Search for Reliable Circulating Biomarkers to Predict Carotid Plaque Vulnerability

Núria Puig, Elena Jiménez-Xarrié, Pol Camps-Renom, Sonia Benitez, Núria Puig, Elena Jiménez-Xarrié, Pol Camps-Renom, Sonia Benitez

Abstract

Atherosclerosis is responsible for 20% of ischemic strokes, and the plaques from the internal carotid artery the most frequently involved. Lipoproteins play a key role in carotid atherosclerosis since lipid accumulation contributes to plaque progression and chronic inflammation, both factors leading to plaque vulnerability. Carotid revascularization to prevent future vascular events is reasonable in some patients with high-grade carotid stenosis. However, the degree of stenosis alone is not sufficient to decide upon the best clinical management in some situations. In this context, it is essential to further characterize plaque vulnerability, according to specific characteristics (lipid-rich core, fibrous cap thinning, intraplaque hemorrhage). Although these features can be partly detected by imaging techniques, identifying carotid plaque vulnerability is still challenging. Therefore, the study of circulating biomarkers could provide adjunctive criteria to predict the risk of atherothrombotic stroke. In this regard, several molecules have been found altered, but reliable biomarkers have not been clearly established yet. The current review discusses the concept of vulnerable carotid plaque, and collects existing information about putative circulating biomarkers, being particularly focused on lipid-related and inflammatory molecules.

Keywords: atherothrombotic stroke; biomarkers; carotid atherosclerosis; inflammation; ischemic stroke; lipids; lipoproteins; plaque vulnerability.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Progression of carotid plaque leading to ischemic stroke. Atherosclerosis in the carotid artery is the main cause of atherothrombotic ischemic stroke. Atherosclerosis may develop for years without symptoms for as long as the plaque remains stable. (a) When the mechanisms counteracting inflammation are overwhelmed, the balance to inflammatory processes is favored, leading to necrosis and release of inflammatory mediators and proteolytic enzymes that degrade the fibrous cap. The plaque then becomes unstable. (b) The unstable atherosclerotic plaques may break and then coagulation is triggered, eventually leading to thrombosis and brain ischemic events (c).
Figure 2
Figure 2
Presence of circulating biomarkers in patients with carotid atherosclerosis. Some molecules in the plasma may be indicative of susceptibility to develop atherosclerosis because of their involvement in the origin and destabilization of atherosclerotic plaque, in carotid as well as in other arteries. LDL and modified LDL may play a key role in this regard by first entering the subendothelial space, where they are presumably further modified, and then promoting foam cell formation and inducing an inflammatory response. Eventually, this phenomenon contributes to plaque vulnerability and to the release into the circulation of inflammatory mediators and highly modified LDL, thereby increasing their plasma concentration, particularly in symptomatic patients. In asymptomatic patients, the concentration of some biomarkers may be higher in high-risk vulnerable patients, because their carotid plaques release part of the lesion-related molecules into the circulation or because they have increased levels of certain molecules (as modified forms of LDL) that are involved in triggering plaque progression.
Figure 3
Figure 3
Levels of biomarkers in patients with carotid atherosclerosis and risk of atherothrombotic stroke.

References

    1. Saenger A.K., Christenson R.H. Stroke biomarkers: Progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin. Chem. 2010;56:21–33. doi: 10.1373/clinchem.2009.133801.
    1. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., de Ferranti S., Despres J.P., Fullerton H.J., Howard V.J., et al. Heart disease and stroke statistics—2015 update: A report from the american heart association. Circulation. 2015;131:e29–e322. doi: 10.1161/CIR.0000000000000152.
    1. Petty G.W., Brown R.D., Jr., Whisnant J.P., Sicks J.D., O’Fallon W.M., Wiebers D.O. Ischemic stroke subtypes: A population-based study of incidence and risk factors. Stroke. 1999;30:2513–2516. doi: 10.1161/01.STR.30.12.2513.
    1. Chaturvedi S., Bruno A., Feasby T., Holloway R., Benavente O., Cohen S.N., Cote R., Hess D., Saver J., Spence J.D., et al. Carotid endarterectomy—An evidence-based review: Report of the therapeutics and technology assessment subcommittee of the american academy of neurology. Neurology. 2005;65:794–801. doi: 10.1212/01.wnl.0000176036.07558.82.
    1. Adams H.P., Jr., Bendixen B.H., Kappelle L.J., Biller J., Love B.B., Gordon D.L., Marsh E.E., 3rd Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. Toast. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24:35–41. doi: 10.1161/01.STR.24.1.35.
    1. Bentzon J.F., Otsuka F., Virmani R., Falk E. Mechanisms of plaque formation and rupture. Circ. Res. 2014;114:1852–1866. doi: 10.1161/CIRCRESAHA.114.302721.
    1. Derdeyn C.P. Cerebral hemodynamics in carotid occlusive disease. AJNR Am. J. Neuroradiol. 2003;24:1497–1499.
    1. Jickling G.C., Chaturvedi S. Carotid plaque inflammation in stroke assessed by pet: A burning issue? Neurology. 2014;82:1672–1673. doi: 10.1212/WNL.0000000000000419.
    1. Rothwell P.M., Coull A.J., Giles M.F., Howard S.C., Silver L.E., Bull L.M., Gutnikov S.A., Edwards P., Mant D., Sackley C.M., et al. Change in stroke incidence, mortality, case-fatality, severity, and risk factors in oxfordshire, uk from 1981 to 2004 (oxford vascular study) Lancet. 2004;363:1925–1933. doi: 10.1016/S0140-6736(04)16405-2.
    1. Rothwell P.M., Eliasziw M., Gutnikov S.A., Fox A.J., Taylor D.W., Mayberg M.R., Warlow C.P., Barnett H.J. Analysis of pooled data from the randomised controlled trials of endarterectomy for symptomatic carotid stenosis. Lancet. 2003;361:107–116. doi: 10.1016/S0140-6736(03)12228-3.
    1. Ballotta E., Da Giau G., Piccoli A., Baracchini C. Durability of carotid endarterectomy for treatment of symptomatic and asymptomatic stenoses. J. Vasc. Surg. 2004;40:270–278. doi: 10.1016/j.jvs.2004.04.005.
    1. Spence J.D., Tamayo A., Lownie S.P., Ng W.P., Ferguson G.G. Absence of microemboli on transcranial doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke. 2005;36:2373–2378. doi: 10.1161/01.STR.0000185922.49809.46.
    1. Martinez E., Martorell J., Riambau V. Review of serum biomarkers in carotid atherosclerosis. J. Vasc. Surg. 2020;71:329–341. doi: 10.1016/j.jvs.2019.04.488.
    1. Skagen K., Skjelland M., Zamani M., Russell D. Unstable carotid artery plaque: New insights and controversies in diagnostics and treatment. Croat. Med. J. 2016;57:311–320. doi: 10.3325/cmj.2016.57.311.
    1. Spence J.D., Pilote L. Importance of sex and gender in atherosclerosis and cardiovascular disease. Atherosclerosis. 2015;241:208–210. doi: 10.1016/j.atherosclerosis.2015.04.806.
    1. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature. 1993;362:801–809. doi: 10.1038/362801a0.
    1. Tabas I. 2016 russell ross memorial lecture in vascular biology: Molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017;37:183–189. doi: 10.1161/ATVBAHA.116.308036.
    1. Karlof E., Seime T., Dias N., Lengquist M., Witasp A., Almqvist H., Kronqvist M., Gadin J.R., Odeberg J., Maegdefessel L., et al. Correlation of computed tomography with carotid plaque transcriptomes associates calcification with lesion-stabilization. Atherosclerosis. 2019;288:175–185. doi: 10.1016/j.atherosclerosis.2019.05.005.
    1. Galis Z.S., Sukhova G.K., Lark M.W., Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 1994;94:2493–2503. doi: 10.1172/JCI117619.
    1. Pourcet B., Staels B. Alternative macrophages in atherosclerosis: Not always protective! J. Clin. Investig. 2018;128:910–912. doi: 10.1172/JCI120123.
