Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy

Hana Starobova, Irina Vetter, Hana Starobova, Irina Vetter

Abstract

Chemotherapy-induced neuropathy is a common, dose-dependent adverse effect of several antineoplastics. It can lead to detrimental dose reductions and discontinuation of treatment, and severely affects the quality of life of cancer survivors. Clinically, chemotherapy-induced peripheral neuropathy presents as deficits in sensory, motor, and autonomic function which develop in a glove and stocking distribution due to preferential effects on longer axons. The pathophysiological processes are multi-factorial and involve oxidative stress, apoptotic mechanisms, altered calcium homeostasis, axon degeneration and membrane remodeling as well as immune processes and neuroinflammation. This review focusses on the commonly used antineoplastic substances oxaliplatin, cisplatin, vincristine, docetaxel, and paclitaxel which interfere with the cancer cell cycle-leading to cell death and tumor degradation-and cause severe acute and chronic peripheral neuropathies. We discuss drug mechanism of action and pharmacokinetic disposition relevant to the development of peripheral neuropathy, the epidemiology and clinical presentation of chemotherapy-induced neuropathy, emerging insight into genetic susceptibilities as well as current understanding of the pathophysiology and treatment approaches.

Keywords: cancer; chemotherapy; cisplatin; neuropathy; oxaliplatin; paclitaxel; pain; vincristine.

Figures

Figure 1
Figure 1
Mechanism of action of vincristine, paclitaxel, oxaliplatin and cisplatin. Anti-tumor mechanism of action of vincristine, paclitaxel, oxaliplatin and cisplatin leading to cell arrest and cell death. (A) Vincristine prevents microtubule aggregation, whereas paclitaxel prevents microtubule disaggregation, an effect leading to cancer cell division arrest and cell death. (B) Oxaliplatin and cisplatin bind to nuclear DNA (deoxyribonucleic acid) of cancer cells, causing disruption of DNA replication and RNA (ribonucleic acid) transcription and subsequent arrest of cancer cell division. The DNA adducts activate apoptotic pathways that induce cell death and tumor degradation. (C) All four anti-tumor agents alter the function of mitochondria, followed by disruption of respiratory chain function and increased production of reactive oxygen species (ROS). Additionally, oxaliplatin and cisplatin cause damage to cancer cell mitochondria by binding to mitochondrial DNA, altering mDNA replication and transcription. (D) All four agents cause activation of immune cells, an effect likely contributing to tumor cell degradation. Only a few representative immune cell-types are shown.
Figure 2
Figure 2
Putative mechanisms involved in the development of cisplatin- and oxaliplatin-induced peripheral neuropathy. Overview of possible effects of oxaliplatin and cisplatin on the immune system (Raghavendra et al., ; Callizot et al., ; Boyette-Davis and Dougherty, ; Wang et al., ; Di Cesare Mannelli et al., ; Janes et al., 2015), microglia (Di Cesare Mannelli et al., 2014) and peripheral neurons (Zwelling et al., ; Thompson et al., ; Faivre et al., ; Tomaszewski and Busselberg, ; Todd and Lippard, ; Tesniere et al., ; Alcindor and Beauger, ; Boyette-Davis and Dougherty, ; Deuis et al., ; Areti et al., ; Boehmerle et al., ; Dasari and Tchounwou, ; Canta et al., ; Leo et al., 2017) leading to neuronal inflammation (Janes et al., 2015) and altered neuronal excitability (Adelsberger et al., ; Krishnan et al., ; Kagiava et al., ; Gauchan et al., ; Ta et al., ; Descoeur et al., ; Nassini et al., ; Schulze et al., ; Sittl et al., ; Deuis et al., , ; Yamamoto et al., ; Mizoguchi et al., 2016). TNFα, Tumor necrosis factor alpha; DNA, deoxyribonucleic acid; ROS, Reactive oxygen species; NaV, Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient receptor potential channel; CaV, Voltage-gated calcium channel.
Figure 3
Figure 3
Putative mechanisms involved in the development of vincristine-induced peripheral neuropathy. Overview of possible effects of vincristine on the immune system (Callizot et al., ; Kiguchi et al., ; Wang et al., ; Chatterjee et al., ; Old et al., ; Makker et al., 2017), peripheral tissues (Old et al., 2014) and sensory neurons (Kaba et al., ; Topp et al., ; Gan et al., ; Areti et al., ; Canta et al., ; Carozzi et al., ; Xu et al., 2017) leading to neuronal inflammation (Chatterjee et al., ; Xu et al., 2017) and altered excitability of peripheral neurons (Alessandri-Haber et al., ; Old et al., 2014) which may be considered as the main mechanisms contributing to the development of vincristine-induced CIPN. CXCL12, C-X-C Motif Chemokine Ligand 12; CX3CR, C-X-3-C motif chemokine receptor; TNF α, Tumor necrosis factor alpha; ILs, Interleukins; CXCR4, C-X-C motif chemokine receptor 4; ROS, Reactive oxygen species; NaV, Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient receptor potential channel; CaV, Voltage-gated calcium channel.
Figure 4
Figure 4
Putative mechanisms involved in the development of paclitaxel-induced peripheral neuropathy. Overview of possible effects of paclitaxel on the immune system (Ledeboer et al., ; Loprinzi et al., , ; Callizot et al., ; Doyle et al., ; Wang et al., ; Zhang et al., , ; Pevida et al., ; Janes et al., ,; Liu et al., ; Li et al., ; Krukowski et al., ; Zhang et al., ; Makker et al., 2017), microglia (Burgos et al., ; Ruiz-Medina et al., ; Makker et al., 2017) and peripheral neurons (Sahenk et al., ; Cavaletti et al., , ; Dorr, ; Kidd et al., ; ten Tije et al., ; Mironov et al., ; Flatters and Bennett, ; Argyriou et al., ; Doyle et al., ; Areti et al., ; Boehmerle et al., ; Griffiths and Flatters, ; Duggett et al., ; Wozniak et al., 2016) leading to neuronal inflammation (Ledeboer et al., ; Loprinzi et al., , ; Callizot et al., ; Doyle et al., ; Wang et al., ; Zhang et al., , ; Pevida et al., ; Janes et al., ,; Liu et al., ; Li et al., ; Krukowski et al., ; Zhang et al., ; Makker et al., 2017) and altered excitability of peripheral neurons (Materazzi et al., ; Zhang and Dougherty, 2014). TLR4, Toll-Like Receptor 4; TNFα, Tumor necrosis factor alpha; ROS, Reactive oxygen species; NaV, Voltage-gated sodium channel; KV, Voltage-gated potassium channel; TRP, Transient receptor potential channel; CaV, Voltage-gated calcium channel.

References

    1. Adelsberger H., Quasthoff S., Grosskreutz J., Lepier A., Eckel F., Lersch C. (2000). The chemotherapeutic oxaliplatin alters voltage-gated Na(+) channel kinetics on rat sensory neurons. Eur. J. Pharmacol. 406, 25–32. 10.1016/S0014-2999(00)00667-1
    1. Alcindor T., Beauger N. (2011). Oxaliplatin: a review in the era of molecularly targeted therapy. Curr. Oncol. 18, 18–25. 10.3747/co.v18i1.708
    1. Alejandro L. M., Behrendt C. E., Chen K., Openshaw H., Shibata S. (2013). Predicting acute and persistent neuropathy associated with oxaliplatin. Am. J. Clin. Oncol. 36, 331–337. 10.1097/COC.0b013e318246b50d
    1. Alessandri-Haber N., Dina O. A., Joseph E. K., Reichling D. B., Levine J. D. (2008). Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J. Neurosci. 28, 1046–1057. 10.1523/JNEUROSCI.4497-07.2008
    1. Amptoulach S., Tsavaris N. (2011). Neurotoxicity caused by the treatment with platinum analogues. Chemother. Res. Pract. 2011:843019. 10.1155/2011/843019
    1. Anderson T. D., Davidovich A., Arceo R., Brosnan C., Arezzo J., Schaumburg H. (1992). Peripheral neuropathy induced by 2′,3′-dideoxycytidine. A rabbit model of 2′,3′-dideoxycytidine neurotoxicity. Lab. Invest. 66, 63–74.
