Vaginal progesterone as luteal phase support in natural cycle frozen-thawed embryo transfer (ProFET): protocol for a multicentre, open-label, randomised controlled trial

Caroline Stadelmann, Christina Bergh, Mats Brännström, Kristbjörg Heiður Olsen, Ali Khatibi, Margareta Kitlinski, Susanne Liffner, Eva Lundborg, Kenny A Rodriguez-Wallberg, Annika Strandell, Göran Westlander, Gabriella Widlund, Åsa Magnusson, Caroline Stadelmann, Christina Bergh, Mats Brännström, Kristbjörg Heiður Olsen, Ali Khatibi, Margareta Kitlinski, Susanne Liffner, Eva Lundborg, Kenny A Rodriguez-Wallberg, Annika Strandell, Göran Westlander, Gabriella Widlund, Åsa Magnusson

Abstract

Introduction: Vaginal progesterone supplementation is frequently given to patients receiving frozen embryo transfer (FET) in the natural cycle aiming to increase the chance of pregnancy and live birth. To date, only a few studies have investigated if progesterone supplementation is beneficial in these cycles and the level of evidence for progesterone supplementation is very low.

Methods and analysis: The ProFET trial is a multicentre, open-label, randomised controlled trial powered for this investigation, including 1800 women with regular menstrual cycles (24-35 days), aged 18-43 years planned for natural cycle-FET receiving a single blastocyst for transfer. Participants are randomised (1:1:1) to either luteal phase progesterone for 3 weeks, luteal phase progesterone for 7 weeks or no luteal phase progesterone. The participating study centres consist of 12 in vitro fertilisation-clinics in Sweden and 1 in Iceland. The primary outcome is to investigate if luteal phase support (LPS) by vaginal progesterone increases the chance of a live birth per randomised patient in a natural FET cycle compared with no LPS.

Ethics and dissemination: The trial was approved by the Swedish Ethical Review Authority (ID 2020-06774, 2021-02822 and 2022-01502-02) and the Swedish Medical Products Agency (ID nr 5.1-2020-102613). All participants are required to provide written informed consent. The outcome of this study will be disseminated to the public through broadcasts, newspapers and presentations at scientific congresses as well as publications in international scientific journals.

Trial registration number: NCT04725864.

Keywords: GYNAECOLOGY; Reproductive medicine; Subfertility.

Conflict of interest statement

Competing interests: CB and ÅM declare support from Ferring Pharmaceuticals, Merck Sereno and Gedeon Richter. MB has 4 % stocks in EUGIN Sweden. None of the other authors hade conflicts of interest.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
ProFET trial flow chart. FET, Frozen embryo transfer; LH, luteinising hormone; NC-FET, natural cycle frozen embryo transfer.

