A lifetime of neurogenesis in the olfactory system

Jessica H Brann, Stuart J Firestein, Jessica H Brann, Stuart J Firestein

Abstract

Neurogenesis continues well beyond embryonic and early postnatal ages in three areas of the nervous system. The subgranular zone supplies new neurons to the dentate gyrus of the hippocampus. The subventricular zone supplies new interneurons to the olfactory bulb, and the olfactory neuroepithelia generate new excitatory sensory neurons that send their axons to the olfactory bulb. The latter two areas are of particular interest as they contribute new neurons to both ends of a first-level circuit governing olfactory perception. The vomeronasal organ and the main olfactory epithelium comprise the primary peripheral olfactory epithelia. These anatomically distinct areas share common features, as each exhibits extensive neurogenesis well beyond the juvenile phase of development. Here we will discuss the effect of age on the structural and functional significance of neurogenesis in the vomeronasal and olfactory epithelia, from juvenile to advanced adult ages, in several common model systems. We will next discuss how age affects the regenerative capacity of these neural stem cells in response to injury. Finally, we will consider the integration of newborn neurons into an existing circuit as it is modified by the age of the animal.

Keywords: aging; proliferation; regeneration; renewal; stem cell.

Figures

Figure 1
Figure 1
Organization and zones of the mouse olfactory epithelium. (A) Sagittal schematic of the rodent nose depicting the locations of the olfactory epithelium and the vomeronasal organ (VNO). (B) The VNO is a bilaterally symmetrical tubular structure; shown here is one half of a coronal plane as it would appear through the depth of this structure. The marginal zones (M) are found at the extreme dorsal (D) and ventral (V) regions of the VNO. Adjacent to the marginal zones are the intermediate zones (I). In between the two intermediate zones is the central zone (Ce). OB, Olfactory bulb; OE, olfactory epithelium; B, blood vessel; C, caudal; L, lumen; R, rostral. Reprinted with permission from the Journal of Neuroscience (Brann and Firestein, 2010). (C) The olfactory epithelia are composed of five primary cell types, including the horizontal basal cell (HBC), globose basal cell (GBC), immature olfactory sensory neuron (OSNi), mature olfactory sensory neuron (OSNm), and sustentacular cell (Sus).
Figure 2
Figure 2
The effect of organismal age on the rate of neurogenesis. (A) The number of cells incorporating BrdU per mm in the rodent declines precipitously over the first month of life, but reaches a steady-state level in the adult that does not appear to be profoundly affected by aging. Graph of the authors' calculations from Wilson and Raisman (1980); Weiler et al. (1999); Weiler (2005); Brann and Firestein (2010), normalized to peak value reported. (B) The neurogenic response of the OE following lesion (bulbectomy). Figure is adapted from Kastner et al. (2000). Cell number (blue dashed line, filled circles), number of apoptotic cells (black dashed line, filled squares), and cells incorporating 3H-thymidine (red solid line, triangles) in the olfactory epithelium of mice expressed relative to their respective maxima. The levels of mitotic cells (red) peak 5 days post-surgery, while total cell number (dotted line) is at its lowest following surgery.

References

    1. Altman J. (1962). Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128 10.1126/science.135.3509.1127
    1. Aujard F., Nemoz-Bertholet F. (2004). Response to urinary volatiles and chemosensory function decline with age in a prosimian primate. Physiol. Behav. 81, 639–644 10.1016/j.physbeh.2004.03.003
    1. Bailey B. J., Barton S. (1975). Olfactory neuroblastoma. Management and prognosis. Arch. Otolaryngol. 101, 1–5 10.1001/archotol.1975.00780300005001
    1. Barber P. C. (1981a). Axonal growth by newly-formed vomeronasal neurosensory cells in the normal adult mouse. Brain Res. 216, 229–237 10.1016/0006-8993(81)90126-8
    1. Barber P. C. (1981b). Regeneration of vomeronasal nerves into the main olfactory bulb in the mouse. Brain Res. 216, 239–251 10.1016/0006-8993(81)90127-X
    1. Barber P. C., Raisman G. (1978a). Cell division in the vomeronasal organ of the adult mouse. Brain Res. 141, 57–66 10.1016/0006-8993(78)90616-9