    1. Antonacopoulou A. G., Argyriou A. A., Scopa C. D., Kottorou A., Kominea A., Peroukides S., et al. . (2010). Integrin beta-3 L33P: a new insight into the pathogenesis of chronic oxaliplatin-induced peripheral neuropathy? Eur. J. Neurol. 17, 963–968. 10.1111/j.1468-1331.2010.02966.x
    1. Apellaniz-Ruiz M., Tejero H., Inglada-Perez L., Sanchez-Barroso L., Gutierrez-Gutierrez G., Calvo I., et al. . (2017). Targeted sequencing reveals low-frequency variants in EPHA genes as markers of paclitaxel-induced peripheral neuropathy. Clin. Cancer Res. 23, 1227–1235. 10.1158/1078-0432.CCR-16-0694
    1. Areti A., Yerra V. G., Naidu V., Kumar A. (2014). Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol. 2, 289–295. 10.1016/j.redox.2014.01.006
    1. Argyriou A. A., Cavaletti G., Antonacopoulou A., Genazzani A. A., Briani C., Bruna J., et al. . (2013a). Voltage-gated sodium channel polymorphisms play a pivotal role in the development of oxaliplatin-induced peripheral neurotoxicity: results from a prospective multicenter study. Cancer 119, 3570–3577. 10.1002/cncr.28234
    1. Argyriou A. A., Cavaletti G., Briani C., Velasco R., Bruna J., Campagnolo M., et al. . (2013b). Clinical pattern and associations of oxaliplatin acute neurotoxicity: a prospective study in 170 patients with colorectal cancer. Cancer 119, 438–444. 10.1002/cncr.27732
    1. Argyriou A. A., Chroni E., Koutras A., Ellul J., Papapetropoulos S., Katsoulas G., et al. . (2005). Vitamin E for prophylaxis against chemotherapy-induced neuropathy - A randomized controlled trial. Neurology 64, 26–31. 10.1212/01.WNL.0000148609.35718.7D
    1. Argyriou A. A., Chroni E., Polychronopoulos P., Iconomou G., Koutras A., Makatsoris T., et al. . (2006). Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology 67, 2253–2255. 10.1212/01.wnl.0000249344.99671.d4
    1. Argyriou A. A., Koltzenburg M., Polychronopoulos P., Papapetropoulos S., Kalofonos H. P. (2008). Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit. Rev. Oncol. Hematol. 66, 218–228. 10.1016/j.critrevonc.2008.01.008
    1. Armstrong C. M., Cota G. (1999). Calcium block of Na+ channels and its effect on closing rate. Proc. Natl. Acad. Sci. U.S.A. 96, 4154–4157. 10.1073/pnas.96.7.4154
    1. Arrick B. A., Nathan C. F. (1984). Glutathione metabolism as a determinant of therapeutic efficacy - a review. Cancer Res. 44, 4224–4232.
    1. Baldwin R. M., Owzar K., Zembutsu H., Chhibber A., Kubo M., Jiang C., et al. . (2012). A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18, 5099–5109. 10.1158/1078-0432.CCR-12-1590
    1. Barton D. L., Wos E. J., Qin R., Mattar B. I., Green N. B., Lanier K. S., et al. . (2011). A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support. Care Cancer 19, 833–841. 10.1007/s00520-010-0911-0
    1. Becouarn Y., Ychou M., Ducreux M., Borel C., Bertheault-Cvitkovic F., Seitz J. F., et al. . (1998). Phase II trial of oxaliplatin as first-line chemotherapy in metastatic colorectal cancer patients. Digestive Group of French Federation of Cancer Centers. J. Clin. Oncol. 16, 2739–2744. 10.1200/JCO.1998.16.8.2739
    1. Bennett G. J., Liu G. K., Xiao W. H., Jin H. W., Siau C. (2011). Terminal arbor degeneration–a novel lesion produced by the antineoplastic agent paclitaxel. Eur. J. Neurosci. 33, 1667–1676. 10.1111/j.1460-9568.2011.07652.x
    1. Bernhardson B. M., Tishelman C., Rutqvist L. E. (2007). Chemosensory changes experienced by patients undergoing cancer chemotherapy: a qualitative interview study. J. Pain Symptom Manage 34, 403–412. 10.1016/j.jpainsymman.2006.12.010
    1. Bleyer W. A., Frisby S. A., Oliverio V. T. (1975). Uptake and binding of vincristine by murine leukemia cells. Biochem. Pharmacol. 24, 633–639. 10.1016/0006-2952(75)90185-9
    1. Bodurka-Bevers D., Basen-Engquist K., Carmack C. L., Fitzgerald M. A., Wolf J. K., de Moor C., et al. . (2000). Depression, anxiety, and quality of life in patients with epithelial ovarian cancer. Gynecol. Oncol. 78, 302–308. 10.1006/gyno.2000.5908
    1. Boehmerle W., Huehnchen P., Peruzzaro S., Balkaya M., Endres M. (2014). Electrophysiological, behavioral and histological characterization of paclitaxel, cisplatin, vincristine and bortezomib-induced neuropathy in C57Bl/6 mice. Sci. Rep. 4:6370. 10.1038/srep06370
    1. Boehmerle W., Splittgerber U., Lazarus M. B., McKenzie K. M., Johnston D. G., Austin D. J., et al. . (2006). Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 103, 18356–18361. 10.1073/pnas.0607240103
    1. Bogliun G., Marzorati L., Zincone A., Crespi V., Frattola L., Tredici G., et al. . (1997). Risk factors for the development of severe cisplatin neurotoxicity. Int. J. Oncol. 11, 365–370. 10.3892/ijo.11.2.365
    1. Boora G. K., Kanwar R., Kulkarni A. A., Abyzov A., Sloan J., Ruddy K. J., et al. . (2016). Testing of candidate single nucleotide variants associated with paclitaxel neuropathy in the trial NCCTG N08C1 (Alliance). Cancer Med. 5, 631–639. 10.1002/cam4.625
    1. Boora G. K., Kulkarni A. A., Kanwar R., Beyerlein P., Qin R., Banck M. S., et al. . (2015). Association of the Charcot-Marie-Tooth disease gene ARHGEF10 with paclitaxel induced peripheral neuropathy in NCCTG N08CA (Alliance). J. Neurol. Sci. 357, 35–40. 10.1016/j.jns.2015.06.056
    1. Boyette-Davis J. A., Cata J. P., Driver L. C., Novy D. M., Bruel B. M., Mooring D. L., et al. . (2013). Persistent chemoneuropathy in patients receiving the plant alkaloids paclitaxel and vincristine. Cancer Chemother. Pharmacol. 71, 619–626. 10.1007/s00280-012-2047-z
    1. Boyette-Davis J., Dougherty P. M. (2011). Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp. Neurol. 229, 353–357. 10.1016/j.expneurol.2011.02.019
    1. Boyette-Davis J., Xin W., Zhang H., Dougherty P. M. (2011). Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 152, 308–313. 10.1016/j.pain.2010.10.030
    1. Bradley W. G., Lassman L. P., Pearce G. W., Walton J. N. (1970). The neuromyopathy of vincristine in man. Clinical, electrophysiological and pathological studies. J. Neurol. Sci. 10, 107–131. 10.1016/0022-510x(70)90013-4
    1. Broyl A., Corthals S. L., Jongen J. L., van der Holt R., Kuiper Y., de Knegt M., et al. . (2010). Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol. 11, 1057–1065. 10.1016/S1470-2045(10)70206-0
    1. Bulua A. C., Simon A., Maddipati R., Pelletier M., Park H., Kim K. Y., et al. . (2011). Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J. Exp. Med. 208, 519–533. 10.1084/jem.20102049
    1. Burgos E., Gomez-Nicola D., Pascual D., Martin M. I., Nieto-Sampedro M., Goicoechea C. (2012). Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur. J. Pharmacol. 682, 62–72. 10.1016/j.ejphar.2012.02.008
    1. Callizot N., Andriambeloson E., Glass J., Revel M., Ferro P., Cirillo R., et al. . (2008). Interleukin-6 protects against paclitaxel, cisplatin and vincristine-induced neuropathies without impairing chemotherapeutic activity. Cancer Chemother. Pharmacol. 62, 995–1007. 10.1007/s00280-008-0689-7
    1. Canta A., Pozzi E., Carozzi V. A. (2015). Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics 3, 198–223. 10.3390/toxics3020198
    1. Carozzi V. A., Canta A., Chiorazzi A. (2015). Chemotherapy-induced peripheral neuropathy: what do we know about mechanisms? Neurosci. Lett. 596, 90–107. 10.1016/j.neulet.2014.10.014
    1. Cascinu S., Catalano V., Cordella L., Labianca R., Giordani P., Baldelli A. M., et al. . (2002). Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J. Clin. Oncol. 20, 3478–3483. 10.1200/JCO.2002.07.061
    1. Cascinu S., Cordella L., Delferro E., Fronzoni M., Catalano G. (1995). Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric-cancer - a randomized double-blind placebo-controlled trial. J. Clin. Oncol. 13, 26–32. 10.1200/JCO.1995.13.1.26
    1. Cashman C. R., Hoke A. (2015). Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci. Lett. 596, 33–50. 10.1016/j.neulet.2015.01.048
    1. Cata J. P., Weng H. R., Burton A. W., Villareal H., Giralt S., Dougherty P. M. (2007). Quantitative sensory findings in patients with bortezomib-induced pain. J. Pain 8, 296–306. 10.1016/j.jpain.2006.09.014
    1. Cavaletti G., Alberti P., Marmiroli P. (2011). Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol. 12, 1151–1161. 10.1016/S1470-2045(11)70131-0
    1. Cavaletti G., Cavalletti E., Montaguti P., Oggioni N., De Negri O., Tredici G. (1997). Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology 18, 137–145.
