients eligible for endovascular thrombectomy. Euro Stroke J. (2017) 2:319–26. 10.1177/2396987317733343
    1. Froehler MT, Saver JL, Zaidat OO, Jahan R, Aziz-Sultan MA, Klucznik RP, et al. . Interhospital transfer before thrombectomy is associated with delayed treatment and worse outcome in the STRATIS registry (systematic evaluation of patients treated with neurothrombectomy devices for acute ischemic stroke). Circulation. (2017) 136:2311–21. 10.1161/CIRCULATIONAHA.117.028920
    1. Hasan N, McColgan P, Bentley P, Edwards RJ, Sharma P. Towards the identification of blood biomarkers for acute stroke in humans: a comprehensive systematic review. Br J Clin Pharmacol. (2012) 74:230–40. 10.1111/j.1365-2125.2012.04212.x
    1. Whiteley W, Tseng MC, Sandercock P. Blood biomarkers in the diagnosis of ischemic stroke: a systematic review. Stroke. (2008) 39:2902–9. 10.1161/STROKEAHA.107.511261
    1. Whiteley W, Chong WL, Sengupta A, Sandercock P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke. (2009) 40:e380–9. 10.1161/STROKEAHA.108.528752
    1. Misra S, Kumar A, Kumar P, Yadav AK, Mohania D, Pandit AK, et al. . Blood-based protein biomarkers for stroke differentiation: a systematic review. Proteomics Clin Appl. (2017) 11. 10.1002/prca.201700007
    1. Monbailliu T, Goossens J, Hachimi-Idrissi S. Blood protein biomarkers as diagnostic tool for ischemic stroke: a systematic review. Biomark Med. (2017) 11:503–12. 10.2217/bmm-2016-0232
    1. Simats A, Garcia-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta. (2016) 1862:411–24. 10.1016/j.bbadis.2015.10.025
    1. Glushakova O, Glushakov A, Miller E, Valadka A, Hayes R. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ. (2016) 2:28. 10.4103/2394-8108.178546
    1. Kamtchum-Tatuene J, Jickling GC. Blood biomarkers for stroke diagnosis and management. NeuroMolecular Med. (2019) 21:344–68. 10.1007/s12017-019-08530-0
    1. Zhou S, Bao J, Wang Y, Pan S. S100beta as a biomarker for differential diagnosis of intracerebral hemorrhage and ischemic stroke. Neurol Res. (2016) 38:327–32. 10.1080/01616412.2016.1152675
    1. Purrucker JC, Herrmann O, Lutsch JK, Zorn M, Schwaninger M, Bruckner T, et al. . Serum protein S100beta is a diagnostic biomarker for distinguishing posterior circulation stroke from vertigo of nonvascular causes. Euro Neurol. (2014) 72:278–84. 10.1159/000363569
    1. Foerch C, Wunderlich M, Dvorak F, Humpich M, Kahles T, Goertler M, et al. . Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke. (2007) 38:2491–5. 10.1161/STROKEAHA.106.480111
    1. Foerch C, Otto B, Singer OC, Neumann-Haefelin T, Yan B, Berkefeld J, et al. . Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke. (2004) 35:2160–4. 10.1161/
    1. Foerch C, Niessner M, Back T, Bauerle M, De Marchis GM, Ferbert A, et al. . Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem. (2012) 58:237–45. 10.1373/clinchem.2011.172676
    1. Xiong L, Yang Y, Zhang M, Xu W. The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes. Neurol Sci. (2015) 36:2081–7. 10.1007/s10072-015-2317-8
    1. Ren C, Kobeissy F, Alawieh A, Li N, Li N, Zibara K, et al. . Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci Rep. (2016) 6:24588. 10.1038/srep24588