    1. Barber P. C., Raisman G. (1978b). Replacement of receptor neurones after section of the vomeronasal nerves in the adult mouse. Brain Res. 147, 297–313 10.1016/0006-8993(78)90841-7
    1. Beites C. L., Kawauchi S., Crocker C. E., Calof A. L. (2005). Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp. Cell Res. 306, 309–316 10.1016/j.yexcr.2005.03.027
    1. Bergman U., Ostergren A., Gustafson A. L., Brittebo B. (2002). Differential effects of olfactory toxicants on olfactory regeneration. Arch. Toxicol. 76, 104–112 10.1007/s00204-002-0321-2
    1. Bermingham-McDonogh O., Reh T. A. (2011). Regulated reprogramming in the regeneration of sensory receptor cells. Neuron 71, 389–405 10.1016/j.neuron.2011.07.015
    1. Bettini S., Ciani F., Franceschini V. (2006). Cell proliferation and growth-associated protein 43 expression in the olfactory epithelium in Poecilia reticulata after copper solution exposure. Eur. J. Histochem. 50, 141–146 10.4081/986
    1. Blanco-Hernandez E., Valle-Leija P., Zomosa-Signoret V., Drucker-Colin R., Vidaltamayo R. (2012). Odor memory stability after reinnervation of the olfactory bulb. PLoS ONE 7:e46338 10.1371/journal.pone.0046338
    1. Bovetti S., Gribaudo S., Puche A. C., De Marchis S., Fasolo A. (2011). From progenitors to integrated neurons: role of neurotransmitters in adult olfactory neurogenesis. J. Chem. Neuroanat. 42, 304–316 10.1016/j.jchemneu.2011.05.006
    1. Brann J. H., Firestein S. (2010). Regeneration of new neurons is preserved in aged vomeronasal epithelia. J. Neurosci. 30, 15686–15694 10.1523/JNEUROSCI.4316-10.2010
    1. Burd G. D. (1993). Morphological study of the effects of intranasal zinc sulfate irrigation on the mouse olfactory epithelium and olfactory bulb. Microsc. Res. Tech. 24, 195–213 10.1002/jemt.1070240302
    1. Caggiano M., Kauer J. S., Hunter D. D. (1994). Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13, 339–352 10.1016/0896-6273(94)90351-4
    1. Campos Costa I., Nogueira Carvalho H., Fernandes L. (2013). Aging, circadian rhythms and depressive disorders: a review. Am. J. Neurodegener. Dis. 2, 228–246 Available online at:
    1. Carter L. A., MacDonald J. L., Roskams A. J. (2004). Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J. Neurosci. 24, 5670–5683 10.1523/JNEUROSCI.0330-04.2004
    1. Cau E., Casarosa S., Guillemot F. (2002). Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129, 1871–1880 Available online at:
    1. Cavallin M. A., Powell K., Biju K. C., Fadool D. A. (2010). State-dependent sculpting of olfactory sensory neurons is attributed to sensory enrichment, odor deprivation, and aging. Neurosci. Lett. 483, 90–95 10.1016/j.neulet.2010.07.059
    1. Cayre M., Scotto-Lomassese S., Malaterre J., Strambi C., Strambi A. (2007). Understanding the regulation and function of adult neurogenesis: contribution from an insect model, the house cricket. Chem. Senses 32, 385–395 10.1093/chemse/bjm010
    1. Chen H., Kohno K., Gong Q. (2005). Conditional ablation of mature olfactory sensory neurons mediated by diphtheria toxin receptor. J. Neurocytol. 34, 37–47 10.1007/s11068-005-5046-8
    1. Comte I., Mathonnet M., Chevalier G., Ayer Le-Lievre C. (2004). Developmental changes of keratin expression in chick embryo olfactory epithelium in relation to cellular differentiation and neurogenesis in vivo and in vitro. Brain Res. Dev. Brain Res. 148, 1–10 10.1016/j.devbrainres.2003.08.011
    1. Costanzo R. M., Graziadei P. P. (1983). A quantitative analysis of changes in the olfactory epithelium following bulbectomy in hamster. J. Comp. Neurol. 215, 370–381 10.1002/cne.902150403
    1. Couper Leo J. M., Brunjes P. C. (1999). Developmental analysis of the peripheral olfactory organ of the opossum Monodelphis domestica. Brain Res. Dev. Brain Res. 114, 43–48 10.1016/S0165-3806(99)00017-6
    1. Cuschieri A., Bannister L. H. (1975). The development of the olfactory mucosa in the mouse: electron microscopy. J. Anat. 119, 471–498
    1. Dawley E. M., Nelsen M., Lopata A., Schwartz J., Bierly A. (2006). Cell birth and survival following seasonal periods of cell proliferation in the chemosensory epithelia of red-backed salamanders, Plethodon cinereus. Brain Behav. Evol. 68, 26–36 10.1159/000092311