    1. Cavaletti G., Cavalletti E., Oggioni N., Sottani C., Minoia C., D'Incalci M., et al. . (2000). Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 21, 389–393. 10.1046/j.1529-8027.2001.01008-5.x
    1. Cavaletti G., Ceresa C., Nicolini G., Marmiroli P. (2014). Neuronal Drug Transporters in Platinum Drugs-induced Peripheral Neurotoxicity. Anticancer Res. 34, 483–486.
    1. Cavaletti G., Tredici G., Braga M., Tazzari S. (1995). Experimental peripheral neuropathy induced in adult rats by repeated intraperitoneal administration of taxol. Exp. Neurol. 133, 64–72. 10.1006/exnr.1995.1008
    1. Cavaletti G., Tredici G., Marmiroli P., Petruccioli M. G., Barajon I., Fabbrica D. (1992). Morphometric study of the sensory neuron and peripheral nerve changes induced by chronic cisplatin (DDP) administration in rats. Acta Neuropathol. 84, 364–371. 10.1007/bf00227662
    1. Ceresa C., Cavaletti G. (2011). Drug transporters in chemotherapy induced peripheral neurotoxicity: current knowledge and clinical implications. Curr. Med. Chem. 18, 329–341. 10.2174/092986711794839160
    1. Cersosimo R. J. (1989). Cisplatin neurotoxicity. Cancer Treat. Rev. 16, 195–211. 10.1016/0305-7372(89)90041-8
    1. Cersosimo R. J. (2005). Oxaliplatin-associated neuropathy: a review. Ann. Pharmacother. 39, 128–135. 10.1345/aph.1E319
    1. Chatterjee S., Behnam Azad B., Nimmagadda S. (2014). The intricate role of CXCR4 in cancer. Adv. Cancer Res. 124, 31–82. 10.1016/B978-0-12-411638-2.00002-1
    1. Chaudhry V., Chaudhry M., Crawford T. O., Simmons-O'Brien E., Griffin J. W. (2003). Toxic neuropathy in patients with pre-existing neuropathy. Neurology 60, 337–340. 10.1212/01.WNL.0000043691.53710.53
    1. Chon H. J., Rha S. Y., Im C. K., Kim C., Hong M. H., Kim H. R., et al. . (2009). Docetaxel versus paclitaxel combined with 5-FU and leucovorin in advanced gastric cancer: combined analysis of two phase II trials. Cancer Res. Treat. 41, 196–204. 10.4143/crt.2009.41.4.196
    1. Colombo N., Bini S., Miceli D., Bogliun G., Marzorati L., Cavaletti G., et al. . (1995). Weekly Cisplatin+/−Glutathione in Relapsed Ovarian-Carcinoma. Int. J. Gynecol. Cancer 5, 81–86. 10.1046/j.1525-1438.1995.05020081.x
    1. Dasari S., Tchounwou P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol. 740, 364–378. 10.1016/j.ejphar.2014.07.025
    1. de Afonseca S. O., Cruz F. M., Cubero D. D. G., Lera A. T., Schindler F., Okawara M., et al. (2013). Vitamin E for prevention of oxaliplatin-induced peripheral neuropathy: a pilot randomized clinical trial. Sao Paulo Med. J. 131, 35–38. 10.1590/S1516-31802013000100006
    1. Descoeur J., Pereira V., Pizzoccaro A., Francois A., Ling B., Maffre V., et al. . (2011). Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol. Med. 3, 266–278. 10.1002/emmm.201100134
    1. Deuis J. R., Lim Y. L., de Sousa S. R., Lewis R. J., Alewood P. F., Cabot P. J., et al. . (2014). Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro Oncol. 16, 1324–1332. 10.1093/neuonc/nou048
    1. Deuis J. R., Zimmermann K., Romanovsky A. A., Possani L. D., Cabot P. J., Lewis R. J., et al. . (2013). An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 154, 1749–1757. 10.1016/j.pain.2013.05.032
    1. Devor M. (2006). Sodium channels and mechanisms of neuropathic pain. J. Pain 7, S3–S12. 10.1016/j.jpain.2005.09.006
    1. De Vos F. Y. F. L., Bos A. M. E., Schaapveld M., de Swart C. A. M., de Graaf H., van der Zee A. G. J., et al. . (2005). A randomized phase II study of paclitaxel with carboplatin +/- amifostine as first line treatment in advanced ovarian carcinoma. Gynecol. Oncol. 97, 60–67. 10.1016/j.ygyno.2004.11.052
    1. Di Cesare Mannelli L., Pacini A., Micheli L., Tani A., Zanardelli M., Ghelardini C. (2014). Glial role in oxaliplatin-induced neuropathic pain. Exp. Neurol. 261, 22–33. 10.1016/j.expneurol.2014.06.016
    1. Diouf B., Crews K. R., Lew G., Pei D., Cheng C., Bao J., et al. . (2015). Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313, 815–823. 10.1001/jama.2015.0894
    1. Dorr R. T. (1997). Pharmacology of the taxanes. Pharmacotherapy 17, 96S–104S.
    1. Dougherty P. M., Cata J. P., Cordella J. V., Burton A., Weng H. R. (2004). Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 109, 132–142. 10.1016/j.pain.2004.01.021
    1. Doyle T., Chen Z., Muscoli C., Bryant L., Esposito E., Cuzzocrea S., et al. . (2012). Targeting the overproduction of peroxynitrite for the prevention and reversal of paclitaxel-induced neuropathic pain. J. Neurosci. 32, 6149–6160. 10.1523/JNEUROSCI.6343-11.2012
    1. Duggett N. A., Griffiths L. A., McKenna O. E., de Santis V., Yongsanguanchai N., Mokori E. B., et al. . (2016). Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 333, 13–26. 10.1016/j.neuroscience.2016.06.050
    1. Durand J. P., Alexandre J., Guillevin L., Goldwasser F. (2005). Clinical activity of venlafaxine and topiramate against oxaliplatin-induced disabling permanent neuropathy. Anticancer. Drugs 16, 587–591. 10.1097/00001813-200506000-00015
    1. Durand J. P., Brezault C., Goldwasser F. (2003). Protection against oxaliplatin acute neurosensory toxicity by venlafaxine. Anticancer. Drugs 14, 423–425. 10.1097/00001813-200307000-00006
    1. Durand J. P., Goldwasser F. (2002). Dramatic recovery of paclitaxel-disabling neurosensory toxicity following treatment with venlafaxine. Anticancer. Drugs 13, 777–780. 10.1097/00001813-200208000-00013
    1. Eckel F., Schmelz R., Adelsberger H., Erdmann J., Quasthoff S., Lersch C. (2002). Prevention of oxaliplatin-induced neuropathy by carbamazepine: a pilot study. Deutsche Medizinische Wochenschrift 127, 78–82. 10.1055/s-2002-19594
    1. Extra J. M., Marty M., Brienza S., Misset J. L. (1998). Pharmacokinetics and safety profile of oxaliplatin. Semin. Oncol. 25, 13–22.
    1. Faivre S., Chan D., Salinas R., Woynarowska B., Woynarowski J. M. (2003). DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem. Pharmacol. 66, 225–237. 10.1016/S0006-2952(03)00260-0
    1. Farguhar-Smith P., Brown M. R. D. (2016). Persistent pain in cancer survivors: Pathogenesis and treatment options, in Pain Clinical Updates XXIV (London, UK: ), 1–8.