    1. Luger S, Witsch J, Dietz A, Hamann GF, Minnerup J, Schneider H, et al. . Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin Chem. (2017) 63:377–85. 10.1373/clinchem.2016.263335
    1. Katsanos AH, Makris K, Stefani D, Koniari K, Gialouri E, Lelekis M, et al. . Plasma glial fibrillary acidic protein in the differential diagnosis of intracerebral hemorrhage. Stroke Res Treat. (2017) 48:2586–88. 10.1161/STROKEAHA.117.018409
    1. Lu K, Xu X, Cui S, Wang F, Zhang B, Zhao Y. Serum neuron specific enolase level as a predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. J Neurol Sci. (2015) 359:202–6. 10.1016/j.jns.2015.10.034
    1. Castellanos M, Sobrino T, Millan M, Garcia M, Arenillas J, Nombela F, et al. . Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke. (2007) 38:1855–9. 10.1161/STROKEAHA.106.481556
    1. Dambinova S, Khounteev G, Izykenova G, Zavolokov I, Ilyukhina A, Skoromets A. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem. (2003) 49:1752–62. 10.1373/49.10.1752
    1. Dambinova S, Bettermann K, Glynn T, Tews M, Olson D, Weissman J, et al. . Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS ONE. (2012) 7:e42362. 10.1371/journal.pone.0042362
    1. Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N, et al. . ApoC-I and ApoC-III as potential plasmatic markers to distinguish between ischemic and hemorrhagic stroke. Proteomics. (2004) 4:2242–51. 10.1002/pmic.200300809
    1. As S, Sahukar S, Murthy J, Kumar K. A study of serum apolipoprotein A1, apolipoprotein B and lipid profile in stroke. J Clin Diagnostic Res. (2013) 7:1303–6. 10.7860/JCDR/2013/5269.3123
    1. Tulantched MDS, Min Z, Feng WX. Comparison of plasma PARK7 and NDKA diagnostic value in acute stroke. Future Sci OA. (2019) 5:FSO375. 10.2144/fsoa-2018-0080
    1. Park KY, Ay I, Avery R, Caceres JA, Siket MS, Pontes-Neto OM, et al. . New biomarker for acute ischaemic stroke: plasma glycogen phosphorylase isoenzyme BB. J Neurol Neurosurg Psychiatry. (2018) 89:404–9. 10.1136/jnnp-2017-316084
    1. Serena J, Blanco M, Castellanos M, Silva Y, Vivancos J, Moro MA, et al. . The prediction of malignant cerebral infarction by molecular brain barrier disruption markers. Stroke. (2005) 36:1921–6. 10.1161/01.STR.0000177870.14967.94
    1. Ribo M, Montaner J, Molina CA, Arenillas JF, Santamarina E, Quintana M, et al. . Admission fibrinolytic profile is associated with symptomatic hemorrhagic transformation in stroke patients treated with tissue plasminogen activator. Stroke. (2004) 35:2123–7. 10.1161/01.STR.0000137608.73660.4c
    1. Serena J, Leira R, Castillo J, Pumar J, Castellanos M, Dávalos A. Neurological deterioration in acute lacunar infarctions: the role of excitatory and inhibitory neurotransmitters. Stroke. (2001) 32:1154–61. 10.1161/01.STR.32.5.1154
    1. Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK, et al. Early biomarkers of stroke. Clin Chem. (2003) 49:1733–9. 10.1373/49.10.1733
    1. Lynch JR, Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT. Novel diagnostic test for acute stroke. Stroke. (2004) 35:57–63. 10.1161/01.STR.0000105927.62344.4C
    1. Laskowitz DT, Blessing R, Floyd J, White WD, Lynch JR. Panel of biomarkers predicts stroke. Ann N Y Acad Sci. (2005) 30. 10.1111/j.1749-6632.2005.tb00006.x
    1. Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke. (2009) 40:77–85. 10.1161/STROKEAHA.108.516377