    1. De La Rosa-Prieto C., Saiz-Sanchez D., Ubeda-Banon I., Argandona-Palacios L., Garcia-Munozguren S., Martinez-Marcos A. (2009). Fate of marginal neuroblasts in the vomeronasal epithelium of adult mice. J. Comp. Neurol. 517, 723–736 10.1002/cne.22188
    1. de la Rosa-Prieto C., Saiz-Sanchez D., Ubeda-Banon I., Argandona-Palacios L., Garcia-Munozguren S., Martinez-Marcos A. (2010). Neurogenesis in subclasses of vomeronasal sensory neurons in adult mice. Dev. Neurobiol. 70, 961–970 10.1002/dneu.20838
    1. de la Rosa-Prieto C., Saiz-Sanchez D., Ubeda-Banon I., Mohedano-Moriano A., Martinez-Marcos A. (2011). Maturation of newly born vomeronasal neurons in the adult mice. Neuroreport 22, 28–32 10.1097/WNR.0b013e328341fb66
    1. Delgado-Gonzalez F. J., Gonzalez-Granero S., Trujillo-Trujillo C. M., Garcia-Verdugo J. M., Damas-Hernandez M. C. (2011). Study of adult neurogenesis in the Gallotia galloti lizard during different seasons. Brain Res. 1390, 50–58 10.1016/j.brainres.2011.03.027
    1. Delorme B., Nivet E., Gaillard J., Haupl T., Ringe J., Deveze A., et al. (2010). The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev. 19, 853–866 10.1089/scd.2009.0267
    1. Doty R. L., Kamath V. (2014). The influences of age on olfaction: a review. Front. Psychol. 5:20 10.3389/fpsyg.2014.00020
    1. Ducray A., Bondier J. R., Michel G., Bon K., Millot J. L., Propper A., et al. (2002a). Recovery following peripheral destruction of olfactory neurons in young and adult mice. Eur. J. Neurosci. 15, 1907–1917 10.1046/j.1460-9568.2002.02044.x
    1. Ducray A., Bondier J. R., Michel G., Bon K., Propper A., Kastner A. (2002b). Recovery following peripheral destruction of olfactory neurons in young and adult mice. Eur. J. Neurosci. 15, 1907–1917 10.1046/j.1460-9568.2002.02044.x
    1. Duggan C. D., Ngai J. (2007). Scent of a stem cell. Nat. Neurosci. 10, 673–674 10.1038/nn0607-673
    1. Dulac C., Axel R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 10.1016/0092-8674(95)90161-2
    1. Eckler M. J., McKenna W. L., Taghvaei S., McConnell S. K., Chen B. (2011). Fezf1 and Fezf2 are required for olfactory development and sensory neuron identity. J. Comp. Neurol. 519, 1829–1846 10.1002/cne.22596
    1. Enwere E., Shingo T., Gregg C., Fujikawa H., Ohta S., Weiss S. (2004). Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 24, 8354–8365 10.1523/JNEUROSCI.2751-04.2004
    1. Fadool D. A., Wachowiak M., Brann J. H. (2001). Patch-clamp analysis of voltage-activated and chemically activated currents in the vomeronasal organ of Sternotherus odoratus (stinkpot/musk turtle). J. Exp. Biol. 204, 4199–4212 Available online at:
    1. Faith Kim Y., Sandeman D. C., Benton J. L., Beltz B. S. (2013). Birth, survival and differentiation of neurons in an adult crustacean brain. Dev. Neurobiol. 74, 602–615 10.1002/dneu.22156
    1. Fantana A. L., Soucy E. R., Meister M. (2008). Rat olfactory bulb mitral cells receive sparse glomerular inputs. Neuron 59, 802–814 10.1016/j.neuron.2008.07.039
    1. Firestein S. (2001). How the olfactory system makes sense of scents. Nature 413, 211–218 10.1038/35093026
    1. Fletcher R. B., Prasol M. S., Estrada J., Baudhuin A., Vranizan K., Choi Y. G., et al. (2011). p63 regulates olfactory stem cell self-renewal and differentiation. Neuron 72, 748–759 10.1016/j.neuron.2011.09.009
    1. Fung K. M., Peringa J., Venkatachalam S., Lee V. M., Trojanowski J. Q. (1997). Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity. Brain Res. 761, 347–351 10.1016/S0006-8993(97)00467-8
    1. Garrosa M., Coca S. (1991). Postnatal development of the vomeronasal epithelium in the rat: an ultrastructural study. J. Morphol. 208, 257–269 10.1002/jmor.1052080303
    1. Garrosa M., Gayoso M. J., Esteban F. J. (1998). Prenatal development of the mammalian vomeronasal organ. Microsc. Res. Tech. 41, 456–470
    1. Genter M. B., Ali S. F. (1998). Age-related susceptibility to 3,3′-iminodipropionitrile-induced olfactory mucosal damage. Neurobiol. Aging 19, 569–574 10.1016/S0197-4580(98)00104-3
    1. Genter M. B., Deamer N. J., Blake B. L., Wesley D. S., Levi P. E. (1995). Olfactory toxicity of methimazole: dose-response and structure-activity studies and characterization of flavin-containing monooxygenase activity in the Long-Evans rat olfactory mucosa. Toxicol. Pathol. 23, 477–486 10.1177/019262339502300404