    1. Fernandes R., Mazzarello S., Hutton B., Shorr R., Majeed H., Ibrahim M. F., et al. . (2016). Taxane acute pain syndrome (TAPS) in patients receiving taxane-based chemotherapy for breast cancer-a systematic review. Support. Care Cancer 24, 3633–3650. 10.1007/s00520-016-3256-5
    1. Flatters S. J., Bennett G. J. (2006). Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain 122, 245–257. 10.1016/j.pain.2006.01.037
    1. Forsyth P. A., Balmaceda C., Peterson K., Seidman A. D., Brasher P., DeAngelis L. M. (1997). Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J. Neurooncol. 35, 47–53. 10.1023/A:1005805907311
    1. Fouladi M., Chintagumpala M., Ashley D., Kellie S., Gururangan S., Hassall T., et al. . (2008). Amifostine protects against cisplatin-induced ototoxicity in children with average-risk medulloblastoma. J. Clin. Oncol. 26, 3749–3755. 10.1200/JCO.2007.14.3974
    1. Gamelin L., Boisdron-Celle M., Delva R., Guerin-Meyer V., Ifrah N., Morel A., et al. . (2004). Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 10, 4055–4061. 10.1158/1078-0432.CCR-03-0666
    1. Gamelin L., Capitain O., Morel A., Dumont A., Traore S. B., et al. . (2007). Predictive factors of oxaliplatin neurotoxicity: the involvement of the oxalate outcome pathway. Clin. Cancer Res. 13, 6359–6368. 10.1158/1078-0432.CCR-07-0660
    1. Gan P. P., McCarroll J. A. S. T., Po'uha Kamath K., Jordan M. A., Kavallaris M. (2010). Microtubule dynamics, mitotic arrest, and apoptosis: drug-induced differential effects of betaIII-tubulin. Mol. Cancer Ther. 9, 1339–1348. 10.1158/1535-7163.MCT-09-0679
    1. Gauchan P., Andoh T., Kato A., Kuraishi Y. (2009). Involvement of increased expression of transient receptor potential melastatin 8 in oxaliplatin-induced cold allodynia in mice. Neurosci. Lett. 458, 93–95. 10.1016/j.neulet.2009.04.029
    1. Gedlicka C., Scheithauer W., Schull B., Kornek G. V. (2002). Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. J. Clin. Oncol. 20, 3359–3361. 10.1200/JCO.2002.99.502
    1. Gelmon K., Eisenhauer E., Bryce C., Tolcher A., Mayer L., Tomlinson E., et al. (1999). Randomized phase II study of high-dose paclitaxel with or without amifostine in patients with metastatic breast cancer. J. Clin. Oncol. 17, 3038–3047. 10.1200/JCO.1999.17.10.3038
    1. Ghoreishi Z., Esfahani A., Djazayeri A., Djalali M., Golestan B., Ayromlou H., et al. . (2012). Omega-3 fatty acids are protective against paclitaxel-induced peripheral neuropathy: a randomized double-blind placebo controlled trial. BMC Cancer 12:355. 10.1186/1471-2407-12-355
    1. Gornet J. M., Savier E., Lokiec F., Cvitkovic E., Misset J. L., Goldwasser F. (2002). Exacerbation of oxaliplatin neurosensory toxicity following surgery. Ann. Oncol. 13, 1315–1318. 10.1093/annonc/mdf254
    1. Goswami C. (2012). TRPV1-tubulin complex: involvement of membrane tubulin in the regulation of chemotherapy-induced peripheral neuropathy. J. Neurochem. 123, 1–13. 10.1111/j.1471-4159.2012.07892.x
    1. Gregg R. W., Molepo J. M., Monpetit V. J. A., Mikael N. Z., Redmond D., Gadia M., et al. (1992). Cisplatin neurotoxicity - the relationship between dosage, time, and platinum concentration in neurologic tissues, and morphological evidence of toxicity. J. Clin. Oncol. 10, 795–803. 10.1200/JCO.1992.10.5.795
    1. Gregory R. K., Smith I. E. (2000). Vinorelbine–a clinical review. Br. J. Cancer 82, 1907–1913. 10.1054/bjoc.2000.1203
    1. Griffiths L. A., Flatters S. J. (2015). Pharmacological modulation of the mitochondrial electron transport chain in paclitaxel-induced painful peripheral neuropathy. J. Pain 16, 981–994. 10.1016/j.jpain.2015.06.008
    1. Grisold W., Cavaletti G., Windebank A. J. (2012). Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol. 14 (Suppl. 4), iv45–54. 10.1093/neuonc/nos203
    1. Guo Y., Jones D., Palmer J. L., Forman A., Dakhil S. R., Velasco M. R., et al. . (2014). Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support. Care Cancer 22, 1223–1231. 10.1007/s00520-013-2075-1
    1. Gutierrez-Gutierrez G., Sereno M., Miralles A., Casado-Saenz E., Gutierrez-Rivas E. (2010). Chemotherapy-induced peripheral neuropathy: clinical features, diagnosis, prevention and treatment strategies. Clin. Transl. Oncol. 12, 81–91. 10.1007/S12094-010-0474-z
    1. Hammack J. E., Michalak J. C., Loprinzi C. L., Sloan J. A., Novotny P. J., Soori G. S., et al. . (2002). Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain 98, 195–203. 10.1016/S0304-3959(02)00047-7
    1. Han Y., Smith M. T. (2013). Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front. Pharmacol. 4:156. 10.3389/fphar.2013.00156
    1. Hershman D. L., Unger J. M., Crew K. D., Minasian L. M., Awad D., Moinpour C. M., et al. . (2013). Randomized double-blind placebo-controlled trial of Acetyl-L-Carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J. Clin. Oncol. 31, 2627–2633. 10.1200/jco.2012.44.8738
    1. Hertz D. L., Owzar K., Lessans S., Wing C., Jiang C., Kelly W. K., et al. . (2016). Pharmacogenetic discovery in CALGB (Alliance) 90401 and mechanistic validation of a VAC14 polymorphism that increases risk of docetaxel-induced neuropathy. Clin. Cancer Res. 22, 4890–4900. 10.1158/1078-0432.CCR-15-2823
    1. Hile E. S., Fitzgerald G. K., Studenski S. A. (2010). Persistent mobility disability after neurotoxic chemotherapy. Phys. Ther. 90, 1649–1657. 10.2522/ptj.20090405
    1. Hilkens P. H., Planting A. S., van der Burg M. E., Moll J. W., van Putten W. L., Vecht C. J., et al. . (1994). Clinical course and risk factors of neurotoxicity following cisplatin in an intensive dosing schedule. Eur. J. Neurol. 1, 45–50. 10.1111/j.1468-1331.1994.tb00049.x
    1. Hilkens P. H., Verweij J., Vecht C. J., Stoter G., van den Bent M. J.. (1997). Clinical characteristics of severe peripheral neuropathy induced by docetaxel (Taxotere). Ann. Oncol. 8, 187–190. 10.1023/A:1008245400251
    1. Hilpert F., Stahle A., Tome O., Burges A., Rossner D., Spathe K., et al. . (2005). Neuroprotection with amifostine in the first-line treatment of advanced ovarian cancer with carboplatin/paclitaxel-based chemotherapy–a double-blind, placebo-controlled, randomized phase II study from the Arbeitsgemeinschaft Gynakologische Onkologoie (AGO) Ovarian Cancer Study Group. Support. Care Cancer 13, 797–805. 10.1007/s00520-005-0782-y
    1. Himes R. H., Kersey R. N., Heller-Bettinger I., Samson F. E. (1976). Action of the vinca alkaloids vincristine, vinblastine, and desacetyl vinblastine amide on microtubules in vitro. Cancer Res. 36, 3798–3802.