References

    1. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention . Assisted reproductive Technolology, fertility clinic and national summary report 2019. Available: [Accessed 16 Feb 2022].
    1. European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE), Wyns C, De Geyter C, et al. . Art in Europe, 2017: results generated from European registries by ESHRE. Hum Reprod Open 2021;2021:hoab026. 10.1093/hropen/hoab026
    1. Nationellt kvalitetsregister för assisterad befruktning . Fertility treatments in Sweden national report 2021. Available: [Accessed 16 Feb 2022].
    1. Balaban B, Urman B, Ata B, et al. . A randomized controlled study of human day 3 embryo cryopreservation by slow freezing or vitrification: vitrification is associated with higher survival, metabolism and blastocyst formation. Human Reproduction 2008;23:1976–82. 10.1093/humrep/den222
    1. Rienzi L, Gracia C, Maggiulli R, et al. . Oocyte, embryo and blastocyst cryopreservation in art: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 2017;23:139–55. 10.1093/humupd/dmw038
    1. Thurin A, Hausken J, Hillensjö T, et al. . Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med 2004;351:2392–402. 10.1056/NEJMoa041032
    1. Shi Y, Sun Y, Hao C, et al. . Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med 2018;378:126–36. 10.1056/NEJMoa1705334
    1. Stormlund S, Sopa N, Zedeler A, et al. . Freeze-all versus fresh blastocyst transfer strategy during in vitro fertilisation in women with regular menstrual cycles: multicentre randomised controlled trial. BMJ 2020;370:m2519. 10.1136/bmj.m2519
    1. Vuong LN, Dang VQ, Ho TM, et al. . IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N Engl J Med 2018;378:137–47. 10.1056/NEJMoa1703768
    1. Maheshwari A, Bell JL, Bhide P, et al. . Elective freezing of embryos versus fresh embryo transfer in IVF: a multicentre randomized controlled trial in the UK (E-Freeze). Hum Reprod 2022;37:476–87. 10.1093/humrep/deab279
    1. Chen Z-J, Shi Y, Sun Y, et al. . Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med 2016;375:523–33. 10.1056/NEJMoa1513873
    1. Zaat T, Zagers M, Mol F, et al. . Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev 2021;2:CD011184. 10.1002/14651858.CD011184.pub3
    1. Roque M, Haahr T, Geber S, et al. . Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update 2019;25:2–14. 10.1093/humupd/dmy033
    1. De Boer EJ, Van Leeuwen FE, Den Tonkelaar I, et al. . [Methods and results of in-vitro fertilisation in the Netherlands in the years 1983-1994]. Ned Tijdschr Geneeskd 2004;148:1448–55.
    1. Ghobara T, Gelbaya TA, Ayeleke RO. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev 2017;7:CD003414. 10.1002/14651858.CD003414.pub3
    1. von Versen-Höynck F, Schaub AM, Chi Y-Y, et al. . Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension 2019;73:640–9. 10.1161/HYPERTENSIONAHA.118.12043
    1. Ginström Ernstad E, Wennerholm U-B, Khatibi A, et al. . Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol 2019;221:126.e1–126.e18. 10.1016/j.ajog.2019.03.010
    1. van der Linden M, Buckingham K, Farquhar C, et al. . Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev 2015;7:CD009154. 10.1002/14651858.CD009154.pub3
    1. Hull MGR, Savage PE, Bromham DR, et al. . The value of a single serum progesterone measurement in the midluteal phase as a criterion of a potentially fertile cycle (“ovulation”) derived from treated and untreated conception cycles. Fertil Steril 1982;37:355–60. 10.1016/S0015-0282(16)46095-4
    1. Gaggiotti-Marre S, Álvarez M, González-Foruria I, et al. . Low progesterone levels on the day before natural cycle frozen embryo transfer are negatively associated with live birth rates. Hum Reprod 2020;35:1623–9. 10.1093/humrep/deaa092
    1. Thomsen LH, Kesmodel US, Erb K, et al. . The impact of luteal serum progesterone levels on live birth rates—a prospective study of 602 IVF/ICSI cycles. Hum Reprod 2018;33:1506–16. 10.1093/humrep/dey226
    1. Alsbjerg B, Thomsen L, Elbaek HO, et al. . Can combining vaginal and rectal progesterone achieve the optimum progesterone range required for implantation in the HRT-FET model? Reprod Biomed Online 2020;40:805–11. 10.1016/j.rbmo.2020.02.007
    1. Seol A, Shim YJ, Kim SW, et al. . Effect of luteal phase support with vaginal progesterone on pregnancy outcomes in natural frozen embryo transfer cycles: a meta-analysis. Clin Exp Reprod Med 2020;47:147–52. 10.5653/cerm.2019.03132
    1. Mizrachi Y, Horowitz E, Ganer Herman H, et al. . Should women receive luteal support following natural cycle frozen embryo transfer? a systematic review and meta-analysis. Hum Reprod Update 2021;27:643–50. 10.1093/humupd/dmab011
    1. Filicori M, Butler JP, Crowley WF. Neuroendocrine regulation of the corpus luteum in the human. evidence for pulsatile progesterone secretion. J Clin Invest 1984;73:1638–47. 10.1172/JCI111370
    1. Jordan J, Craig K, Clifton DK, et al. . Luteal phase defect: the sensitivity and specificity of diagnostic methods in common clinical use. Fertil Steril 1994;62:54–62. 10.1016/s0015-0282(16)56815-0
    1. Bjuresten K, Landgren B-M, Hovatta O, et al. . Luteal phase progesterone increases live birth rate after frozen embryo transfer. Fertil Steril 2011;95:534–7. 10.1016/j.fertnstert.2010.05.019
    1. Horowitz E, Mizrachi Y, Finkelstein M, et al. . A randomized controlled trial of vaginal progesterone for luteal phase support in modified natural cycle - frozen embryo transfer. Gynecol Endocrinol 2021;37:792–7. 10.1080/09513590.2020.1854717
    1. Kim C-H, Lee Y-J, Lee K-H, et al. . The effect of luteal phase progesterone supplementation on natural frozen-thawed embryo transfer cycles. Obstet Gynecol Sci 2014;57:291–6. 10.5468/ogs.2014.57.4.291
    1. Kyrou D, Fatemi HM, Tournaye H, et al. . Luteal phase support in normo-ovulatory women stimulated with clomiphene citrate for intrauterine insemination: need or habit? Hum Reprod 2010;25:2501–6. 10.1093/humrep/deq223
    1. Schwartz E, Bernard L, Ohl J, et al. . Luteal phase progesterone supplementation following induced natural cycle frozen embryo transfer: a retrospective cohort study. J Gynecol Obstet Hum Reprod 2019;48:95–8. 10.1016/j.jogoh.2018.10.011

Source: PubMed

3
Suscribir