    1. Genter M. B., Owens D. M., Carlone H. B., Crofton K. M. (1996). Characterization of olfactory deficits in the rat following administration of 2,6-dichlorobenzonitrile (dichlobenil), 3,3′-iminodipropionitrile, or methimazole. Fundam. Appl. Toxicol. 29, 71–77 10.1006/faat.1996.0007
    1. Getchell T. V., Peng X., Green C. P., Stromberg A. J., Chen K. C., Mattson M. P., et al. (2004). In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice. J. Neurosci. Res. 77, 430–452 10.1002/jnr.20157
    1. Getchell T. V., Peng X., Stromberg A. J., Chen K. C., Paul Green C., Subhedar N. K., et al. (2003). Age-related trends in gene expression in the chemosensory-nasal mucosae of senescence-accelerated mice. Ageing Res. Rev. 2, 211–243 10.1016/S1568-1637(02)00066-1
    1. Giacobini P., Benedetto A., Tirindelli R., Fasolo A. (2000). Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res. Dev. Brain Res. 123, 33–40 10.1016/S0165-3806(00)00080-8
    1. Goergen E. M., Bagay L. A., Rehm K., Benton J. L., Beltz B. S. (2002). Circadian control of neurogenesis. J. Neurobiol. 53, 90–95 10.1002/neu.10095
    1. Granados-Fuentes D., Tseng A., Herzog E. D. (2006). A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci. 26, 12219–12225 10.1523/JNEUROSCI.3445-06.2006
    1. Graziadei G. A., Graziadei P. P. (1979a). Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neurocytol. 8, 197–213 10.1007/BF01175561
    1. Graziadei P. P., Graziadei G. A. (1979b). Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1–18 10.1007/BF01206454
    1. Graziadei P. P., Karlan M. S., Graziadei G. A., Bernstein J. J. (1980). Neurogenesis of sensory neurons in the primate olfactory system after section of the fila olfactoria. Brain Res. 186, 289–300 10.1016/0006-8993(80)90976-2
    1. Graziadei P. P., Monti Graziadei A. G. (1983). Regeneration in the olfactory system of vertebrates. Am. J. Otolaryngol. 4, 228–233 10.1016/S0196-0709(83)80063-5
    1. Graziadei P. P. C., Monti Graziadei G. A. (1978). Continuous nerve cell renewal in the olfactory system, in Development of Sensory Systems, ed Marcus J. (New York, NY: Springer-Verlag; ), 55–82
    1. Guillemot F., Lo L. C., Johnson J. E., Auerbach A., Anderson D. J., Joyner A. L. (1993). Mammalian achaete-scute homolog-1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 10.1016/0092-8674(93)90381-Y
    1. Hahn C. G., Han L. Y., Rawson N. E., Mirza N., Borgmann-Winter K., Lenox R. H., et al. (2005). In vivo and in vitro neurogenesis in human olfactory epithelium. J. Comp. Neurol. 483, 154–163 10.1002/cne.20424
    1. Heron P. M., Stromberg A. J., Breheny P., McClintock T. S. (2013). Molecular events in the cell types of the olfactory epithelium during adult neurogenesis. Mol. Brain 6:49 10.1186/1756-6606-6-49
    1. Herrada G., Dulac C. (1997). A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773 10.1016/S0092-8674(00)80536-X
    1. Higuchi Y., Nakamura H., Kawasaki M., Takahashi S. (2005). The dynamics of precursor cells in the olfactory epithelium of juvenile and adult guinea pigs. Eur. Arch. Otorhinolaryngol. 262, 64–68 10.1007/s00405-003-0667-y
    1. Hinds J. W., Hinds P. L., McNelly N. A. (1984). An autoradiographic study of the mouse olfactory epithelium: evidence for long-lived receptors. Anat. Rec. 210, 375–383 10.1002/ar.1092100213
    1. Hirai T., Kojima S., Shimada A., Umemura T., Sakai M., Itakura C. (1996). Age-related changes in the olfactory system of dogs. Neuropathol. Appl. Neurobiol. 22, 531–539 10.1111/j.1365-2990.1996.tb01132.x
    1. Holbrook E. H., Szumowski K. E., Schwob J. E. (1995). An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J. Comp. Neurol. 363, 129–146 10.1002/cne.903630111
    1. Holtzman D. A. (1998). Cell dynamics in the embryonic and postnatal vomeronasal epithelium of snakes. Microsc. Res. Tech. 41, 471–482 10.1002/(SICI)1097-0029(19980615)41:6<471::AID-JEMT3>;2-Q
    1. Huard J. M., Youngentob S. L., Goldstein B. J., Luskin M. B., Schwob J. E. (1998). Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J. Comp. Neurol. 400, 469–486 10.1002/(SICI)1096-9861(19981102)400:4<469::AID-CNE3>;2-8
    1. Huard J. M. T., Schwob J. E. (1995). Cell-cycle of globose basal cells in rat olfactory epithelium. Dev. Dyn. 203, 17–26 10.1002/aja.1002030103
    1. Hurtt M. E., Thomas D. A., Working P. K., Monticello T. M., Morgan K. T. (1988). Degeneration and regeneration of the olfactory epithelium following inhalation exposure to methyl bromide: pathology, cell kinetics, and olfactory function. Toxicol. Appl. Pharmacol. 94, 311–328 10.1016/0041-008X(88)90273-6