    1. Holzer A. K., Manorek G. H., Howell S. B. (2006). Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol. Pharmacol. 70, 1390–1394. 10.1124/mol.106.022624
    1. Hoskins P. J., Swenerton K. D., Manji M., Wong F., O'Reilly S. E., McMurtrie E. J., et al. . (1994). ‘Moderate-risk’ ovarian cancer (stage I, grade 2; stage II, grade 1 or 2) treated with cisplatin chemotherapy (single agent or combination) and pelvi-abdominal irradiation. Int. J. Gynecol. Cancer 4, 272–278. 10.1046/j.1525-1438.1994.04040272.x
    1. Huang J. S., Wu C. L., Fan C. W., Chen W. H., Yeh K. Y., Chang P. H. (2015). Intravenous glutamine appears to reduce the severity of symptomatic platinum-induced neuropathy: a prospective randomized study. J. Chemother. 27, 235–240. 10.1179/1973947815Y.0000000011
    1. Huang R., Murry D. J., Kolwankar D., Hall S. D., Foster D. R. (2006). Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem. Pharmacol. 71, 1695–1704. 10.1016/j.bcp.2006.03.009
    1. Inada M., Sato M., Morita S., Kitagawa K., Kawada K., Mitsuma A., et al. . (2010). Associations between oxaliplatin-induced peripheral neuropathy and polymorphisms of the ERCC1 and GSTP1 genes. Int. J. Clin. Pharmacol. Ther. 48, 729–734. 10.5414/CPP48729
    1. Ishimoto T. M., Ali-Osman F. (2002). Allelic variants of the human glutathione S-transferase P1 gene confer differential cytoprotection against anticancer agents in Escherichia coli. Pharmacogenet. 12, 543–553. 10.1097/00008571-200210000-00006
    1. Janes K., Esposito E., Doyle T., Cuzzocrea S., Tosh D. K., Jacobson K. A., et al. . (2014a). A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 155, 2560–2567. 10.1016/j.pain.2014.09.016
    1. Janes K., Little J. W., Li C., Bryant L., Chen C., Chen Z., et al. . (2014b). The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J. Biol. Chem. 289, 21082–21097. 10.1074/jbc.M114.569574
    1. Janes K., Wahlman C., Little J. W., Doyle T., Tosh D. K., Jacobson K. A., et al. . (2015). Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 44, 91–99. 10.1016/j.bbi.2014.08.010
    1. Johnson C., Pankratz V. S., Velazquez A. I., Aakre J. A., Loprinzi C. L., Staff N. P., et al. . (2015). Candidate pathway-based genetic association study of platinum and platinum-taxane related toxicity in a cohort of primary lung cancer patients. J. Neurol. Sci. 349, 124–128. 10.1016/j.jns.2014.12.041
    1. Johnson D. C., Corthals S. L., Walker B. A., Ross F. M., Gregory W. M., Dickens N. J., et al. . (2011). Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J. Clin. Oncol. 29, 797–804. 10.1200/JCO.2010.28.0792
    1. Jones D., Zhao F., Brell J., Lewis M. A., Loprinzi C. L., Weiss M., et al. . (2015). Neuropathic symptoms, quality of life, and clinician perception of patient care in medical oncology outpatients with colorectal, breast, lung, and prostate cancer. J. Cancer Surviv. 9, 1–10. 10.1007/s11764-014-0379-x
    1. Jordan B., Jahn F., Beckmann J., Unverzagt S., Muller-Tidow C., Jordan K. (2016). Calcium and magnesium infusions for the prevention of oxaliplatin-induced peripheral neurotoxicity: a systematic review. Oncology 90, 299–306. 10.1159/000445977
    1. Kaba K., Tani E., Morimura T., Matsumoto T. (1985). Potentiation of vincristine effect in human and murine gliomas by calcium channel blockers or calmodulin inhibitors. J. Neurosurg. 63, 905–911. 10.3171/jns.1985.63.6.0905
    1. Kagiava A., Tsingotjidou A., Emmanouilides C., Theophilidis G. (2008). The effects of oxaliplatin, an anticancer drug, on potassium channels of the peripheral myelinated nerve fibres of the adult rat. Neurotoxicology 29, 1100–1106. 10.1016/j.neuro.2008.09.005
    1. Kanat O., Evrensel T., Baran I., Coskun H., Zarifoglu M., Turan O. F., et al. . (2003). Protective effect of amifostine against toxicity of paclitaxel and carboplatin in non-small cell lung cancer - A single center randomized study. Med. Oncol. 20, 237–245. 10.1385/MO:20:3:237
    1. Kautio A. L., Haanpaa M., Saarto T., Kalso E. (2008). Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J. Pain Sympt. Manage. 35, 31–39. 10.1016/j.jpainsymman.2007.02.043
    1. Kemp G., Rose P., Lurain J., Berman M., Manetta A., Roullet B., et al. . (1996). Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol. 14, 2101–2112. 10.1200/JCO.1996.14.7.2101
    1. Khattak M. A. (2011). Calcium and magnesium prophylaxis for oxaliplatin-related neurotoxicity: is it a trade-off between drug efficacy and toxicity? Oncologist 16, 1780–1783. 10.1634/theoncologist.2011-0157
    1. Khrunin A. V., Moisseev A., Gorbunova V., Limborska S. (2010). Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 10, 54–61. 10.1038/tpj.2009.45
    1. Kidd J. F., Pilkington M. F., Schell M. J., Fogarty K. E., Skepper J. N., Taylor C. W., et al. . (2002). Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J. Biol. Chem. 277, 6504–6510. 10.1074/jbc.M106802200
    1. Kiguchi N., Maeda T., Kobayashi Y., Kondo T., Ozaki M., Kishioka S. (2008). The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice. Eur. J. Pharmacol. 592, 87–92. 10.1016/j.ejphar.2008.07.008
    1. Kiya T., Kawamata T., Namiki A., Yamakage M. (2011). Role of satellite cell-derived L-serine in the dorsal root ganglion in paclitaxel-induced painful peripheral neuropathy. Neuroscience 174, 190–199. 10.1016/j.neuroscience.2010.11.046
    1. Krarup-Hansen A., Helweg-Larsen S., Schmalbruch H., Rorth M., Krarup C. (2007). Neuronal involvement in cisplatin neuropathy: prospective clinical and neurophysiological studies. Brain 130, 1076–1088. 10.1093/brain/awl356
    1. Krishnan A. V., Goldstein D., Friedlander M., Kiernan M. C. (2005). Oxaliplatin-induced neurotoxicity and the development of neuropathy. Muscle Nerve 32, 51–60. 10.1002/mus.20340
    1. Krukowski K., Eijkelkamp N., Laumet G., Hack C. E., Li Y., Dougherty P. M., et al. . (2016). CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J. Neurosci. 36, 11074–11083. 10.1523/JNEUROSCI.3708-15.2016
    1. Lamba J. K., Fridley B. L., Ghosh T. M., Yu Q., Mehta G., Gupta P. (2014). Genetic variation in platinating agent and taxane pathway genes as predictors of outcome and toxicity in advanced non-small-cell lung cancer. Pharmacogenomics 15, 1565–1574. 10.2217/pgs.14.107
    1. Lavoie Smith E. M., Barton D. L., Qin R., Steen P. D., Aaronson N. K., Loprinzi C. L. (2013). Assessing patient-reported peripheral neuropathy: the reliability and validity of the European Organization for Research and Treatment of Cancer QLQ-CIPN20 Questionnaire. Qual. Life Res. 22, 2787–2799. 10.1007/s11136-013-0379-8
    1. Lavoie Smith E. M., Li L., Chiang C., Thomas K., Hutchinson R. J., Wells E. M., et al. . (2015). Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J. Peripher. Nerv. Syst. 20, 37–46. 10.1111/jns.12114
    1. Leandro-Garcia L. J., Inglada-Perez L., Pita G., Hjerpe E., Leskela S., Jara C., et al. . (2013). Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J. Med. Genet. 50, 599–605. 10.1136/jmedgenet-2012-101466
    1. Leandro-Garcia L. J., Leskela S., Jara C., Green H., Avall-Lundqvist E., Wheeler H. E., et al. . (2012). Regulatory polymorphisms in beta-tubulin IIa are associated with paclitaxel-induced peripheral neuropathy. Clin. Cancer Res. 18, 4441–4448. 10.1158/1078-0432.CCR-12-1221
    1. Lecomte T., Landi B., Beaune P., Laurent-Puig P., Loriot M. A. (2006). Glutathione S-transferase P1 polymorphism (Ile(105)Val) predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin. Cancer Res. 12, 3050–3056. 10.1158/1078-0432.CCR-05-2076
    1. Ledeboer A., Jekich B. M., Sloane E. M., Mahoney J. H., Langer S. J., Milligan E. D., et al. . (2007). Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav. Immun. 21, 686–698. 10.1016/j.bbi.2006.10.012