    1. Montaner J, Mendioroz M, Ribo M, Delgado P, Quintana M, Penalba A, et al. . A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J Internal Med. (2011) 270:166–74. 10.1111/j.1365-2796.2010.02329.x
    1. Montaner J, Mendioroz M, Delgado P, Garcia-Berrocoso T, Giralt D, Merino C, et al. . Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: the S100B/RAGE pathway. J Proteomics. (2012) 75:4758–65. 10.1016/j.jprot.2012.01.033
    1. Llombart V, Garcia-Berrocoso T, Bustamante A, Giralt D, Rodriguez-Luna D, Muchada M, et al. . Plasmatic retinol-binding protein 4 and glial fibrillary acidic protein as biomarkers to differentiate ischemic stroke and intracerebral hemorrhage. J Neurochem. (2016) 136:416–24. 10.1111/jnc.13419
    1. Moore DF, Li H, Jeffries N, Wright V, Cooper RA, Jr, Elkahloun A, et al. . Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation. (2005) 111:212–21. 10.1161/01.CIR.0000152105.79665.C6
    1. Tang Y, Xu H, Du X, Lit L, Walker W, Lu A, et al. . Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. (2006) 26:1089–102. 10.1038/sj.jcbfm.9600264
    1. Xu H, Tang Y, Liu DZ, Ran R, Ander BP, Apperson M, et al. . Gene expression in peripheral blood differs after cardioembolic compared with large-vessel atherosclerotic stroke: biomarkers for the etiology of ischemic stroke. J Cereb Blood Flow Metab. (2008) 28:1320–8. 10.1038/jcbfm.2008.22
    1. Jickling GC, Xu H, Stamova B, Ander BP, Zhan X, Tian Y, et al. . Signatures of cardioembolic and large-vessel ischemic stroke. Ann Neurol. (2010) 68:681–92. 10.1002/ana.22187
    1. Zhan X, Jickling G, Tian Y, Stamova B, Xu H, Ander B, et al. . Transient ischemic attacks characterized by RNA profiles in blood. Neurology. (2011) 77:1718–24. 10.1212/WNL.0b013e318236eee6
    1. Jickling GC, Zhan X, Stamova B, Ander BP, Tian Y, Liu D, et al. . Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke. (2012) 43:1006–12. 10.1161/STROKEAHA.111.638577
    1. Jickling GC, Stamova B, Ander BP, Zhan X, Tian Y, Liu D, et al. Profiles of lacunar and nonlacunar stroke. Ann Neurol. (2011) 70:477–85. 10.1002/ana.22497
    1. Turck N, Robin X, Walter N, Fouda C, Hainard A, Sztajzel R, et al. . Blood glutathione S-transferase-pi as a time indicator of stroke onset. PLoS ONE. (2012) 7:e43830. 10.1371/journal.pone.0043830
    1. Hill MD, Jackowski G, Bayer N, Lawrence M, Jaeschke R. Biochemical markers in acute ischemic stroke. CMAJ. (2000) 162:1139–40.
    1. Gonzalez-Garcia S, Gonzalez-Quevedo A, Fernandez-Concepcion O, Pena-Sanchez M, Menendez-Sainz C, Hernandez-Diaz Z, et al. . Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin Biochem. (2012) 45:1302–7. 10.1016/j.clinbiochem.2012.07.094
    1. Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke. (2006) 37:2508–13. 10.1161/01.STR.0000242290.01174.9e
    1. Foerch C, Singer O, Neumann-Haefelin T, du Mesnil de Rochemont R, Steinmetz H, Sitzer M. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. (2005) 62:1130–4. 10.1001/archneur.62.7.1130
    1. Wunderlich MT, Wallesch CW, Goertler M. Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J Neurol Sci. (2004) 227:49–53. 10.1016/j.jns.2004.08.005
    1. Ishiguro Y, Kato K, Ito T, Nagaya M. Determination of three enolase isozymes and S-100 protein in various tumors in children. Cancer Res. (1983) 42:6080–4.