    1. Nuotio K., Ijas P., Heikkila H.M., Koskinen S.M., Saksi J., Vikatmaa P., Sorto P., Makitie L., Eriksson H., Kasari S., et al. Morphology and histology of silent and symptom-causing atherosclerotic carotid plaques—Rationale and design of the helsinki carotid endarterectomy study 2 (the heces2) Ann. Med. 2018;50:501–510. doi: 10.1080/07853890.2018.1494851.
    1. Bartlett E.S., Walters T.D., Symons S.P., Fox A.J. Quantification of carotid stenosis on ct angiography. AJNR Am. J. Neuroradiol. 2006;27:13–19.
    1. Camps-Renom P., Prats-Sanchez L., Casoni F., Gonzalez-de-Echavarri J.M., Marrero-Gonzalez P., Castrillon I., Marin R., Jimenez-Xarrie E., Delgado-Mederos R., Martinez-Domeno A., et al. Plaque neovascularization detected with contrast-enhanced ultrasound predicts ischaemic stroke recurrence in patients with carotid atherosclerosis. Eur. J. Neurol. 2020;27:809–816. doi: 10.1111/ene.14157.
    1. Gupta A., Baradaran H., Schweitzer A.D., Kamel H., Pandya A., Delgado D., Dunning A., Mushlin A.I., Sanelli P.C. Carotid plaque mri and stroke risk: A systematic review and meta-analysis. Stroke. 2013;44:3071–3077. doi: 10.1161/STROKEAHA.113.002551.
    1. Calogero E., Fabiani I., Pugliese N.R., Santini V., Ghiadoni L., Di Stefano R., Galetta F., Sartucci F., Penno G., Berchiolli R., et al. Three-dimensional echographic evaluation of carotid artery disease. J. Cardiovasc. Echogr. 2018;28:218–227.
    1. Saba L., Caddeo G., Sanfilippo R., Montisci R., Mallarini G. Ct and ultrasound in the study of ulcerated carotid plaque compared with surgical results: Potentialities and advantages of multidetector row ct angiography. AJNR Am. J. Neuroradiol. 2007;28:1061–1066. doi: 10.3174/ajnr.A0486.
    1. Kelly P.J., Camps-Renom P., Giannotti N., Marti-Fabregas J., Murphy S., McNulty J., Barry M., Barry P., Calvet D., Coutts S.B., et al. Carotid plaque inflammation imaged by (18)f-fluorodeoxyglucose positron emission tomography and risk of early recurrent stroke. Stroke. 2019;50:1766–1773. doi: 10.1161/STROKEAHA.119.025422.
    1. Skagen K., Johnsrud K., Evensen K., Scott H., Krohg-Sorensen K., Reier-Nilsen F., Revheim M.E., Fjeld J.G., Skjelland M., Russell D. Carotid plaque inflammation assessed with (18)f-fdg pet/ct is higher in symptomatic compared with asymptomatic patients. Int. J. Stroke. 2015;10:730–736. doi: 10.1111/ijs.12430.
    1. Marnane M., Merwick A., Sheehan O.C., Hannon N., Foran P., Grant T., Dolan E., Moroney J., Murphy S., O’Rourke K., et al. Carotid plaque inflammation on 18f-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann. Neurol. 2012;71:709–718. doi: 10.1002/ana.23553.
    1. Kelly P.J., Camps-Renom P., Giannotti N., Marti-Fabregas J., McNulty J.P., Baron J.C., Barry M., Coutts S.B., Cronin S., Delgado-Mederos R., et al. A risk score including carotid plaque inflammation and stenosis severity improves identification of recurrent stroke. Stroke. 2020;51:838–845. doi: 10.1161/STROKEAHA.119.027268.
    1. Whiteley W., Jackson C., Lewis S., Lowe G., Rumley A., Sandercock P., Wardlaw J., Dennis M., Sudlow C. Inflammatory markers and poor outcome after stroke: A prospective cohort study and systematic review of interleukin-6. PLoS Med. 2009;6:e1000145. doi: 10.1371/journal.pmed.1000145.
    1. Ma Z., Yue Y., Luo Y., Wang W., Cao Y., Fang Q. Clinical utility of the inflammatory factors combined with lipid markers in the diagnostic and prognostic assessment of ischemic stroke: Based on logistic regression models. J. Stroke Cerebrovasc. Dis. 2020;29:104653. doi: 10.1016/j.jstrokecerebrovasdis.2020.104653.
    1. Bhosale S.D., Moulder R., Venalainen M.S., Koskinen J.S., Pitkanen N., Juonala M.T., Kahonen M.A.P., Lehtimaki T.J., Viikari J.S.A., Elo L.L., et al. Serum proteomic profiling to identify biomarkers of premature carotid atherosclerosis. Sci. Rep. 2018;8:9209. doi: 10.1038/s41598-018-27265-9.
    1. Lepedda A.J., Nieddu G., Zinellu E., De Muro P., Piredda F., Guarino A., Spirito R., Carta F., Turrini F., Formato M. Proteomic analysis of plasma-purified vldl, ldl, and hdl fractions from atherosclerotic patients undergoing carotid endarterectomy: Identification of serum amyloid a as a potential marker. Oxidative Med. Cell. Longev. 2013;2013:385214. doi: 10.1155/2013/385214.
    1. Rocchiccioli S., Pelosi G., Rosini S., Marconi M., Viglione F., Citti L., Ferrari M., Trivella M.G., Cecchettini A. Secreted proteins from carotid endarterectomy: An untargeted approach to disclose molecular clues of plaque progression. J. Transl. Med. 2013;11:260. doi: 10.1186/1479-5876-11-260.
    1. Stamova B., Xu H., Jickling G., Bushnell C., Tian Y., Ander B.P., Zhan X., Liu D., Turner R., Adamczyk P., et al. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke. 2010;41:2171–2177. doi: 10.1161/STROKEAHA.110.588335.
    1. Barr T.L., Conley Y., Ding J., Dillman A., Warach S., Singleton A., Matarin M. Genomic biomarkers and cellular pathways of ischemic stroke by rna gene expression profiling. Neurology. 2010;75:1009–1014. doi: 10.1212/WNL.0b013e3181f2b37f.
    1. Ijas P., Nuotio K., Saksi J., Soinne L., Saimanen E., Karjalainen-Lindsberg M.L., Salonen O., Sarna S., Tuimala J., Kovanen P.T., et al. Microarray analysis reveals overexpression of cd163 and ho-1 in symptomatic carotid plaques. Arterioscler. Thromb. Vasc. Biol. 2007;27:154–160. doi: 10.1161/01.ATV.0000251991.64617.e7.
    1. Saksi J., Ijas P., Nuotio K., Sonninen R., Soinne L., Salonen O., Saimanen E., Tuimala J., Lehtonen-Smeds E.M., Kaste M., et al. Gene expression differences between stroke-associated and asymptomatic carotid plaques. J. Mol. Med. 2011;89:1015–1026. doi: 10.1007/s00109-011-0773-z.
    1. Salem M.K., Vijaynagar B., Sayers R.D., West K., Moore D., Robinson T.G., Naylor A.R., Bown M.J. Histologically unstable asymptomatic carotid plaques have altered expression of genes involved in chemokine signalling leading to localised plaque inflammation and rupture. Eur. J. Vasc. Endovasc. Surg. 2013;45:121–127. doi: 10.1016/j.ejvs.2012.11.006.
    1. Amarenco P., Labreuche J., Elbaz A., Touboul P.J., Driss F., Jaillard A., Bruckert E. Blood lipids in brain infarction subtypes. Cerebrovasc. Dis. 2006;22:101–108. doi: 10.1159/000093237.
    1. Yeh P.S., Yang C.M., Lin S.H., Wang W.M., Chen P.S., Chao T.H., Lin H.J., Lin K.C., Chang C.Y., Cheng T.J., et al. Low levels of high-density lipoprotein cholesterol in patients with atherosclerotic stroke: A prospective cohort study. Atherosclerosis. 2013;228:472–477. doi: 10.1016/j.atherosclerosis.2013.03.015.
    1. Ong C.T., Wong Y.S., Sung S.F., Wu C.S., Hsu Y.C., Su Y.H., Hung L.C. Progression of mild to moderate stenosis in the internal carotid arteries of patients with ischemic stroke. Front. Neurol. 2018;9:1043. doi: 10.3389/fneur.2018.01043.