    1. Lees J. G., Makker P. G., Tonkin R. S., Abdulla M., Park S. B., Goldstein D., et al. . (2017). Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer 73, 22–29. 10.1016/j.ejca.2016.12.006
    1. Leo M., Schmitt L. I., Erkel M., Melnikova M., Thomale J., Hagenacker T. (2017). Cisplatin-induced neuropathic pain is mediated by upregulation of N-type voltage-gated calcium channels in dorsal root ganglion neurons. Exp. Neurol. 288, 62–74. 10.1016/j.expneurol.2016.11.003
    1. Leong S. S., Tan E. H., Fong K. W., Wilder-Smith E., Ong Y. K., Tai B. C., et al. . (2003). Randomized double-blind trial of combined modality treatment with or without amifostine in unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. 21, 1767–1774. 10.1200/JCO.2003.11.005
    1. Li D., Huang Z. Z., Ling Y. Z., Wei J. Y., Cui Y., Zhang X. Z., et al. . (2015). Up-regulation of CX3CL1 via Nuclear Factor-kappaB-dependent histone acetylation is involved in paclitaxel-induced peripheral neuropathy. Anesthesiology 122, 1142–1151. 10.1097/ALN.0000000000000560
    1. Li D., Kim W., Shin D., Jung Y., Bae H., Kim S. K. (2016). Preventive Effects of Bee Venom Derived Phospholipase A(2) on Oxaliplatin-Induced Neuropathic Pain in Mice. Toxins (Basel) 8:27 10.3390/toxins8010027
    1. Lin P. C., Lee M. Y., Wang W. S., Yen C. C., Chao T. C., Hsiao L. T., et al. . (2006). N-acetylcysteine has neuroprotective effects against oxaliplatin-based adjuvant chemotherapy in colon cancer patients: preliminary data. Support. Care Cancer 14, 484–487. 10.1007/s00520-006-0018-9
    1. Lipton R. B., Apfel S. C., Dutcher J. P., Rosenberg R., Kaplan J., Berger A., et al. . (1989). Taxol produces a predominantly sensory neuropathy. Neurology 39, 368–373. 10.1212/WNL.39.3.368
    1. Liu C. C., Lu N., Cui Y., Yang T., Zhao Z. Q., Xin W. J., et al. . (2010). Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol. Pain 6:76. 10.1186/1744-8069-6-76
    1. Liu J. J., Jamieson S. M. F., Subramaniam J., Ip V., Jong N. N., Mercer J. F. B., et al. . (2009). Neuronal expression of copper transporter 1 in rat dorsal root ganglia: association with platinum neurotoxicity. Cancer Chemother. Pharmacol. 64, 847–856. 10.1007/s00280-009-1017-6
    1. Liu J. J., Kim Y., Yan F., Ding Q., Ip V., Jong N. N., et al. . (2013). Contributions of rat Ctr1 to the uptake and toxicity of copper and platinum anticancer drugs in dorsal root ganglion neurons. Biochem. Pharmacol. 85, 207–215. 10.1016/j.bcp.2012.10.023
    1. Liu J. J., Lu J., McKeage M. J. (2012). Membrane transporters as determinants of the pharmacology of platinum anticancer drugs. Curr. Cancer Drug Targets 12, 962–986. 10.2174/156800912803251199
    1. Liu X. J., Zhang Y., Liu T., Xu Z. Z., Park C. K., Berta T., et al. . (2014). Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Res. 24, 1374–1377. 10.1038/cr.2014.106
    1. Lomonaco M., Milone M., Batocchi A. P., Padua L., Restuccia D., Tonali P. (1992). Cisplatin neuropathy - clinical course and neurophysiological findings. J. Neurol. 239, 199–204. 10.1007/BF00839140
    1. Look M. P., Musch E. (1994). Lipid peroxides in the polychemotherapy of cancer patients. Chemotherapy 40, 8–15. 10.1159/000239163
    1. Lopez-Lopez E., Gutierrez-Camino A., Astigarraga I., Navajas A., Echebarria-Barona A., Garcia-Miguel P., et al. . (2016). Vincristine pharmacokinetics pathway and neurotoxicity during early phases of treatment in pediatric acute lymphoblastic leukemia. Pharmacogenomics 17, 731–741. 10.2217/pgs-2016-0001
    1. Loprinzi C. L., Maddocks-Christianson K., Wolf S. L., Rao R. D., Dyck P. J., Mantyh P., et al. . (2007). The Paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J. 13, 399–403. 10.1097/PPO.0b013e31815a999b
    1. Loprinzi C. L., Reeves B. N., Dakhil S. R., Sloan J. A., Wolf S. L., Burger K. N., et al. . (2011). Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J. Clin. Oncol. 29, 1472–1478. 10.1200/JCO.2010.33.0308
    1. Lorusso D., Ferrandina G., Greggi S., Gadducci A., Pignata S., Tateo S., et al. . (2003). Phase III multicenter randomized trial of amifostine as cytoprotectant in first-line chemotherapy in ovarian cancer patients. Ann. Oncol. 14, 1086–1093. 10.1093/annonc/mdg301
    1. Maestri A., De Pasquale Ceratti A., Cundari S., Zanna C., Cortesi E., Crino L. (2005). A pilot study on the effect of acetyl-L-carnitine in paclitaxel- and cisplatin-induced peripheral neuropathy. Tumori 91, 135–138.
    1. Makker P. G., Duffy S. S., Lees J. G., Perera C. J., Tonkin R. S., Butovsky O., et al. . (2017). Characterisation of immune and neuroinflammatory changes associated with chemotherapy-induced peripheral neuropathy. PLoS ONE 12:e0170814. 10.1371/journal.pone.0170814
    1. Materazzi S., Fusi C., Benemei S., Pedretti P., Patacchini R., Nilius B., et al. . (2012). TRPA1 and TRPV4 mediate paclitaxel-induced peripheral neuropathy in mice via a glutathione-sensitive mechanism. Pflug. Arch. 463, 561–569. 10.1007/s00424-011-1071-x
    1. McDonald E. S., Windebank A. J. (2002). Cisplatin-induced apoptosis of DRG neurons involves bax redistribution and cytochrome c release but not fas receptor signaling. Neurobiol. Dis. 9, 220–233. 10.1006/nbdi.2001.0468
    1. Meijer C., de Vries E. G., Marmiroli P., Tredici G., Frattola L., Cavaletti G. (1999). Cisplatin-induced DNA-platination in experimental dorsal root ganglia neuronopathy. Neurotoxicology 20, 883–887.
    1. Mironov S. L., Ivannikov M. V., Johansson M. (2005). [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules. From mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J. Biol. Chem. 280, 715–721. 10.1074/jbc.M409819200
    1. Mizoguchi S., Andoh T., Yakura T., Kuraishi Y. (2016). Involvement of c-Myc-mediated transient receptor potential melastatin 8 expression in oxaliplatin-induced cold allodynia in mice. Pharmacol. Rep. 68, 645–648. 10.1016/j.pharep.2016.03.001
    1. Mols F., van de Poll-Franse L. V., Vreugdenhil G., Beijers A. J., Kieffer J. M., Aaronson N. K., et al. . (2016). Reference data of the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-CIPN20 Questionnaire in the general Dutch population. Eur. J. Cancer 69, 28–38. 10.1016/j.ejca.2016.09.020
    1. Moore D. H., Donnelly J., McGuire W. P., Almadrones L., Cella D. F., Herzog T. J., et al. . (2003). Limited access trial using amifostine for protection against cisplatin- and three-hour paclitaxel-induced neurotoxicity: a phase II study of the Gynecologic Oncology Group. J. Clin. Oncol. 21, 4207–4213. 10.1200/JCO.2003.02.086
    1. Mora E., Smith E. M., Donohoe C., Hertz D. L. (2016). Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. Cancer Res. 6, 2416–2430.
    1. Mori Y., Katsumata K., Tsuchida A., Aoki T. (2008). [Single nucleotide polymorphism analysis in the GSTP1 and ABCC2 genes about neuropathy by the Oxaliplatin]. Gan To Kagaku Ryoho 35, 2377–2381.
    1. Nassini R., Gees M., Harrison S., De Siena G., Materazzi S., Moretto N., et al. . (2011). Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152, 1621–1631. 10.1016/j.pain.2011.02.051
    1. Old E. A., Nadkarni S., Grist J., Gentry C., Bevan S., Kim K. W., et al. . (2014). Monocytes expressing CX3CR1 orchestrate the development of vincristine-induced pain. J. Clin. Invest. 124, 2023–2036. 10.1172/JCI71389
    1. Openshaw H., Beamon K., Synold T. W., Longmate J., Slatkin N. E., Doroshow J. H., et al. . (2004). Neurophysiological study of peripheral neuropathy after high-dose paclitaxel: lack of neuroprotective effect of amifostine. Clin. Cancer Res. 10, 461–467. 10.1158/1078-0432.CCR-0772-03