    1. Ichikawa M., Osada T., Costanzo R. M. (1998). Replacement of receptor cells in the hamster vomeronasal epithelium after nerve transection. Chem. Senses 23, 171–179 10.1093/chemse/23.2.171
    1. Ikeda K., Kageyama R., Suzuki Y., Kawakami K. (2010). Six1 is indispensable for production of functional progenitor cells during olfactory epithelial development. Int. J. Dev. Biol. 54, 1453–1464 10.1387/ijdb.093041ki
    1. Iqbal T., Byrd-Jacobs C. (2010). Rapid degeneration and regeneration of the zebrafish olfactory epithelium after triton X-100 application. Chem. Senses 35, 351–361 10.1093/chemse/bjq019
    1. Iwai N., Zhou Z., Roop D. R., Behringer R. R. (2008). Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26, 1298–1306 10.1634/stemcells.2007-0891
    1. Iwema C. L., Fang H., Kurtz D. B., Youngentob S. L., Schwob J. E. (2004). Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J. Neurosci. 24, 356–369 10.1523/JNEUROSCI.1219-03.2004
    1. Jang W., Chen X., Flis D., Harris M., Schwob J. E. (2014). Label-retaining, quiescent globose basal cells are found in the olfactory epithelium. J. Comp. Neurol. 522, 731–749 10.1002/cne.23470
    1. Jang W., Youngentob S. L., Schwob J. E. (2003). Globose basal cells are required for reconstitution of olfactory epithelium after methyl bromide lesion. J. Comp. Neurol. 460, 123–140 10.1002/cne.10642
    1. Jia C., Halpern M. (1998). Neurogenesis and migration of receptor neurons in the vomeronasal sensory epithelium in the opossum, Monodelphis domestica. J. Comp. Neurol. 400, 287–297 10.1002/(SICI)1096-9861(19981019)400:2<287::AID-CNE9>;2-5
    1. Kaplan M. S., Hinds J. W. (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197, 1092–1094 10.1126/science.887941
    1. Kastner A., Moyse E., Bauer S., Jourdan F., Brun G. (2000). Unusual regulation of cyclin D1 and cyclin-dependent kinases cdk2 and cdk4 during in vivo mitotic stimulation of olfactory neuron progenitors in adult mouse. J. Neurochem. 74, 2343–2349 10.1046/j.1471-4159.2000.0742343.x
    1. Khan M., Vaes E., Mombaerts P. (2013). Temporal patterns of odorant receptor gene expression in adult and aged mice. Mol. Cell. Neurosci. 57, 120–129 10.1016/j.mcn.2013.08.001
    1. Kondo K., Suzukawa K., Sakamoto T., Watanabe K., Kanaya K., Ushio M., et al. (2010). Age-related changes in cell dynamics of the postnatal mouse olfactory neuroepithelium: cell proliferation, neuronal differentiation, and cell death. J. Comp. Neurol. 518, 1962–1975 10.1002/cne.22316
    1. Krolewski R. C., Packard A., Jang W., Wildner H., Schwob J. E. (2012). Ascl1 (Mash1) knockout perturbs differentiation of nonneuronal cells in olfactory epithelium. PLoS ONE 7:e51737 10.1371/journal.pone.0051737
    1. Krolewski R. C., Packard A., Schwob J. E. (2013). Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J. Comp. Neurol. 521, 833–859 10.1002/cne.23204
    1. Lee A. C., Tian H., Grosmaitre X., Ma M. (2009). Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice. Chem. Senses 34, 695–703 10.1093/chemse/bjp056
    1. Legrier M. E., Ducray A., Propper A., Chao M., Kastner A. (2001). Cell cycle regulation during mouse olfactory neurogenesis. Cell Growth Differ. 12, 591–601 Available online at:
    1. Lepousez G., Valley M. T., Lledo P. M. (2013). The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu. Rev. Physiol. 75, 339–363 10.1146/annurev-physiol-030212-183731
    1. Leung C. H., Wilson D. A. (2003). Trans-neuronal regulation of cortical apoptosis in the adult rat olfactory system. Brain Res. 984, 182–188 10.1016/S0006-8993(03)03129-9
    1. Leung C. T., Coulombe P. A., Reed R. R. (2007). Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 10, 720–726 10.1038/nn1882
    1. Lomvardas S., Barnea G., Pisapia D. J., Mendelsohn M., Kirkland J., Axel R. (2006). Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 10.1016/j.cell.2006.06.035
    1. Loo A. T., Youngentob S. L., Kent P. F., Schwob J. E. (1996). The aging olfactory epithelium: neurogenesis, response to damage, and odorant-induced activity. Int. J. Dev. Neurosci. 14, 881–900 10.1016/S0736-5748(96)00046-9
    1. Lyons D. B., Allen W. E., Goh T., Tsai L., Barnea G., Lomvardas S. (2013). An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154, 325–336 10.1016/j.cell.2013.06.039