    1. Zeljkovic A., Vekic J., Spasojevic-Kalimanovska V., Jelic-Ivanovic Z., Bogavac-Stanojevic N., Gulan B., Spasic S. Ldl and hdl subclasses in acute ischemic stroke: Prediction of risk and short-term mortality. Atherosclerosis. 2010;210:548–554. doi: 10.1016/j.atherosclerosis.2009.11.040.
    1. Chan D.C., Pang J., McQuillan B.M., Hung J., Beilby J.P., Barrett P.H., Watts G.F. Plasma proprotein convertase subtilisin kexin type 9 as a predictor of carotid atherosclerosis in asymptomatic adults. Heart Lung Circ. 2016;25:520–525. doi: 10.1016/j.hlc.2015.10.017.
    1. Dong H., Chen W., Wang X., Pi F., Wu Y., Pang S., Xie Y., Xia F., Zhang Q. Apolipoprotein a1, b levels, and their ratio and the risk of a first stroke: A meta-analysis and case-control study. Metab. Brain Dis. 2015;30:1319–1330. doi: 10.1007/s11011-015-9732-7.
    1. Patel S., Chung S.H., White G., Bao S., Celermajer D.S. The “Atheroprotective” Mediators apolipoprotein a-i and foxp3 are over-abundant in unstable carotid plaques. Int. J. Cardiol. 2010;145:183–187. doi: 10.1016/j.ijcard.2009.05.024.
    1. Khan T.A., Shah T., Prieto D., Zhang W., Price J., Fowkes G.R., Cooper J., Talmud P.J., Humphries S.E., Sundstrom J., et al. Apolipoprotein e genotype, cardiovascular biomarkers and risk of stroke: Systematic review and meta-analysis of 14,015 stroke cases and pooled analysis of primary biomarker data from up to 60,883 individuals. Int. J. Epidemiol. 2013;42:475–492. doi: 10.1093/ije/dyt034.
    1. Aragones G., Auguet T., Guiu-Jurado E., Berlanga A., Curriu M., Martinez S., Alibalic A., Aguilar C., Hernandez E., Camara M.L., et al. Proteomic profile of unstable atheroma plaque: Increased neutrophil defensin 1, clusterin, and apolipoprotein e levels in carotid secretome. J. Proteome Res. 2016;15:933–944. doi: 10.1021/acs.jproteome.5b00936.
    1. Weinstein G., Beiser A.S., Preis S.R., Courchesne P., Chouraki V., Levy D., Seshadri S. Plasma clusterin levels and risk of dementia, alzheimer’s disease, and stroke. Alzheimers Dement. 2016;3:103–109. doi: 10.1016/j.dadm.2016.06.005.
    1. Yanni A.E., Agrogiannis G., Gkekas C., Perrea D. Clusterin/apolipoprotein j immunolocalization on carotid artery is affected by tnf-alpha, cigarette smoking and anti-platelet treatment. Lipids Health Dis. 2014;13:70. doi: 10.1186/1476-511X-13-70.
    1. Elkind M.S., Tai W., Coates K., Paik M.C., Sacco R.L. Lipoprotein-associated phospholipase a2 activity and risk of recurrent stroke. Cerebrovasc. Dis. 2009;27:42–50. doi: 10.1159/000172633.
    1. Oei H.H., van der Meer I.M., Hofman A., Koudstaal P.J., Stijnen T., Breteler M.M., Witteman J.C. Lipoprotein-associated phospholipase a2 activity is associated with risk of coronary heart disease and ischemic stroke: The rotterdam study. Circulation. 2005;111:570–575. doi: 10.1161/.
    1. Katan M., Moon Y.P., Paik M.C., Wolfert R.L., Sacco R.L., Elkind M.S. Lipoprotein-associated phospholipase a2 is associated with atherosclerotic stroke risk: The northern manhattan study. PLoS ONE. 2014;9:e83393. doi: 10.1371/journal.pone.0083393.
    1. Otsuka F., Zhao X., Trout H.H., Qiao Y., Wasserman B.A., Nakano M., Macphee C.H., Brandt M., Krug-Gourley S., Guo L., et al. Community-based statins and advanced carotid plaque: Role of cd163 positive macrophages in lipoprotein-associated phospholipase a2 activity in atherosclerotic plaque. Atherosclerosis. 2017;267:78–89. doi: 10.1016/j.atherosclerosis.2017.10.014.
    1. Wang A., Yang Y., Su Z., Yue W., Hao H., Ren L., Wang Y., Cao Y. Association of oxidized low-density lipoprotein with prognosis of stroke and stroke subtypes. Stroke. 2017;48:91–97. doi: 10.1161/STROKEAHA.116.014816.
    1. Wang A., Dai L., Zhang N., Lin J., Chen G., Zuo Y., Li H., Wang Y., Meng X. Oxidized low-density lipoprotein (ldl) and ldl cholesterol are associated with outcomes of minor stroke and tia. Atherosclerosis. 2020;297:74–80. doi: 10.1016/j.atherosclerosis.2020.02.003.
    1. Sigala F., Kotsinas A., Savari P., Filis K., Markantonis S., Iliodromitis E.K., Gorgoulis V.G., Andreadou I. Oxidized ldl in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg. 2010;52:704–713. doi: 10.1016/j.jvs.2010.03.047.
    1. Lehti S., Nguyen S.D., Belevich I., Vihinen H., Heikkila H.M., Soliymani R., Kakela R., Saksi J., Jauhiainen M., Grabowski G.A., et al. Extracellular lipids accumulate in human carotid arteries as distinct three-dimensional structures and have proinflammatory properties. Am. J. Pathol. 2018;188:525–538. doi: 10.1016/j.ajpath.2017.09.019.
    1. Chaudhuri J.R., Mridula K.R., Umamahesh M., Swathi A., Balaraju B., Bandaru V.C. High sensitivity c-reactive protein levels in acute ischemic stroke and subtypes: A study from a tertiary care center. Iran. J. Neurol. 2013;12:92–97.
    1. Yamagami H., Kitagawa K., Nagai Y., Hougaku H., Sakaguchi M., Kuwabara K., Kondo K., Masuyama T., Matsumoto M., Hori M. Higher levels of interleukin-6 are associated with lower echogenicity of carotid artery plaques. Stroke. 2004;35:677–681. doi: 10.1161/01.STR.0000116876.96334.82.
    1. Yi L., Tang J., Shi C., Zhang T., Li J., Guo F., Zhang W. Pentraxin 3, tnf-alpha, and ldl-c are associated with carotid artery stenosis in patients with ischemic stroke. Front. Neurol. 2019;10:1365. doi: 10.3389/fneur.2019.01365.
    1. Shindo A., Tanemura H., Yata K., Hamada K., Shibata M., Umeda Y., Asakura F., Toma N., Sakaida H., Fujisawa T., et al. Inflammatory biomarkers in atherosclerosis: Pentraxin 3 can become a novel marker of plaque vulnerability. PLoS ONE. 2014;9:e100045. doi: 10.1371/journal.pone.0100045.
    1. Ormstad H., Aass H.C., Lund-Sorensen N., Amthor K.F., Sandvik L. Serum levels of cytokines and c-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J. Neurol. 2011;258:677–685. doi: 10.1007/s00415-011-6006-0.
    1. Welsh P., Lowe G.D., Chalmers J., Campbell D.J., Rumley A., Neal B.C., MacMahon S.W., Woodward M. Associations of proinflammatory cytokines with the risk of recurrent stroke. Stroke. 2008;39:2226–2230. doi: 10.1161/STROKEAHA.107.504498.
    1. Markstad H., Edsfeldt A., Yao Mattison I., Bengtsson E., Singh P., Cavalera M., Asciutto G., Bjorkbacka H., Fredrikson G.N., Dias N., et al. High levels of soluble lectinlike oxidized low-density lipoprotein receptor-1 are associated with carotid plaque inflammation and increased risk of ischemic stroke. J. Am. Heart Assoc. 2019;8:e009874. doi: 10.1161/JAHA.118.009874.
    1. Shi X., Xie W.L., Kong W.W., Chen D., Qu P. Expression of the nlrp3 inflammasome in carotid atherosclerosis. J. Stroke Cerebrovasc. Dis. 2015;24:2455–2466. doi: 10.1016/j.jstrokecerebrovasdis.2015.03.024.