    1. Ozols R. F., Young R. C. (1985). High-dose cisplatin therapy in ovarian cancer. Semin. Oncol. 12, 21–30.
    1. Pace A., Giannarelli D., Galie E., Savarese A., Carpano S., Della Giulia M., et al. . (2010). Vitamin E neuroprotection for cisplatin neuropathy A randomized, placebo-controlled trial. Neurology 74, 762–766. 10.1212/WNL.0b013e3181d5279e
    1. Pace A., Nistico C., Cuppone F., Bria E., Galie E., Graziano G., et al. (2007). Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin. Breast Cancer 7, 550–554. 10.3816/CBC.2007.n.010
    1. Pace A., Savarese A., Picardo M., Maresca V., Pacetti U., Del Monte G., et al. . (2003). Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J. Clin. Oncol. 21, 927–931. 10.1200/JCO.2003.05.139
    1. Pallares-Trujillo J., Domenech C., Grau-Oliete M. R., Rivera-Fillat M. P. (1993). Role of cell cholesterol in modulating vincristine uptake and resistance. Int. J. Cancer 55, 667–671. 10.1002/ijc.2910550426
    1. Park H. J., Stokes J. A., Pirie E., Skahen J., Shtaerman Y., Yaksh T. L. (2013). Persistent Hyperalgesia in the Cisplatin-Treated Mouse as Defined by Threshold Measures, the Conditioned Place Preference Paradigm, and Changes in Dorsal Root Ganglia Activated Transcription Factor 3: The Effects of Gabapentin, Ketorolac, and Etanercept. Anesth. Analg. 116, 224–231. 10.1213/ANE.0b013e31826e1007
    1. Park S. B., Goldstein D., Krishnan A. V., Lin C. S., Friedlander M. L., Cassidy J., et al. . (2013). Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63, 419–437. 10.3322/caac.21204
    1. Park S. B., Kwok J. B., Loy C. T., Friedlander M. L., Lin C. S., Krishnan A. V., et al. . (2014). Paclitaxel-induced neuropathy: potential association of MAPT and GSK3B genotypes. BMC Cancer 14:993. 10.1186/1471-2407-14-993
    1. Park S. B., Lin C. S., Krishnan A. V., Friedlander M. L., Lewis C. R., Kiernan M. C. (2011). Early, progressive, and sustained dysfunction of sensory axons underlies paclitaxel-induced neuropathy. Muscle Nerve 43, 367–374. 10.1002/mus.21874
    1. Penz M., Kornek G. V., Raderer M., Ulrich-Pur H., Fiebiger W., Scheithauer W. (2001). Subcutaneous administration of amifostine: a promising therapeutic option in patients with oxaliplatin-related peripheral sensitive neuropathy. Anna. Oncol. 12, 421–422. 10.1023/A:1011184609963
    1. Peters C. M., Jimenez-Andrade J. M., Jonas B. M., Sevcik M. A., Koewler N. J., Ghilardi J. R., et al. . (2007). Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 203, 42–54. 10.1016/j.expneurol.2006.07.022
    1. Pevida M., Lastra A., Hidalgo A., Baamonde A., Menendez L. (2013). Spinal CCL2 and microglial activation are involved in paclitaxel-evoked cold hyperalgesia. Brain Res. Bull. 95, 21–27. 10.1016/j.brainresbull.2013.03.005
    1. Planting A. S. T., Catimel G., de Mulder P. H. M., de Graeff A., Hoppener F., Verweij J., et al. (1999). Randomized study of a short course of weekly cisplatin with or without amifostine in advanced head and neck cancer. Anna. Oncol. 10, 693–700. 10.1023/A:1008353505916
    1. Postma T. J., Benard B. A., Huijgens P. C., Ossenkoppele G. J., Heimans J. J. (1993). Long-term effects of vincristine on the peripheral nervous system. J. Neurooncol. 15, 23–27. 10.1007/BF01050259
    1. Quasthoff S., Hartung H. P. (2002). Chemotherapy-induced peripheral neuropathy. J. Neurol. 249, 9–17. 10.1007/PL00007853
    1. Raghavendra V., Tanga F., DeLeo J. A. (2003). Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. J. Pharmacol. Exper. Therapeut. 306, 624–630. 10.1124/jpet.103.052407
    1. Ramchandren S., Leonard M., Mody R. J., Donohue J. E., Moyer J., Hutchinson R., et al. . (2009). Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J. Peripher. Nerv. Syst. 14, 184–189. 10.1111/j.1529-8027.2009.00230.x
    1. Rao R. D., Flynn P. J., Sloan J. A., Wong G. Y., Novotny P., Johnson D. B., et al. . (2008). Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy - A phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer 112, 2802–2808. 10.1002/cncr.23482
    1. Rao R. D., Michalak J. C., Sloan J. A., Loprinzi C. L., Soori G. S., Nikcevich D. A., et al. (2007). Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy - A phase 3 randomized, double-blind, placebo-controlled, crossover trial (NOOC3). Cancer 110, 2110–2118. 10.1002/cncr.23008
    1. Reeves B. N., Dakhil S. R., Sloan J. A., Wolf S. L., Burger K. N., Kamal A., et al. . (2012). Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer 118, 5171–5178. 10.1002/cncr.27489
    1. Robinson C. R., Zhang H., Dougherty P. M. (2014). Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience 274, 308–317. 10.1016/j.neuroscience.2014.05.051
    1. Roelofs R. I., Hrushesky W., Rogin J., Rosenberg L. (1984). Peripheral sensory neuropathy and cisplatin chemotherapy. Neurology 34, 934–938. 10.1212/WNL.34.7.934
    1. Rubin J. S., Wadler S., Beitler J. J., Haynes H., Rozenblit A., McGill F., et al. . (1995). Audiological findings in a Phase I protocol investigating the effect of WR 2721, high-dose cisplatin and radiation therapy in patients with locally advanced cervical carcinoma. J. Laryngol. Otol. 109, 744–747. 10.1017/s0022215100131202
    1. Ruiz-Medina J., Baulies A., Bura S. A., Valverde O. (2013). Paclitaxel-induced neuropathic pain is age dependent and devolves on glial response. Eur. J. Pain 17, 75–85. 10.1002/j.1532-2149.2012.00172.x
    1. Safaei R., Howell S. B. (2005). Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs. Crit. Rev. Oncol. Hematol. 53, 13–23. 10.1016/j.critrevonc.2004.09.007
    1. Sahenk Z., Barohn R., New P., Mendell J. R. (1994). Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings. Arch. Neurol. 51, 726–729. 10.1001/archneur.1994.00540190110024
    1. Saif M. W., Reardon J. (2005). Management of oxaliplatin-induced peripheral neuropathy. Ther. Clin. Risk Manag. 1, 249–258.
    1. Saif M. W., Syrigos K., Kaley K., Isufi I. (2010). Role of pregabalin in treatment of oxaliplatin-induced sensory neuropathy. Anticancer Res. 30, 2927–2933.
    1. Sands S., Ladas E. J., Kelly K. M., Weiner M., Lin M., Ndao D. H., et al. . (2017). Glutamine for the treatment of vincristine-induced neuropathy in children and adolescents with cancer. Support Care Cancer. 25, 701–708. 10.1007/s00520-016-3441-6
    1. Sangeetha P., Das U. N., Koratkar R., Suryaprabha P. (1990). Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic. Biol. Med. 8, 15–19. 10.1016/0891-5849(90)90139-A
    1. Schmoll H. J., Kollmannsberger C., Metzner B., Hartmann J. T., Schleucher N., Schoffski P., et al. German Testicular Cancer Study . (2003). Long-term results of first-line sequential high-dose etoposide, ifosfamide, and cisplatin chemotherapy plus autologous stem cell support for patients with advanced metastatic germ cell cancer: an extended phase I/II study of the German Testicular Cancer Study Group. J. Clin. Oncol. 21, 4083–4091. 10.1200/JCO.2003.09.035
    1. Schulze C., McGowan M., Jordt S. E., Ehrlich B. E. (2011). Prolonged oxaliplatin exposure alters intracellular calcium signaling: a new mechanism to explain oxaliplatin-associated peripheral neuropathy. Clin. Colorectal Cancer 10, 126–133. 10.1016/j.clcc.2011.03.010
    1. Scuteri A., Galimberti A., Maggioni D., Ravasi M., Pasini S., Nicolini G., et al. . (2009). Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology 30, 312–319. 10.1016/j.neuro.2009.01.003
    1. Sereno M., Gutierrez-Gutierrez G., Rubio J. M., Apellaniz-Ruiz M., Sanchez-Barroso L., Casado E., et al. . (2017). Genetic polymorphisms of SCN9A are associated with oxaliplatin-induced neuropathy. BMC Cancer 17:63. 10.1186/s12885-016-3031-5
    1. Seretny M., Currie G. L., Sena E. S., Ramnarine S., Grant R., MacLeod M. R., et al. . (2014). Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 155, 2461–2470. 10.1016/j.pain.2014.09.020
    1. Siau C., Bennett G. J. (2006). Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth. Analg. 102, 1485–1490. 10.1213/01.ane.0000204318.35194.ed
    1. Siegal T., Haim N. (1990). Cisplatin-induced peripheral neuropathy. Frequent off-therapy deterioration, demyelinating syndromes, and muscle cramps. Cancer 66, 1117–1123. 10.1002/1097-0142(19900915)66:6<1117::AID-CNCR2820660607>;2-O
    1. Sittl R., Lampert A., Huth T., Schuy E. T., Link A. S., Fleckenstein J., et al. . (2012). Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. Proc. Natl. Acad. Sci. U.S.A. 109, 6704–6709. 10.1073/pnas.1118058109
    1. Slater T. F. (1984). Free-radical mechanisms in tissue injury. Biochem. J. 222, 1–15. 10.1042/bj2220001
    1. Smith E. M. L., Pang H., Cirrincione C., Fleishman S., Paskett E. D., Ahles T., et al. . (2013). Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy a randomized clinical trial. JAMA 309, 1359–1367. 10.1001/jama.2013.2813
    1. Smyth J. F., Bowman A., Perren T., Wilkinson P., Prescott R. J., Quinn K. J., et al. . (1997). Glutathione reduces the toxicity and improves quality of life of women diagnosed with ovarian cancer treated with cisplatin: results of a double-blind, randomised trial. Anna. Oncol. 8, 569–573. 10.1023/A:1008211226339
    1. Song I. S., Savaraj N., Siddik Z. H., Liu P., Wei Y., Wu C. J., et al. . (2004). Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol. Cancer Ther. 3, 1543–1549.