    1. Mackay-Sim A. (2010). Stem cells and their niche in the adult olfactory mucosa. Arch. Ital. Biol. 148, 47–58 Available online at:
    1. Mackay-Sim A. (2012). Concise review: patient-derived olfactory stem cells: new models for brain diseases. Stem Cells 30, 2361–2365 10.1002/stem.1220
    1. Mackay-Sim A., Kittel P. (1991a). Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J. Neurosci. 11, 979–984
    1. Mackay-Sim A., Kittel P. W. (1991b). On the life span of olfactory receptor neurons. Eur. J. Neurosci. 3, 209–215 10.1111/j.1460-9568.1991.tb00081.x
    1. Mackay-Sim A., St. John J. A. (2011). Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp. Neurol. 229, 174–180 10.1016/j.expneurol.2010.08.025
    1. Magklara A., Yen A., Colquitt B. M., Clowney E. J., Allen W., Markenscoff-Papadimitriou E., et al. (2011). An epigenetic signature for monoallelic olfactory receptor expression. Cell 145, 555–570 10.1016/j.cell.2011.03.040
    1. Mandairon N., Sultan S., Nouvian M., Sacquet J., Didier A. (2011). Involvement of newborn neurons in olfactory associative learning? The operant or non-operant component of the task makes all the difference. J. Neurosci. 31, 12455–12460 10.1523/JNEUROSCI.2919-11.2011
    1. Martinez-Marcos A., Jia C., Quan W., Halpern M. (2005). Neurogenesis, migration, and apoptosis in the vomeronasal epithelium of adult mice. J. Neurobiol. 63, 173–187 10.1002/neu.20128
    1. Martinez-Marcos A., Ubeda-Banon I., Deng L., Halpern M. (2000). Neurogenesis in the vomeronasal epithelium of adult rats: evidence for different mechanisms for growth and neuronal turnover. J. Neurobiol. 44, 423–435 10.1002/1097-4695(20000915)44:4<423::AID-NEU5>;2-H
    1. Matsunami H., Buck L. B. (1997). A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 10.1016/S0092-8674(00)80537-1
    1. Matsuoka M., Osada T., Yoshida-Matsuoka J., Ikai A., Ichikawa M., Norita M., et al. (2002). A comparative immunocytochemical study of development and regeneration of chemosensory neurons in the rat vomeronasal system. Brain Res. 946, 52–63 10.1016/S0006-8993(02)02823-8
    1. Matulionis D. H. (1975). Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration. Am. J. Anat. 142, 67–89 10.1002/aja.1001420106
    1. Meredith M., Marques D. M., O'Connell R. O., Stern F. L. (1980). Vomeronasal pump: significance for male hamster sexual behavior. Science 207, 1224–1226 10.1126/science.7355286
    1. Mobley A. S., Rodriguez-Gil D. J., Imamura F., Greer C. A. (2013). Aging in the olfactory system. Trends Neurosci. 37, 77–84 10.1016/j.tins.2013.11.004
    1. Mombaerts P. (2004). Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5, 263–278 10.1038/nrn1365
    1. Mombaerts P. (2006). Axonal wiring in the mouse olfactory system. Annu. Rev. Cell Dev. Biol. 22, 713–737 10.1146/annurev.cellbio.21.012804.093915
    1. Moreno M., Richard M., Landrein B., Sacquet J., Didier A., Mandairon N. (2014). Alteration of olfactory perceptual learning and its cellular basis in aged mice. Neurobiol. Aging 35, 680–691 10.1016/j.neurobiolaging.2013.08.034
    1. Morrison E. E., Costanzo R. M. (1995). Regeneration of olfactory sensory neurons and reconnection in the aging hamster central nervous system. Neurosci. Lett. 198, 213–217 10.1016/0304-3940(95)11943-Q
    1. Murdoch B., DelConte C., Garcia-Castro M. I. (2010). Embryonic Pax7-expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium. J. Neurosci. 30, 9523–9532 10.1523/JNEUROSCI.0867-10.2010
    1. Murdoch B., Roskams A. J. (2008). A novel embryonic nestin-expressing radial glia-like progenitor gives rise to zonally restricted olfactory and vomeronasal neurons. J. Neurosci. 28, 4271–4282 10.1523/JNEUROSCI.5566-07.2008
    1. Nakamura H., Fujiwara M., Kawasaki M., Nonomura N., Takahashi S. (1998). Age-related changes in dividing cells of the olfactory epithelium of the maturing guinea pig. Eur. Arch. Otorhinolaryngol. 255, 289–292 10.1007/s004050050061
    1. Packard A., Giel-Moloney M., Leiter A., Schwob J. E. (2011a). Progenitor cell capacity of NeuroD1-expressing globose basal cells in the mouse olfactory epithelium. J. Comp. Neurol. 519, 3580–3596 10.1002/cne.22726
    1. Packard A., Schnittke N., Romano R. A., Sinha S., Schwob J. E. (2011b). {Delta}Np63 regulates stem cell dynamics in the Mammalian olfactory epithelium. J. Neurosci. 31, 8748–8759 10.1523/JNEUROSCI.0681-11.2011