    1. Zaremba J., Losy J. Interleukin-18 in acute ischaemic stroke patients. Neurol. Sci. 2003;24:117–124. doi: 10.1007/s10072-003-0096-0.
    1. Abbas A., Gregersen I., Holm S., Daissormont I., Bjerkeli V., Krohg-Sorensen K., Skagen K.R., Dahl T.B., Russell D., Almas T., et al. Interleukin 23 levels are increased in carotid atherosclerosis: Possible role for the interleukin 23/interleukin 17 axis. Stroke. 2015;46:793–799. doi: 10.1161/STROKEAHA.114.006516.
    1. Georgakis M.K., Malik R., Bjorkbacka H., Pana T.A., Demissie S., Ayers C., Elhadad M.A., Fornage M., Beiser A.S., Benjamin E.J., et al. Circulating monocyte chemoattractant protein-1 and risk of stroke: Meta-analysis of population-based studies involving 17 180 individuals. Circ. Res. 2019;125:773–782. doi: 10.1161/CIRCRESAHA.119.315380.
    1. Lehmann M.F., Kallaur A.P., Oliveira S.R., Alfieri D.F., Delongui F., de Sousa Parreira J., de Araujo M.C., Rossato C., de Almeida J.T., Pelegrino L.M., et al. Inflammatory and metabolic markers and short-time outcome in patients with acute ischemic stroke in relation to toast subtypes. Metab. Brain Dis. 2015;30:1417–1428. doi: 10.1007/s11011-015-9731-8.
    1. Mazzotta G., Sarchielli P., Caso V., Paciaroni M., Floridi A., Gallai V. Different cytokine levels in thrombolysis patients as predictors for clinical outcome. Eur. J. Neurol. 2004;11:377–381. doi: 10.1111/j.1468-1331.2004.00798.x.
    1. Jeon S.B., Chun S., Choi-Kwon S., Chi H.S., Nah H.W., Kwon S.U., Kim W.K., Kim J.S. Biomarkers and location of atherosclerosis: Matrix metalloproteinase-2 may be related to intracranial atherosclerosis. Atherosclerosis. 2012;223:442–447. doi: 10.1016/j.atherosclerosis.2012.04.013.
    1. Iemolo F., Sanzaro E., Duro G., Giordano A., Paciaroni M. The prognostic value of biomarkers in stroke. Immun. Ageing. 2016;13:19. doi: 10.1186/s12979-016-0074-z.
    1. Abbas A., Aukrust P., Russell D., Krohg-Sorensen K., Almas T., Bundgaard D., Bjerkeli V., Sagen E.L., Michelsen A.E., Dahl T.B., et al. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS ONE. 2014;9:e84935. doi: 10.1371/journal.pone.0084935.
    1. Palm F., Pussinen P.J., Safer A., Tervahartiala T., Sorsa T., Urbanek C., Becher H., Grau A.J. Serum matrix metalloproteinase-8, tissue inhibitor of metalloproteinase and myeloperoxidase in ischemic stroke. Atherosclerosis. 2018;271:9–14. doi: 10.1016/j.atherosclerosis.2018.02.012.
    1. Zhong C., Yang J., Xu T., Peng Y., Wang A., Wang J., Peng H., Li Q., Ju Z., Geng D., et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology. 2017;89:805–812. doi: 10.1212/WNL.0000000000004257.
    1. Cojocarui I.M., Cojocaru M., Sapira V., Socoliuc G., Hertea C., Paveliu S. Changes in plasma matrix metalloproteinase-9 levels in patients with acute ischemic stroke. Rom. J. Intern. Med. 2012;50:155–158.
    1. Guo Z.Y., Zhang B., Yan Y.H., Gao S.S., Liu J.J., Xu L., Hui P.J. Specific matrix metalloproteinases and calcification factors are associated with the vulnerability of human carotid plaque. Exp. Ther. Med. 2018;16:2071–2079. doi: 10.3892/etm.2018.6424.
    1. Langley S.R., Willeit K., Didangelos A., Matic L.P., Skroblin P., Barallobre-Barreiro J., Lengquist M., Rungger G., Kapustin A., Kedenko L., et al. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J. Clin. Investig. 2017;127:1546–1560. doi: 10.1172/JCI86924.
    1. Eilenberg W., Stojkovic S., Kaider A., Piechota-Polanczyk A., Nanobachvili J., Domenig C.M., Wojta J., Huk I., Demyanets S., Neumayer C. Neutrophil gelatinase associated lipocalin (ngal) for identification of unstable plaques in patients with asymptomatic carotid stenosis. Eur. J. Vasc. Endovasc. Surg. 2019;57:768–777. doi: 10.1016/j.ejvs.2018.12.029.
    1. Orion D., von Landenberg P., Itsekson-Hayosh Z., Schwammenthal Y., Tsabari R., Merzeliak O., Chapman J., Tanne D. Plasma myeloperoxidase levels in acute brain ischaemia and high grade carotid stenosis. Eur. J. Neurol. 2020;27:1604–1611. doi: 10.1111/ene.14279.
    1. Kozuka K., Kohriyama T., Nomura E., Ikeda J., Kajikawa H., Nakamura S. Endothelial markers and adhesion molecules in acute ischemic stroke—Sequential change and differences in stroke subtype. Atherosclerosis. 2002;161:161–168. doi: 10.1016/S0021-9150(01)00635-9.
    1. Wang J., Li J., Liu Q. Association between platelet activation and fibrinolysis in acute stroke patients. Neurosci. Lett. 2005;384:305–309. doi: 10.1016/j.neulet.2005.04.090.
    1. Hofmann A., Brunssen C., Wolk S., Reeps C., Morawietz H. Soluble lox-1: A novel biomarker in patients with coronary artery disease, stroke, and acute aortic dissection? J. Am. Heart Assoc. 2020;9:e013803. doi: 10.1161/JAHA.119.013803.
    1. Yokota C., Sawamura T., Watanabe M., Kokubo Y., Fujita Y., Kakino A., Nakai M., Toyoda K., Miyamoto Y., Minematsu K. High levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 in acute stroke: An age- and sex-matched cross-sectional study. J. Atheroscler. Thromb. 2016;23:1222–1226. doi: 10.5551/jat.32466.
    1. Huang W., Li Q., Chen X., Lin Y., Xue J., Cai Z., Zhang W., Wang H., Jin K., Shao B. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as a novel biomarker for large-artery atherosclerotic stroke. Int. J. Neurosci. 2017;127:881–886. doi: 10.1080/00207454.2016.1272601.
    1. Skarpengland T., Skjelland M., Kong X.Y., Skagen K., Holm S., Otterdal K., Dahl C.P., Krohg-Sorensen K., Sagen E.L., Bjerkeli V., et al. Increased levels of lectin-like oxidized low-density lipoprotein receptor-1 in ischemic stroke and transient ischemic attack. J. Am. Heart Assoc. 2018;7:e006479. doi: 10.1161/JAHA.117.006479.
    1. Isoviita P.M., Nuotio K., Saksi J., Turunen R., Ijas P., Pitkaniemi J., Soinne L., Kaste M., Kovanen P.T., Lindsberg P.J. An imbalance between cd36 and abca1 protein expression favors lipid accumulation in stroke-prone ulcerated carotid plaques. Stroke. 2010;41:389–393. doi: 10.1161/STROKEAHA.109.567636.
    1. Handberg A., Skjelland M., Michelsen A.E., Sagen E.L., Krohg-Sorensen K., Russell D., Dahl A., Ueland T., Oie E., Aukrust P., et al. Soluble cd36 in plasma is increased in patients with symptomatic atherosclerotic carotid plaques and is related to plaque instability. Stroke. 2008;39:3092–3095. doi: 10.1161/STROKEAHA.108.517128.
    1. O’Connell G.C., Tennant C.S., Lucke-Wold N., Kabbani Y., Tarabishy A.R., Chantler P.D., Barr T.L. Monocyte-lymphocyte cross-communication via soluble cd163 directly links innate immune system activation and adaptive immune system suppression following ischemic stroke. Sci. Rep. 2017;7:12940. doi: 10.1038/s41598-017-13291-6.