    1. Raabe A, Grolms C, Keller M, Döhnert J, Sorge O, Seifert V. Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir. (1998) 140:787–91. 10.1007/s007010050180
    1. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. (2000) 25:1439–51. 10.1023/A:1007677003387
    1. Foerch C, Curdt I, Yan B, Dvorak F, Hermans M, Berkefeld J, et al. . Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry. (2006) 77:181–4. 10.1136/jnnp.2005.074823
    1. Dvorak F, Haberer I, Sitzer M, Foerch C. Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis. (2009) 27:37–41. 10.1159/000172632
    1. Herrmann M, Vos P, Wunderlich MT, de Bruijn CHMM, Lamers KJB. Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. (2000) 31:2670–7. 10.1161/01.STR.31.11.2670
    1. Perry LA, Lucarelli T, Penny-Dimri JC, McInnes MD, Mondello S, Bustamante A, et al. . Glial fibrillary acidic protein for the early diagnosis of intracerebral hemorrhage: systematic review and meta-analysis of diagnostic test accuracy. Int J Stroke. (2019) 14:390–9. 10.1177/1747493018806167
    1. Cabezas JA, Bustamante A, Giannini N, Pecharroman E, Katsanos AH, Tsivgoulis G, et al. . Discriminative value of glial fibrillar acidic protein (GFAP) as a diagnostic tool in acute stroke. Individual patient data meta-analysis. J Investig Med. (2020) 68:1379–85. 10.1136/jim-2020-001432
    1. Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, et al. . Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain. (2007) 130(Pt 12):3336–41. 10.1093/brain/awm263
    1. Schiff L, Hadker N, Weiser S, Rausch C. A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther. (2012) 16:79–92. 10.1007/BF03256432
    1. Missler U, Wiesmann M, Friedrich C, Kaps M. S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke. (1997) 28:1956–60. 10.1161/01.STR.28.10.1956
    1. Wunderlich MT, Lins H, Skalej M, Wallesch CW, Goertler M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. (2006) 108:558–63. 10.1016/j.clineuro.2005.12.006
    1. Singh HV, Pandey A, Shrivastava AK, Raizada A, Singh SK, Singh N. Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin Chim Acta. (2013) 419:136–8. 10.1016/j.cca.2013.02.014
    1. Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasc Dis. (2005) 20:213–9. 10.1159/000087701
    1. Kim BJ, Kim YJ, Ahn SH, Kim NY, Kang DW, Kim JS, et al. . The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J Stroke Cerebrovasc Dis. (2014) 23:2437–43. 10.1016/j.jstrokecerebrovasdis.2014.05.020
    1. Montaner J, Alvarez-Sabin J, Molina CA, Angles A, Abilleira S, Arenillas J, et al. . Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke. (2001) 32:2762–7. 10.1161/hs1201.99512
    1. Rosell A, Alvarez-Sabin J, Arenillas JF, Rovira A, Delgado P, Fernandez-Cadenas I, et al. . A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke. (2005) 36:1415–20. 10.1161/
    1. Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribo M, et al. . Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. (2004) 35:1316–22. 10.1161/01.STR.0000126827.69286.90
    1. Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribó M, et al. . Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. (2003) 107:598–603. 10.1161/01.CIR.0000046451.38849.90
    1. Montaner J, Alvarez-Sabín J, Molina C, Anglés A, Abilleira S, Arenillas J, et al. . Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. (2001) 32:1759–66. 10.1161/01.STR.32.8.1759
    1. Ramos-Fernandez M, Bellolio MF, Stead LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. (2011) 20:47–54. 10.1016/j.jstrokecerebrovasdis.2009.10.008
    1. Barr TL, Latour LL, Lee KY, Schaewe TJ, Luby M, Chang GS, et al. . Blood-brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke. (2010) 41:e123–8. 10.1161/STROKEAHA.109.570515
    1. Dambinova S, Khounteev G, Skoromets A. Multiple panel of biomarkers for TIA/stroke evaluation. Stroke. (2002) 33:1181–2. 10.1161/01.STR.0000014922.83673.86
    1. Ganor Y, Goldberg-Stern H, Lerman-Sagie T, Teichberg V, Levite M. Autoimmune epilepsy: distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA. Epilepsy Res. (2005) 65:11–22. 10.1016/j.eplepsyres.2005.03.011
    1. Husebye E, Sthoeger Z, Dayan M, Zinger H, Elbirt D, Levite M, et al. . Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann Rheum Dis. (2005) 64:1210–3. 10.1136/ard.2004.029280
    1. Lopez MF, Sarracino DA, Prakash A, Athanas M, Krastins B, Rezai T, et al. . Discrimination of ischemic and hemorrhagic strokes using a multiplexed, mass spectrometry-based assay for serum apolipoproteins coupled to multi-marker ROC algorithm. Proteomics Clin Appl. (2012) 6:190–200. 10.1002/prca.201100041
    1. Walsh KB, Hart K, Roll S, Sperling M, Unruh D, Davidson WS, et al. . Apolipoprotein A-I and paraoxonase-1 are potential blood biomarkers for ischemic stroke diagnosis. J Stroke Cerebrovasc Dis. (2016) 25:1360–5. 10.1016/j.jstrokecerebrovasdis.2016.02.027
    1. Ryu WS, Schellingerhout D, Jeong SW, Nahrendorf M, Kim DE. Association between serum lipid profiles and early neurological deterioration in acute ischemic stroke. J Stroke Cerebrovasc Dis. (2016) 25:2024–30. 10.1016/j.jstrokecerebrovasdis.2016.05.009
    1. Allard L, Burkhard PR, Lescuyer P, Burgess JA, Walter N, Hochstrasser DF, et al. . PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem. (2005) 51:2043–51. 10.1373/clinchem.2005.053942
    1. Krause EG, Rabitzsch G, Noll F, Mair J, Puschendorf B. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. Mol Cell Biochem. (1996) 160–1:289–95. 10.1007/BF00240061
    1. Lippi G, Mattiuzzi C, Comelli I, Cervellin G. Glycogen phosphorylase isoenzyme BB in the diagnosis of acute myocardial infarction: a meta-analysis. Biochem Med. (2013) 23:78–82. 10.11613/BM.2013.010
    1. Misra S, Montaner J, Ramiro L, Arora R, Talwar P, Nath M, et al. . Blood biomarkers for the diagnosis and differentiation of stroke: a systematic review and meta-analysis. Int J Stroke. (2020) Aug 3:1747493020946157.