    1. Paschaki M., Cammas L., Muta Y., Matsuoka Y., Mak S. S., Rataj-Baniowska M., et al. (2013). Retinoic acid regulates olfactory progenitor cell fate and differentiation. Neural Dev. 8:13 10.1186/1749-8104-8-13
    1. Poon H. F., Vaishnav R. A., Butterfield D. A., Getchell M. L., Getchell T. V. (2005). Proteomic identification of differentially expressed proteins in the aging murine olfactory system and transcriptional analysis of the associated genes. J. Neurochem. 94, 380–392 10.1111/j.1471-4159.2005.03215.x
    1. Rodriguez-Gil D. J., Treloar H. B., Zhang X., Miller A. M., Two A., Iwema C., et al. (2010). Chromosomal location-dependent nonstochastic onset of odor receptor expression. J. Neurosci. 30, 10067–10075 10.1523/JNEUROSCI.1776-10.2010
    1. Rosenbaum J. N., Duggan A., Garcia-Anoveros J. (2011). Insm1 promotes the transition of olfactory progenitors from apical and proliferative to basal, terminally dividing and neuronogenic. Neural Dev. 6:6 10.1186/1749-8104-6-6
    1. Rosli Y., Breckenridge L. J., Smith R. A. (1999). An ultrastructural study of age-related changes in mouse olfactory epithelium. J. Electron Microsc. (Tokyo). 48, 77–84 10.1093/oxfordjournals.jmicro.a023653
    1. Ryba N. J., Tirindelli R. (1995). A novel GTP-binding protein gamma-subunit, G gamma 8, is expressed during neurogenesis in the olfactory and vomeronasal neuroepithelia. J. Biol. Chem. 270, 6757–6767 10.1074/jbc.270.12.6757
    1. Ryba N. J., Tirindelli R. (1997). A new multigene family of putative pheromone receptors. Neuron 19, 371–379 10.1016/S0896-6273(00)80946-0
    1. Schmidt M. (2007). The olfactory pathway of decapod crustaceans–an invertebrate model for life-long neurogenesis. Chem. Senses 32, 365–384 10.1093/chemse/bjm008
    1. Schnell A., Albrecht U., Sandrelli F. (2014). Rhythm and mood: relationships between the circadian clock and mood-related behavior. Behav. Neurosci. 128, 326–343 10.1037/a0035883
    1. Schoenbaum G., Nugent S., Saddoris M. P., Gallagher M. (2002). Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiol. Aging 23, 555–564 10.1016/S0197-4580(01)00343-8
    1. Schwartz Levey M., Chikaraishi D. M., Kauer J. S. (1991). Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J. Neurosci. 11, 3556–3564
    1. Schwob J. E., Huard J. M., Luskin M. B., Youngentob S. L. (1994). Retroviral lineage studies of the rat olfactory epithelium. Chem. Senses 19, 671–682 10.1093/chemse/19.6.671
    1. Schwob J. E., Jang W. (2006). Stem cells of the adult olfactory epithelium, in Neural Development and Stem Cells, ed Rao M. S. (Totowa, NJ: Humana Press; ), 219–233
    1. Schwob J. E., Youngentob S. L., Mezza R. C. (1995). Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J. Comp. Neurol. 359, 15–37 10.1002/cne.903590103
    1. Schwob J. E., Youngentob S. L., Ring G., Iwema C. L., Mezza R. C. (1999). Reinnervation of the rat olfactory bulb after methyl bromide-induced lesion: timing and extent of reinnervation. J. Comp. Neurol. 412, 439–457 10.1002/(SICI)1096-9861(19990927)412:3<439::AID-CNE5>;2-H
    1. Shaker T., Dennis D., Kurrasch D. M., Schuurmans C. (2012). Neurog1 and Neurog2 coordinately regulate development of the olfactory system. Neural Dev. 7:28 10.1186/1749-8104-7-28
    1. Shykind B. M., Rohani S. C., O'Donnell S., Nemes A., Mendelsohn M., Sun Y., et al. (2004). Gene switching and the stability of odorant receptor gene choice. Cell 117, 801–815 10.1016/j.cell.2004.05.015
    1. Signer R. A., Morrison S. J. (2013). Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 12, 152–165 10.1016/j.stem.2013.01.001
    1. Suarez R., Garcia-Gonzalez D., de Castro F. (2012). Mutual influences between the main olfactory and vomeronasal systems in development and evolution. Front. Neuroanat. 6:50 10.3389/fnana.2012.00050
    1. Suzukawa K., Kondo K., Kanaya K., Sakamoto T., Watanabe K., Ushio M., et al. (2011). Age-related changes of the regeneration mode in the mouse peripheral olfactory system following olfactotoxic drug methimazole-induced damage. J. Comp. Neurol. 519, 2154–2174 10.1002/cne.22611
    1. Suzuki Y., Takeda M., Obara N., Suzuki N. (1998). Bulbectomy of neonatal mice induces migration of basal cells from the olfactory epithelium. Brain Res. Dev. Brain Res. 108, 295–298 10.1016/S0165-3806(98)00044-3