    1. Aristoteli L.P., Moller H.J., Bailey B., Moestrup S.K., Kritharides L. The monocytic lineage specific soluble cd163 is a plasma marker of coronary atherosclerosis. Atherosclerosis. 2006;184:342–347. doi: 10.1016/j.atherosclerosis.2005.05.004.
    1. Lu L.F., Yang S.S., Wang C.P., Hung W.C., Yu T.H., Chiu C.A., Chung F.M., Shin S.J., Lee Y.J. Elevated visfatin/pre-b-cell colony-enhancing factor plasma concentration in ischemic stroke. J. Stroke Cerebrovasc. Dis. 2009;18:354–359. doi: 10.1016/j.jstrokecerebrovasdis.2009.01.003.
    1. Kadoglou N.P., Fotiadis G., Lambadiari V., Maratou E., Dimitriadis G., Liapis C.D. Serum levels of novel adipokines in patients with acute ischemic stroke: Potential contribution to diagnosis and prognosis. Peptides. 2014;57:12–16. doi: 10.1016/j.peptides.2014.04.008.
    1. Yue J., Chen J., Wu Q., Liu X., Li M., Li Z., Gao Y. Serum levels of omentin-1 association with early diagnosis, lesion volume and severity of acute ischemic stroke. Cytokine. 2018;111:518–522. doi: 10.1016/j.cyto.2018.05.026.
    1. Xu T., Zuo P., Wang Y., Gao Z., Ke K. Serum omentin-1 is a novel biomarker for predicting the functional outcome of acute ischemic stroke patients. Clin. Chem. Lab. Med. 2018;56:350–355. doi: 10.1515/cclm-2017-0282.
    1. Efstathiou S.P., Tsiakou A.G., Tsioulos D.I., Panagiotou T.N., Pefanis A.V., Achimastos A.D., Mountokalakis T.D. Prognostic significance of plasma resistin levels in patients with atherothrombotic ischemic stroke. Clin. Chim. Acta. 2007;378:78–85. doi: 10.1016/j.cca.2006.10.023.
    1. Holm S., Ueland T., Dahl T.B., Michelsen A.E., Skjelland M., Russell D., Nymo S.H., Krohg-Sorensen K., Clausen O.P., Atar D., et al. Fatty acid binding protein 4 is associated with carotid atherosclerosis and outcome in patients with acute ischemic stroke. PLoS ONE. 2011;6:e28785. doi: 10.1371/journal.pone.0028785.
    1. Agardh H.E., Folkersen L., Ekstrand J., Marcus D., Swedenborg J., Hedin U., Gabrielsen A., Paulsson-Berne G. Expression of fatty acid-binding protein 4/ap2 is correlated with plaque instability in carotid atherosclerosis. J. Intern. Med. 2011;269:200–210. doi: 10.1111/j.1365-2796.2010.02304.x.
    1. Tsai P.C., Liao Y.C., Wang Y.S., Lin H.F., Lin R.T., Juo S.H. Serum microrna-21 and microrna-221 as potential biomarkers for cerebrovascular disease. J. Vasc. Res. 2013;50:346–354. doi: 10.1159/000351767.
    1. Eken S.M., Jin H., Chernogubova E., Li Y., Simon N., Sun C., Korzunowicz G., Busch A., Backlund A., Osterholm C., et al. Microrna-210 enhances fibrous cap stability in advanced atherosclerotic lesions. Circ. Res. 2017;120:633–644. doi: 10.1161/CIRCRESAHA.116.309318.
    1. Sepramaniam S., Tan J.R., Tan K.S., DeSilva D.A., Tavintharan S., Woon F.P., Wang C.W., Yong F.L., Karolina D.S., Kaur P., et al. Circulating micrornas as biomarkers of acute stroke. Int. J. Mol. Sci. 2014;15:1418–1432. doi: 10.3390/ijms15011418.
    1. Zeng Y., Liu J.X., Yan Z.P., Yao X.H., Liu X.H. Potential microrna biomarkers for acute ischemic stroke. Int. J. Mol. Med. 2015;36:1639–1647. doi: 10.3892/ijmm.2015.2367.
    1. Dolz S., Gorriz D., Tembl J.I., Sanchez D., Fortea G., Parkhutik V., Lago A. Circulating micrornas as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke. 2017;48:10–16. doi: 10.1161/STROKEAHA.116.013650.
    1. Cipollone F., Felicioni L., Sarzani R., Ucchino S., Spigonardo F., Mandolini C., Malatesta S., Bucci M., Mammarella C., Santovito D., et al. A unique microrna signature associated with plaque instability in humans. Stroke. 2011;42:2556–2563. doi: 10.1161/STROKEAHA.110.597575.
    1. Maitrias P., Metzinger-Le Meuth V., Massy Z.A., M’Baya-Moutoula E., Reix T., Caus T., Metzinger L. Microrna deregulation in symptomatic carotid plaque. J. Vasc. Surg. 2015;62:1245–1250.e1. doi: 10.1016/j.jvs.2015.06.136.
    1. Gao J., Yang S., Wang K., Zhong Q., Ma A., Pan X. Plasma mir-126 and mir-143 as potential novel biomarkers for cerebral atherosclerosis. J. Stroke Cerebrovasc. Dis. 2019;28:38–43. doi: 10.1016/j.jstrokecerebrovasdis.2018.09.008.
    1. An T.H., He Q.W., Xia Y.P., Chen S.C., Baral S., Mao L., Jin H.J., Li Y.N., Wang M.D., Chen J.G., et al. Mir-181b antagonizes atherosclerotic plaque vulnerability through modulating macrophage polarization by directly targeting notch1. Mol. Neurobiol. 2017;54:6329–6341. doi: 10.1007/s12035-016-0163-1.
    1. Magenta A., Sileno S., D’Agostino M., Persiani F., Beji S., Paolini A., Camilli D., Platone A., Capogrossi M.C., Furgiuele S. Atherosclerotic plaque instability in carotid arteries: Mir-200c as a promising biomarker. Clin. Sci. 2018;132:2423–2436. doi: 10.1042/CS20180684.
    1. Bazan H.A., Hatfield S.A., Brug A., Brooks A.J., Lightell D.J., Jr., Woods T.C. Carotid plaque rupture is accompanied by an increase in the ratio of serum circr-284 to mir-221 levels. Circ. Cardiovasc. Genet. 2017;10:e001720. doi: 10.1161/CIRCGENETICS.117.001720.
    1. Zhang R., Qin Y., Zhu G., Li Y., Xue J. Low serum mir-320b expression as a novel indicator of carotid atherosclerosis. J. Clin. Neurosci. 2016;33:252–258. doi: 10.1016/j.jocn.2016.03.034.
    1. Wezel A., Welten S.M., Razawy W., Lagraauw H.M., de Vries M.R., Goossens E.A., Boonstra M.C., Hamming J.F., Kandimalla E.R., Kuiper J., et al. Inhibition of microrna-494 reduces carotid artery atherosclerotic lesion development and increases plaque stability. Ann. Surg. 2015;262:841–848. doi: 10.1097/SLA.0000000000001466.
    1. Abela G.S. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J. Clin. Lipidol. 2010;4:156–164. doi: 10.1016/j.jacl.2010.03.003.
    1. Edsfeldt A., Duner P., Stahlman M., Mollet I.G., Asciutto G., Grufman H., Nitulescu M., Persson A.F., Fisher R.M., Melander O., et al. Sphingolipids contribute to human atherosclerotic plaque inflammation. Arterioscler. Thromb. Vasc. Biol. 2016;36:1132–1140. doi: 10.1161/ATVBAHA.116.305675.
    1. Gu X., Li Y., Chen S., Yang X., Liu F., Li J., Cao J., Liu X., Chen J., Shen C., et al. Association of lipids with ischemic and hemorrhagic stroke: A prospective cohort study among 267,500 chinese. Stroke. 2019;50:3376–3384. doi: 10.1161/STROKEAHA.119.026402.