    1. Castellanos M, Leira R, Serena J, Blanco M, Pedraza S, Castillo J, et al. . Plasma cellular-fibronectin concentration predicts hemorrhagic transformation after thrombolytic therapy in acute ischemic stroke. Stroke. (2004) 35:1671–6. 10.1161/01.STR.0000131656.47979.39
    1. Davalos M, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J. Neurological deterioration in acute ischemic stroke potential predictors and associated factors in the European Cooperative Acute Stroke Study (ECASS) I. Stroke. (1999) 30:2631–6. 10.1161/01.STR.30.12.2631
    1. Castellanos M, Sobrino T, Pedraza S, Moldes O, Pumar J, Silva Y, et al. . High plasma glutamate concentrations are associated with infarct growth in acute ischemic stroke. Neurology. (2008) 71:1862–8. 10.1212/01.wnl.0000326064.42186.7e
    1. Castellanos M, Castillo J, García M, Leira R, Serena J, Chamorro A, et al. . Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke. (2002) 33:982–7. 10.1161/hs0402.105339
    1. Dávalos A, Castillo J, Marrugat J, Fernandez-Real J, Armengou A, Cacabelos P, et al. . Body iron stores and early neurologic deterioration in acute cerebral infarction. Neurology. (2000) 54:1568–74. 10.1212/WNL.54.8.1568
    1. Bustamante A, López-Cancio E, Pich S, Penalba A, Giralt D, García-Berrocoso T, et al. . Blood biomarkers for the early diagnosis of stroke: the stroke-chip study. Stroke. (2017) 48:2419–25. 10.1161/STROKEAHA.117.017076
    1. Sharp FR, Jickling GC, Stamova B, Tian Y, Zhan X, Liu D, et al. . Molecular markers and mechanisms of stroke: RNA studies of blood in animals and humans. J Cereb Blood Flow Metab. (2011) 31:1513–31. 10.1038/jcbfm.2011.45
    1. Tang Y, Lu A, Aronow BJ, Sharp FR. Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann Neurol. (2001) 50:699–707. 10.1002/ana.10042
    1. Grond-Ginsbach C, Hummel M, Wiest T, Horstmann S, Pfleger K, Hergenhahn M, et al. . Gene expression in human peripheral blood mononuclear cells upon acute ischemic stroke. J Neurol. (2008) 255:723–31. 10.1007/s00415-008-0784-z
    1. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A, et al. . Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology. (2010) 75:1009–14. 10.1212/WNL.0b013e3181f2b37f
    1. Zhan X, Ander BP, Jickling G, Turner R, Stamova B, Xu H, et al. . Brief focal cerebral ischemia that simulates transient ischemic attacks in humans regulates gene expression in rat peripheral blood. J Cereb Blood Flow Metab. (2010) 30:110–8. 10.1038/jcbfm.2009.189
    1. Oh SH, Kim OJ, Shin DA, Song J, Yoo H, Kim YK, et al. . Alteration of immunologic responses on peripheral blood in the acute phase of ischemic stroke: blood genomic profiling study. J Neuroimmunol. (2012) 249:60–5. 10.1016/j.jneuroim.2012.04.005
    1. Adamski MG, Li Y, Wagner E, Yu H, Seales-Bailey C, Soper SA, et al. . Expression profile based gene clusters for ischemic stroke detection. Genomics. (2014) 104:163–9. 10.1016/j.ygeno.2014.08.004
    1. Jauch EC, Barreto AD, Broderick JP, Char DM, Cucchiara BL, Devlin TG, et al. . Biomarkers of acute stroke etiology (BASE) study methodology. Transl Stroke Res. (2017) 8:424–8. 10.1007/s12975-017-0537-3