    1. Taniguchi K. (2008). Embryonic and postnatal differentiation of olfactory epithelium and vomeronasal organ in the Syrian hamster. J. Vet. Med. Sci. 70, 57–64 10.1292/jvms.70.57
    1. Taniguchi K., Toshima Y., Saito T. R. (1996). Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica. J. Vet. Med. Sci. 58, 7–15 10.1292/jvms.58.7
    1. Tolbert L. P., Oland L. A., Tucker E. S., Gibson N. J., Higgins M. R., Lipscomb B. W. (2004). Bidirectional influences between neurons and glial cells in the developing olfactory system. Prog. Neurobiol. 73, 73–105 10.1016/j.pneurobio.2004.04.004
    1. Wakabayashi Y., Ichikawa M. (2007). Distribution of Notch1-expressing cells and proliferating cells in mouse vomeronasal organ. Neurosci. Lett. 411, 217–221 10.1016/j.neulet.2006.09.088
    1. Wang R. T., Halpern M. (1988). Neurogenesis in the vomeronasal epithelium of adult garter snakes: 3. Use of H3-thymidine autoradiography to trace the genesis and migration of bipolar neurons. Am. J. Anat. 183, 178–185 10.1002/aja.1001830208
    1. Wang Y. Z., Plane J. M., Jiang P., Zhou C. J., Deng W. (2011a). Concise review: quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells 29, 907–912 10.1002/stem.644
    1. Wang Y. Z., Yamagami T., Gan Q., Wang Y., Zhao T., Hamad S., et al. (2011b). Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J. Cell Sci. 124(Pt 9), 1553–1563 10.1242/jcs.080580
    1. Watanabe K., Kondo K., Takeuchi N., Okano H., Yamasoba T. (2007). Musashi-1 expression in postnatal mouse olfactory epithelium. Neuroreport 18, 641–644 10.1097/WNR.0b013e3280bef7e2
    1. Weiler E. (2005). Postnatal development of the rat vomeronasal organ. Chem. Senses 30(Suppl. 1), i127–i128 10.1093/chemse/bjh147
    1. Weiler E., Farbman A. I. (1997). Proliferation in the rat olfactory epithelium: age-dependent changes. J. Neurosci. 17, 3610–3622
    1. Weiler E., Farbman A. I. (1998a). Proliferation decrease in the olfactory epithelium during postnatal development. Ann. N.Y. Acad. Sci. 855, 230–234 10.1111/j.1749-6632.1998.tb10572.x
    1. Weiler E., Farbman A. I. (1998b). Supporting cell proliferation in the olfactory epithelium decreases postnatally. Glia 22, 315–328 10.1002/(SICI)1098-1136(199804)22:4<315::AID-GLIA1>;2-2
    1. Weiler E., Farbman A. I. (1999). Mitral cell loss following lateral olfactory tract transection increases proliferation density in rat olfactory epithelium. Eur. J. Neurosci. 11, 3265–3275 10.1046/j.1460-9568.1999.00748.x
    1. Weiler E., McCulloch M. A., Farbman A. I. (1999). Proliferation in the vomeronasal organ of the rat during postnatal development. Eur. J. Neurosci. 11, 700–711 10.1046/j.1460-9568.1999.00476.x
    1. Wetzig A., Mackay-Sim A., Murrell W. (2011). Characterization of olfactory stem cells. Cell Transpl. 20, 1673–1691 10.3727/096368911X576009
    1. Whitman M. C., Greer C. A. (2009). Adult neurogenesis and the olfactory system. Prog. Neurobiol. 89, 162–175 10.1016/j.pneurobio.2009.07.003
    1. Williams S. K., Gilbey T., Barnett S. C. (2004). Immunohistochemical studies of the cellular changes in the peripheral olfactory system after zinc sulfate nasal irrigation. Neurochem. Res. 29, 891–901 10.1023/B:NERE.0000021234.46315.34
    1. Wilson K. C., Raisman G. (1980). Age-related changes in the neurosensory epithelium of the mouse vomeronasal organ: extended period of postnatal growth in size and evidence for rapid cell turnover in the adult. Brain Res. 185, 103–113 10.1016/0006-8993(80)90675-7
    1. Yoshida-Matsuoka J., Matsuoka M., Costanzo R. M., Ichikawa M. (2000). Morphological and histochemical changes in the regenerating vomeronasal epithelium. J. Vet. Med. Sci. 62, 1253–1261 10.1292/jvms.62.1253
    1. Zhang X., Firestein S. (2002). The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5, 124–133 10.1038/nn800
    1. Zhang X., Marcucci F., Firestein S. (2010). High-throughput microarray detection of vomeronasal receptor gene expression in rodents. Front. Neurosci. 4:164 10.3389/fnins.2010.00164
    1. Zhang X., Rogers M., Tian H., Zou D. J., Liu J., Ma M., et al. (2004). High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc. Natl. Acad. Sci. U.S.A. 101, 14168–14173 10.1073/pnas.0405350101
    1. Zhang X., Zhang X., Firestein S. (2007). Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89, 441–450 10.1016/j.ygeno.2007.01.002

Source: PubMed

3
Suscribir