    1. Laloux P., Galanti L., Jamart J. Lipids in ischemic stroke subtypes. Acta Neurol. Belg. 2004;104:13–19.
    1. Hindy G., Engstrom G., Larsson S.C., Traylor M., Markus H.S., Melander O., Orho-Melander M. Role of blood lipids in the development of ischemic stroke and its subtypes: A mendelian randomization study. Stroke. 2018;49:820–827. doi: 10.1161/STROKEAHA.117.019653.
    1. Amarenco P., Hobeanu C., Labreuche J., Charles H., Giroud M., Meseguer E., Lavallee P.C., Gabriel Steg P., Vicaut E., Bruckert E., et al. Carotid atherosclerosis evolution when targeting a low-density lipoprotein cholesterol concentration <70 mg/dL after an ischemic stroke of atherosclerotic origin. Circulation. 2020;142:748–757. doi: 10.1161/CIRCULATIONAHA.120.046774.
    1. Furberg C.D., Adams H.P., Jr., Applegate W.B., Byington R.P., Espeland M.A., Hartwell T., Hunninghake D.B., Lefkowitz D.S., Probstfield J., Riley W.A., et al. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic carotid artery progression study (acaps) research group. Circulation. 1994;90:1679–1687. doi: 10.1161/01.CIR.90.4.1679.
    1. Zhang Q., Liu S., Liu Y., Hua Y., Song H., Ren Y., Song Y., Liu R., Feng W., Ovbiagele B., et al. Achieving low density lipoprotein-cholesterol < 70mg/dL may be associated with a trend of reduced progression of carotid artery atherosclerosis in ischemic stroke patients. J. Neurol. Sci. 2017;378:26–29. doi: 10.1016/j.jns.2017.04.024.
    1. Xie W., Liu J., Wang W., Wang M., Qi Y., Zhao F., Sun J., Li Y., Zhao D. Association between plasma pcsk9 levels and 10-year progression of carotid atherosclerosis beyond ldl-c: A cohort study. Int. J. Cardiol. 2016;215:293–298. doi: 10.1016/j.ijcard.2016.04.103.
    1. Hong X.W., Wu D.M., Lu J., Zheng Y.L., Tu W.J., Yan J. Lipoprotein (a) as a predictor of early stroke recurrence in acute ischemic stroke. Mol. Neurobiol. 2018;55:718–726. doi: 10.1007/s12035-016-0346-9.
    1. Alam R., Yatsu F.M., Kasturi R., Bui G. Low and high density lipoprotein metabolism in atherothrombotic brain infarction. Stroke. 1992;23:1265–1270. doi: 10.1161/01.STR.23.9.1265.
    1. Tirschwell D.L., Smith N.L., Heckbert S.R., Lemaitre R.N., Longstreth W.T., Jr., Psaty B.M. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology. 2004;63:1868–1875. doi: 10.1212/01.WNL.0000144282.42222.DA.
    1. Meilhac O. High-density lipoproteins in stroke. Handb. Exp. Pharmacol. 2015;224:509–526.
    1. Tiozzo E., Gardener H., Hudson B.I., Dong C., Della-Morte D., Crisby M., Goldberg R.B., Elkind M.S., Cheung Y.K., Wright C.B., et al. Subfractions of high-density lipoprotein-cholesterol and carotid intima-media thickness: The northern manhattan study. Stroke. 2016;47:1508–1513. doi: 10.1161/STROKEAHA.115.012009.
    1. Chei C.L., Yamagishi K., Kitamura A., Kiyama M., Imano H., Ohira T., Cui R., Tanigawa T., Sankai T., Ishikawa Y., et al. High-density lipoprotein subclasses and risk of stroke and its subtypes in japanese population: The circulatory risk in communities study. Stroke. 2013;44:327–333. doi: 10.1161/STROKEAHA.112.674812.
    1. Jain J., Lathia T., Gupta O.P., Jain V. Carotid intima-media thickness and apolipoproteins in patients of ischemic stroke in a rural hospital setting in central india: A cross-sectional study. J. Neurosci. Rural. Pract. 2012;3:21–27.
    1. Ye F., Liu J., Yang S., Guo F.Q. Higher apolipoprotein b levels are associated with earlier onset of first-ever atherosclerotic stroke. Int. J. Neurosci. 2015;125:186–190. doi: 10.3109/00207454.2014.951042.
    1. Yue Y.H., Bai X.D., Li Y.M., Hu L., Liu L.Y., Mao J.P., Yang X.Y., Dila N.M. The association of serum lipid level with ischemic stroke in the elderly of xinjiang. Neuroendocrinol. Lett. 2019;39:572–578.
    1. Charnay Y., Imhof A., Vallet P.G., Kovari E., Bouras C., Giannakopoulos P. Clusterin in neurological disorders: Molecular perspectives and clinical relevance. Brain Res. Bull. 2012;88:434–443. doi: 10.1016/j.brainresbull.2012.05.006.
    1. Song H., Zhou H., Qu Z., Hou J., Chen W., Cai W., Cheng Q., Chuang D.Y., Chen S., Li S., et al. From analysis of ischemic mouse brain proteome to identification of human serum clusterin as a potential biomarker for severity of acute ischemic stroke. Transl. Stroke Res. 2019;10:546–556. doi: 10.1007/s12975-018-0675-2.
    1. Karabina S.A., Liapikos T.A., Grekas G., Goudevenos J., Tselepis A.D. Distribution of paf-acetylhydrolase activity in human plasma low-density lipoprotein subfractions. Biochim. Biophys. Acta. 1994;1213:34–38. doi: 10.1016/0005-2760(94)90219-4.
    1. Yang Y., Xue T., Zhu J., Xu J., Hu X., Wang P., Kong T., Yan Y., Yang L., Xue S. Serum lipoprotein-associated phospholipase a2 predicts the formation of carotid artery plaque and its vulnerability in anterior circulation cerebral infarction. Clin. Neurol. Neurosurg. 2017;160:40–45. doi: 10.1016/j.clineuro.2017.06.007.
    1. Walsh K.B., Hart K., Roll S., Sperling M., Unruh D., Davidson W.S., Lindsell C.J., Adeoye O. Apolipoprotein a-i and paraoxonase-1 are potential blood biomarkers for ischemic stroke diagnosis. J. Stroke Cerebrovasc. Dis. 2016;25:1360–1365. doi: 10.1016/j.jstrokecerebrovasdis.2016.02.027.
    1. Chawhan S.S., Mogarekar M.R., Wagh R.V., Das R.R., Pramanik S.S., Sonune S.M., Chawhan S.M. Relation of paraoxonase1, arylesterase and lipid profile in ischemic stroke patients. J. Clin. Diagn. Res. 2015;9:BC01–BC03. doi: 10.7860/JCDR/2015/15345.6707.
    1. Michalak S., Kazmierski R., Hellmann A., Wysocka E., Kocialkowska-Adamczewska D., Wencel-Warot A., Nowinski W.L. Serum paraoxonase/arylesterase activity affects outcome in ischemic stroke patients. Cerebrovasc. Dis. 2011;32:124–132. doi: 10.1159/000328227.
    1. Ishigaki Y., Oka Y., Katagiri H. Circulating oxidized ldl: A biomarker and a pathogenic factor. Curr. Opin. Lipidol. 2009;20:363–369. doi: 10.1097/MOL.0b013e32832fa58d.
    1. Nishi K., Itabe H., Uno M., Kitazato K.T., Horiguchi H., Shinno K., Nagahiro S. Oxidized ldl in carotid plaques and plasma associates with plaque instability. Arterioscler. Thromb. Vasc. Biol. 2002;22:1649–1654. doi: 10.1161/01.ATV.0000033829.14012.18.
    1. Yang T.C., Chang P.Y., Lu S.C. L5-ldl from st-elevation myocardial infarction patients induces il-1beta production via lox-1 and nlrp3 inflammasome activation in macrophages. Am. J. Physiol. Heart Circ. Physiol. 2017;312:H265–H274. doi: 10.1152/ajpheart.00509.2016.
    1. Chang C.Y., Chen C.H., Chen Y.M., Hsieh T.Y., Li J.P., Shen M.Y., Lan J.L., Chen D.Y. Association between negatively charged low-density lipoprotein l5 and subclinical atherosclerosis in rheumatoid arthritis patients. J. Clin. Med. 2019;8:177. doi: 10.3390/jcm8020177.