    1. Fraser JF, Collier LA, Gorman AA, Martha SR, Salmeron KE, Trout AL, et al. . The blood and clot thrombectomy registry and collaboration (BACTRAC) protocol: novel method for evaluating human stroke. J Neurointerv Surg. (2019) 11:265–70. 10.1136/neurintsurg-2018-014118
    1. Mattila OS, Harve H, Pihlasviita S, Ritvonen J, Sibolt G, Pystynen M, et al. . Ultra-acute diagnostics for stroke: large-scale implementation of prehospital biomarker sampling. Acta Neurol Scand. (2017) 136:17–23. 10.1111/ane.12687
    1. Rothwell PM, Giles MF, Chandratheva A, Marquardt L, Geraghty O, Redgrave JN, et al. . Effect of urgent treatment of transient ischaemic attack and minor stroke on early recurrent stroke (EXPRESS study): a prospective population-based sequential comparison. Lancet. (2007) 370:1432–342. 10.1016/S0140-6736(07)61448-2
    1. Ois A, Gomis M, Rodriguez-Campello A, Cuadrado-Godia E, Jimenez-Conde J, Pont-Sunyer C, et al. . Factors associated with a high risk of recurrence in patients with transient ischemic attack or minor stroke. Stroke. (2008) 39:1717–21. 10.1161/STROKEAHA.107.505438
    1. Johnston SC, Rothwell PM, Nguyen-Huynh MN, Giles MF, Elkins JS, Bernstein AL, et al. . Validation and refinement of scores to predict very early stroke risk after transient ischaemic attack. Lancet. (2007) 369:283–92. 10.1016/S0140-6736(07)60150-0
    1. Chandratheva A, Geraghty OC, Rothwell PM. Poor performance of current prognostic scores for early risk of recurrence after minor stroke. Stroke. (2011) 42:632–7. 10.1161/STROKEAHA.110.593301
    1. Alhajj M, Farhana A. Enzyme Linked Immunosorbent Assay. StatPearls. Treasure Island, FL: StatPearls Publishing; (2020).
    1. Legoupil C, Enderle I, Le Baccon FA, Bendavid C, Peltier L, Bauville E, et al. . Performance of a quick pregnancy test on whole blood in early pregnancy units: a prospective cohort study. Euro J Emerg Med. (2019) 26:105–11. 10.1097/MEJ.0000000000000501
    1. Pecoraro V, Banfi G, Germagnoli L, Trenti T. A systematic evaluation of immunoassay point-of-care testing to define impact on patients' outcomes. Ann Clin Biochem. (2017) 54:420–31. 10.1177/0004563217694377
    1. Setford S, Grady M, Phillips S, Miller L, Mackintosh S, Cameron H, et al. . Seven-year surveillance of the clinical performance of a blood glucose test strip product. J Diabetes Sci Technol. (2017) 11:1155–62. 10.1177/1932296817703133
    1. Banerjee S. Empowering clinical diagnostics with mass spectrometry. ACS Omega. (2020) 5:2041–8. 10.1021/acsomega.9b03764
    1. Roche PJR, Najih M, Lee SS, Beitel LK, Carnevale ML, Paliouras M, et al. . Real time plasmonic qPCR: how fast is ultra-fast? 30 cycles in 54 seconds. Analyst. (2017) 142:1746–55. 10.1039/C7AN00304H
    1. Jie J, Hu S, Liu W, Wei Q, Huang Y, Yuan X, et al. . Portable and battery-powered PCR device for DNA amplification and fluorescence detection. Sensors. (2020) 20:2627. 10.3390/s20092627
    1. Liu R, Ye X, Cui T. Recent progress of biomarker detection sensors. Research. (2020) 2020:7949037. 10.34133/2020/7949037

Source: PubMed

3
Suscribir