    1. Estruch M., Sanchez-Quesada J.L., Ordonez Llanos J., Benitez S. Electronegative ldl: A circulating modified ldl with a role in inflammation. Mediat. Inflamm. 2013;2013:181324. doi: 10.1155/2013/181324.
    1. Puig N., Montolio L., Camps-Renom P., Navarra L., Jimenez-Altayo F., Jimenez-Xarrie E., Sanchez-Quesada J.L., Benitez S. Electronegative ldl promotes inflammation and triglyceride accumulation in macrophages. Cells. 2020;9:583. doi: 10.3390/cells9030583.
    1. Shen M.Y., Chen F.Y., Hsu J.F., Fu R.H., Chang C.M., Chang C.T., Liu C.H., Wu J.R., Lee A.S., Chan H.C., et al. Plasma l5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood. 2016;127:1336–1345. doi: 10.1182/blood-2015-05-646117.
    1. Tuttolomondo A., Di Raimondo D., Pecoraro R., Arnao V., Pinto A., Licata G. Inflammation in ischemic stroke subtypes. Curr. Pharm. Des. 2012;18:4289–4310. doi: 10.2174/138161212802481200.
    1. Zhou Y., Han W., Gong D., Man C., Fan Y. Hs-crp in stroke: A meta-analysis. Clin. Chim. Acta. 2016;453:21–27. doi: 10.1016/j.cca.2015.11.027.
    1. Zheng X., Zeng N., Wang A., Zhu Z., Zhong C., Xu T., Peng Y., Peng H., Li Q., Ju Z., et al. Elevated c-reactive protein and depressed high-density lipoprotein cholesterol are associated with poor function outcome after ischemic stroke. Curr. Neurovasc. Res. 2018;15:226–233. doi: 10.2174/1567202615666180712100440.
    1. Zhang Y.B., Yin Z., Han X., Wang Q., Zhang Z., Geng J. Association of circulating high-sensitivity c-reactive protein with late recurrence after ischemic stroke. Neuroreport. 2017;28:598–603. doi: 10.1097/WNR.0000000000000806.
    1. Nayak A.R., Kashyap R.S., Purohit H.J., Kabra D., Taori G.M., Daginawala H.F. Evaluation of the inflammatory response in sera from acute ischemic stroke patients by measurement of il-2 and il-10. Inflamm. Res. 2009;58:687–691. doi: 10.1007/s00011-009-0036-4.
    1. Yuen C.M., Chiu C.A., Chang L.T., Liou C.W., Lu C.H., Youssef A.A., Yip H.K. Level and value of interleukin-18 after acute ischemic stroke. Circ. J. 2007;71:1691–1696. doi: 10.1253/circj.71.1691.
    1. Vila N., Castillo J., Davalos A., Esteve A., Planas A.M., Chamorro A. Levels of anti-inflammatory cytokines and neurological worsening in acute ischemic stroke. Stroke. 2003;34:671–675. doi: 10.1161/01.STR.0000057976.53301.69.
    1. Al-Bahrani A., Taha S., Shaath H., Bakhiet M. Tnf-alpha and il-8 in acute stroke and the modulation of these cytokines by antiplatelet agents. Curr. Neurovasc. Res. 2007;4:31–37. doi: 10.2174/156720207779940716.
    1. Krupinski J., Turu M.M., Font M.A., Ahmed N., Sullivan M., Rubio F., Badimon L., Slevin M. Increased tissue factor, mmp-8, and d-dimer expression in diabetic patients with unstable advanced carotid atherosclerosis. Vasc. Health Risk Manag. 2007;3:405–412.
    1. Fassbender K., Mossner R., Motsch L., Kischka U., Grau A., Hennerici M. Circulating selectin- and immunoglobulin-type adhesion molecules in acute ischemic stroke. Stroke. 1995;26:1361–1364. doi: 10.1161/01.STR.26.8.1361.
    1. Frijns C.J., Kappelle L.J. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke. 2002;33:2115–2122. doi: 10.1161/01.STR.0000021902.33129.69.
    1. Kobayashi N., Takano M., Hata N., Kume N., Yamamoto M., Yokoyama S., Shinada T., Tomita K., Shirakabe A., Otsuka T., et al. Soluble lectin-like oxidized ldl receptor-1 (slox-1) as a valuable diagnostic marker for rupture of thin-cap fibroatheroma: Verification by optical coherence tomography. Int. J. Cardiol. 2013;168:3217–3223. doi: 10.1016/j.ijcard.2013.04.110.
    1. Kume N., Mitsuoka H., Hayashida K., Tanaka M., Kita T. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts prognosis after acute coronary syndrome—A pilot study. Circ. J. 2010;74:1399–1404. doi: 10.1253/circj.CJ-09-0924.
    1. Olson N.C., Koh I., Reiner A.P., Judd S.E., Irvin M.R., Howard G., Zakai N.A., Cushman M. Soluble cd14, ischemic stroke, and coronary heart disease risk in a prospective study: The regards cohort. J. Am. Heart Assoc. 2020;9:e014241. doi: 10.1161/JAHA.119.014241.
    1. Zeller J.A., Tschoepe D., Kessler C. Circulating platelets show increased activation in patients with acute cerebral ischemia. Thromb. Haemost. 1999;81:373–377.
    1. Gairolla J., Kler R., Modi M., Khurana D. Leptin and adiponectin: Pathophysiological role and possible therapeutic target of inflammation in ischemic stroke. Rev. Neurosci. 2017;28:295–306. doi: 10.1515/revneuro-2016-0055.
    1. Efstathiou S.P., Tsioulos D.I., Tsiakou A.G., Gratsias Y.E., Pefanis A.V., Mountokalakis T.D. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke. 2005;36:1915–1919. doi: 10.1161/01.STR.0000177874.29849.f0.
    1. Kantorova E., Chomova M., Kurca E., Sivak S., Zelenak K., Kucera P., Galajda P. Leptin, adiponectin and ghrelin, new potential mediators of ischemic stroke. Neuro. Endocrinol. Lett. 2011;32:716–721.
    1. Kim B.J., Lee S.H., Ryu W.S., Kim C.K., Yoon B.W. Adipocytokines and ischemic stroke: Differential associations between stroke subtypes. J. Neurol. Sci. 2012;312:117–122. doi: 10.1016/j.jns.2011.08.007.
    1. Kochanowski J., Grudniak M., Baranowska-Bik A., Wolinska-Witort E., Kalisz M., Baranowska B., Bik W. Resistin levels in women with ischemic stroke. Neuro. Endocrinol. Lett. 2012;33:603–607.
    1. Xu T., Zuo P., Cao L., Gao Z., Ke K. Omentin-1 is associated with carotid plaque instability among ischemic stroke patients. J. Atheroscler. Thromb. 2018;25:505–511. doi: 10.5551/jat.42135.
    1. Dahl T.B., Yndestad A., Skjelland M., Oie E., Dahl A., Michelsen A., Damas J.K., Tunheim S.H., Ueland T., Smith C., et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: Possible role in inflammation and plaque destabilization. Circulation. 2007;115:972–980. doi: 10.1161/CIRCULATIONAHA.106.665893.
    1. Yu F., Zhou X., Li Z., Feng X., Liao D., Liu Z., Huang Q., Li X., Yang Q., Xiao B., et al. Diagnostic significance of plasma levels of novel adipokines in patients with symptomatic intra- and extracranial atherosclerotic stenosis. Front. Neurol. 2019;10:1228. doi: 10.3389/fneur.2019.01228.
    1. Tuttolomondo A., Di Raimondo D., Forte G.I., Casuccio A., Vaccarino L., Scola L., Pecoraro R., Serio A., Clemente G., Arnao V., et al. Single nucleotide polymorphisms (snps) of pro-inflammatory/anti-inflammatory and thrombotic/fibrinolytic genes in patients with acute ischemic stroke in relation to toast subtype. Cytokine. 2012;58:398–405. doi: 10.1016/j.cyto.2012.02.012.
    1. Biscetti F., Straface G., Bertoletti G., Vincenzoni C., Snider F., Arena V., Landolfi R., Flex A. Identification of a potential proinflammatory genetic profile influencing carotid plaque vulnerability. J. Vasc. Surg. 2015;61:374–381. doi: 10.1016/j.jvs.2014.08.113.
    1. Tso A.R., Merino J.G., Warach S. Interleukin-6 174g/c polymorphism and ischemic stroke: A systematic review. Stroke. 2007;38:3070–3075. doi: 10.1161/STROKEAHA.107.492231.
    1. Liu X., Li Q., Zhu R., He Z. Association of il-10-1082a/g polymorphism with ischemic stroke: Evidence from a case-control study to an updated meta-analysis. Genet. Test. Mol. Biomark. 2017;21:341–350. doi: 10.1089/gtmb.2016.0409.
    1. Niu F., Wei B., Yan M., Li J., Ouyang Y., Jin T. Matrix metalloproteinase-2 gene polymorphisms are associated with ischemic stroke in a hainan population. Medicine. 2018;97:e12302. doi: 10.1097/MD.0000000000012302.
    1. Wu G., Cai H., Li G., Meng S., Huang J., Xu H., Chen M., Hu M., Yang W., Wang C., et al. Influence of the matrix metalloproteinase 9 geners3918242 polymorphism on development of ischemic stroke: A meta-analysis. World Neurosurg. 2020;133:e31–e61. doi: 10.1016/j.wneu.2019.08.026.
    1. Misra S., Talwar P., Kumar A., Kumar P., Sagar R., Vibha D., Pandit A.K., Gulati A., Kushwaha S., Prasad K. Association between matrix metalloproteinase family gene polymorphisms and risk of ischemic stroke: A systematic review and meta-analysis of 29 studies. Gene. 2018;672:180–194. doi: 10.1016/j.gene.2018.06.027.
    1. Ding G., Wang J., Liu K., Huang B., Deng W., He T. Association of e-selectin gene rs5361 polymorphism with ischemic stroke susceptibility: A systematic review and meta-analysis. Int. J. Neurosci. 2020:1–7. doi: 10.1080/00207454.2020.1750385.
    1. Wei Y.S., Lan Y., Meng L.Q., Nong L.G. The association of l-selectin polymorphisms with l-selectin serum levels and risk of ischemic stroke. J. Thromb. Thrombolysis. 2011;32:110–115. doi: 10.1007/s11239-011-0587-4.
    1. Zhang Y., Zang J., Wang B., Li B., Yao X., Zhao H., Li W. Cd36 genotype associated with ischemic stroke in chinese han. Int. J. Clin. Exp. Med. 2015;8:16149–16157.
    1. Ferreira J.P., Xhaard C., Lamiral Z., Borges-Canha M., Neves J.S., Dandine-Roulland C., LeFloch E., Deleuze J.F., Bacq-Daian D., Bozec E., et al. Pcsk9 protein and rs562556 polymorphism are associated with arterial plaques in healthy middle-aged population: The stanislas cohort. J. Am. Heart Assoc. 2020;9:e014758. doi: 10.1161/JAHA.119.014758.
    1. Xiuju C., Zhen W., Yanchao S. A meta-analysis of adiponectin gene rs22411766 t>g polymorphism and ischemic stroke susceptibility. Open Med. 2016;11:115–120. doi: 10.1515/med-2016-0022.
    1. Zhou F., Guo T., Zhou L., Zhou Y., Yu D. Variants in the apob gene was associated with ischemic stroke susceptibility in chinese han male population. Oncotarget. 2018;9:2249–2254. doi: 10.18632/oncotarget.23369.
    1. Ma Y. Associations of platelet-activating factor acetylhydrolase gene polymorphisms with risk of ischemic stroke. Biomed. Rep. 2016;4:246–250. doi: 10.3892/br.2015.560.
    1. Dahabreh I.J., Kitsios G.D., Kent D.M., Trikalinos T.A. Paraoxonase 1 polymorphisms and ischemic stroke risk: A systematic review and meta-analysis. Genet. Med. 2010;12:606–615. doi: 10.1097/GIM.0b013e3181ee81c6.
    1. Glushakova O.Y., Glushakov A.V., Miller E.R., Valadka A.B., Hayes R.L. Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ. 2016;2:28–47. doi: 10.4103/2394-8108.178546.
    1. Raju S., Fish J.E., Howe K.L. Micrornas as sentinels and protagonists of carotid artery thromboembolism. Clin. Sci. 2020;134:169–192. doi: 10.1042/CS20190651.
    1. Badacz R., Przewlocki T., Gacon J., Stepien E., Enguita F.J., Karch I., Zmudka K., Kablak-Ziembicka A. Circulating mirna levels differ with respect to carotid plaque characteristics and symptom occurrence in patients with carotid artery stenosis and provide information on future cardiovascular events. Postepy Kardiol. Interwencyjnej. 2018;14:75–84. doi: 10.5114/aic.2018.74358.
    1. Wei X., Sun Y., Han T., Zhu J., Xie Y., Wang S., Wu Y., Fan Y., Sun X., Zhou J., et al. Upregulation of mir-330-5p is associated with carotid plaque’s stability by targeting talin-1 in symptomatic carotid stenosis patients. BMC Cardiovasc. Disord. 2019;19:149. doi: 10.1186/s12872-019-1120-5.
    1. Kim J.M., Jung K.H., Chu K., Lee S.T., Ban J., Moon J., Kim M., Lee S.K., Roh J.K. Atherosclerosis-related circulating micrornas as a predictor of stroke recurrence. Transl. Stroke Res. 2015;6:191–197. doi: 10.1007/s12975-015-0390-1.
    1. Luque A., Farwati A., Krupinski J., Aran J.M. Association between low levels of serum mir-638 and atherosclerotic plaque vulnerability in patients with high-grade carotid stenosis. J. Neurosurg. 2018;131:72–79. doi: 10.3171/2018.2.JNS171899.
    1. Urra X., Cervera A., Obach V., Climent N., Planas A.M., Chamorro A. Monocytes are major players in the prognosis and risk of infection after acute stroke. Stroke. 2009;40:1262–1268. doi: 10.1161/STROKEAHA.108.532085.
    1. del Zoppo G.J. Acute anti-inflammatory approaches to ischemic stroke. Ann. N. Y. Acad. Sci. 2010;1207:143–148. doi: 10.1111/j.1749-6632.2010.05761.x.
    1. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914.
    1. Liberale L., Diaz-Canestro C., Bonetti N.R., Paneni F., Akhmedov A., Beer J.H., Montecucco F., Luscher T.F., Camici G.G. Post-ischaemic administration of the murine canakinumab-surrogate antibody improves outcome in experimental stroke. Eur. Heart J. 2018;39:3511–3517. doi: 10.1093/eurheartj/ehy286.
    1. Smith C.J., Hulme S., Vail A., Heal C., Parry-Jones A.R., Scarth S., Hopkins K., Hoadley M., Allan S.M., Rothwell N.J., et al. Scil-stroke (subcutaneous interleukin-1 receptor antagonist in ischemic stroke): A randomized controlled phase 2 trial. Stroke. 2018;49:1210–1216. doi: 10.1161/STROKEAHA.118.020750.
    1. Tuttolomondo A., Pecoraro R., Pinto A. Studies of selective tnf inhibitors in the treatment of brain injury from stroke and trauma: A review of the evidence to date. Drug Des. Dev. Ther. 2014;8:2221–2238. doi: 10.2147/DDDT.S67655.
    1. Arribas J., Esselens C. Adam17 as a therapeutic target in multiple diseases. Curr. Pharm. Des. 2009;15:2319–2335. doi: 10.2174/138161209788682398.
    1. Sander D., Winbeck K., Klingelhofer J., Etgen T., Conrad B. Reduced progression of early carotid atherosclerosis after antibiotic treatment and chlamydia pneumoniae seropositivity. Circulation. 2002;106:2428–2433. doi: 10.1161/01.CIR.0000036748.26775.8D.
    1. Shingai Y., Kimura N., Doijiri R., Takahashi K., Yokosawa M., Kanoke A., Kikuchi T., Sugawara T., Tominaga T. Effect of preoperative administration of proprotein convertase subtilisin/kexin type 9 inhibitor on carotid artery stenting. World Neurosurg. 2020;135:e36–e42. doi: 10.1016/j.wneu.2019.10.095.

Source: PubMed

3
Suscribir