    1. Sprowl J. A., Ciarimboli G., Lancaster C. S., Giovinazzo H., Gibson A. A., Du G. Q., et al. . (2013). Oxaliplatin-induced neurotoxicity is dependent on the organic cation transporter OCT2. Proc. Natl. Acad. Sci. U.S.A. 110, 11199–11204. 10.1073/pnas.1305321110
    1. Stadtman E. R., Moskovitz J., Levine R. L. (2003). Oxidation of methionine residues of proteins: biological consequences. Antioxid. Redox Signal. 5, 577–582. 10.1089/152308603770310239
    1. Strumberg D., Brugge S., Korn M. W., Koeppen S., Ranft J., Scheiber G., et al. . (2002). Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann. Oncol. 13, 229–236. 10.1093/annonc/mdf058
    1. Stubblefield M. D., Vahdat L. T., Balmaceda C. M., Troxel A. B., Hesdorffer C. S., Gooch C. L. (2005). Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin. Oncol. (R. Coll. Radiol). 17, 271–276. 10.1016/j.clon.2004.11.014
    1. Ta L. E., Bieber A. J., Carlton S. M., Loprinzi C. L., Low P. A., Windebank A. J. (2010). Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol. Pain 6:15. 10.1186/1744-8069-6-15
    1. Tanabe Y., Hashimoto K., Shimizu C., Hirakawa A., Harano K., Yunokawa M., et al. . (2013). Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int. J. Clin. Oncol. 18, 132–138. 10.1007/s10147-011-0352-x
    1. Tatsushima Y., Egashira N., Narishige Y., Fukui S., Kawashiri T., Yamauchi Y., et al. . (2013). Calcium channel blockers reduce oxaliplatin-induced acute neuropathy: a retrospective study of 69 male patients receiving modified FOLFOX6 therapy. Biomed. Pharmacother. 67, 39–42. 10.1016/j.biopha.2012.10.006
    1. Tay C. G., Lee V. W., Ong L. C., Goh K. J., Ariffin H., Fong C. Y. (2017). Vincristine-induced peripheral neuropathy in survivors of childhood acute lymphoblastic leukaemia. Pediatr. Blood Cancer. [Epub ahead of print]. 10.1002/pbc.26471
    1. ten Tije A. J., Loos W. J., Zhao M., Baker S. D., Enting R. H., van der Meulen H., et al. . (2004). Limited cerebrospinal fluid penetration of docetaxel. Anticancer. Drugs 15, 715–718. 10.1097/01.cad.0000136882.19552.8f
    1. Tesniere A., Schlemmer F., Boige V., Kepp O., Martins I., Ghiringhelli F., et al. . (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491. 10.1038/onc.2009.356
    1. Thompson S. W., Davis L. E., Kornfeld M., Hilgers R. D., Standefer J. C. (1984). Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer 54, 1269–1275. 10.1002/1097-0142(19841001)54:7<1269::AID-CNCR2820540707>;2-9
    1. Todd R. C., Lippard S. J. (2009). Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291. 10.1039/b907567d
    1. Tofthagen C., McAllister R. D., Visovsky C. (2013). Peripheral neuropathy caused by Paclitaxel and docetaxel: an evaluation and comparison of symptoms. J. Adv. Pract. Oncol. 4, 204–215.
    1. Tomaszewski A., Busselberg D. (2007). Cisplatin modulates voltage gated channel currents of dorsal root ganglion neurons of rats. Neurotoxicology 28, 49–58. 10.1016/j.neuro.2006.07.005
    1. Toopchizadeh V., Barzegar M., Rezamand A., Feiz A. H. (2009). Electrophysiological consequences of vincristine contained chemotherapy in children: a cohort study. J. Pediatr. Neurol. 7, 351–356. 10.3233/JPN-2009-0333
    1. Topp K. S., Tanner K. D., Levine J. D. (2000). Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J. Comp. Neurol. 424, 563–576. 10.1002/1096-9861(20000904)424:4<563::AID-CNE1>;2-U
    1. Vahdat L., Papadopoulos K., Lange D., Leuin S., Kaufman E., Donovan D., et al. . (2001). Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin. Cancer Res. 7, 1192–1197.
    1. Valko M., Morris H., Cronin M. T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12, 1161–1208. 10.2174/0929867053764635
    1. Vanderhoop R. G., Vanderburg M. E. L., Huinink W. W. T., Vanhouwelingen J. C., Neijt J. P. (1990). Incidence of neuropathy in 395 patients with ovarian-cancer treated with or without cisplatin. Cancer 66, 1697–1702. 10.1002/1097-0142(19901015)66:8<1697::AID-CNCR2820660808>;2-G
    1. van Gerven J. M., Moll J. W., van den Bent M. J., Bontenbal M., van der Burg M. E., Verweij J., et al. . (1994). Paclitaxel (Taxol) induces cumulative mild neurotoxicity. Eur. J. Cancer 30A, 1074–1077. 10.1016/0959-8049(94)90459-6
    1. Vilholm O. J., Christensen A. A., Zedan A. H., Itani M. (2014). Drug-induced peripheral neuropathy. Basic Clin. Pharmacol. Toxicol. 115, 185–192. 10.1111/bcpt.12261
    1. von Delius S., Eckel F., Wagenpfeil S., Mayr M., Stock K., Kullmann F., et al. . (2007). Carbamazepine for prevention of oxaliplatin-related neurotoxicity in patients with advanced colorectal cancer: final results of a randomised, controlled, multicenter phase II study. Invest. New Drugs 25, 173–180. 10.1007/s10637-006-9010-y
    1. Wang W. S., Lin J. K., Lin T. C., Chen W. S., Jiang J. K., Wang H. S., et al. . (2007). Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12, 312–319. 10.1634/theoncologist.12-3-312
    1. Wang X. M., Lehky T. J., Brell J. M., Dorsey S. G. (2012). Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59, 3–9. 10.1016/j.cyto.2012.03.027
    1. Warwick R. A., Hanani M. (2013). The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain 17, 571–580. 10.1002/j.1532-2149.2012.00219.x
    1. Weijl N. I., Hopman G. D., Wipkink-Bakker A., Lentjes E. G., Berger H. M., Cleton F. J., et al. . (1998). Cisplatin combination chemotherapy induces a fall in plasma antioxidants of cancer patients. Ann. Oncol. 9, 1331–1337. 10.1023/A:1008407014084
    1. Wen F., Zhou Y., Wang W., Hu Q. C., Liu Y. T., Zhang P. F., et al. . (2013). Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: a meta-analysis. Ann. Oncol. 24, 171–178. 10.1093/annonc/mds211
    1. Westbom C., Thompson J. K., Leggett A., MacPherson M., Beuschel S., Pass H., et al. . (2015). Inflammasome modulation by chemotherapeutics in malignant mesothelioma. PLoS ONE 10:e0145404. 10.1371/journal.pone.0145404
    1. Wilkes G. (2007). Peripheral neuropathy related to chemotherapy. Semin. Oncol. Nurs. 23, 162–173. 10.1016/j.soncn.2007.05.001
    1. Wilson R. H., Lehky T., Thomas R. R., Quinn M. G., Floeter M. K., Grem J. L. (2002). Acute oxaliplatin-induced peripheral nerve hyperexcitability. J. Clin. Oncol. 20, 1767–1774. 10.1200/JCO.2002.07.056
    1. Winer E. P., Berry D. A., Woolf S., Duggan D., Kornblith A., Harris L. N., et al. . (2004). Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: cancer and leukemia group B trial 9342. J. Clin. Oncol. 22, 2061–2068. 10.1200/JCO.2004.08.048
    1. Wozniak K. M., Vornov J. J., Wu Y., Nomoto K., Littlefield B. A., DesJardins C., et al. . (2016). Sustained accumulation of microtubule-binding chemotherapy drugs in the peripheral nervous system: correlations with time course and neurotoxic severity. Cancer Res. 76, 3332–3339. 10.1158/0008-5472.CAN-15-2525
    1. Xu T., Zhang X. L., Ou-Yang H. D., Li Z. Y., Liu C. C., Huang Z. Z., et al. . (2017). Epigenetic upregulation of CXCL12 expression mediates antitubulin chemotherapeutics-induced neuropathic pain. Pain 158, 637–648. 10.1097/j.pain.0000000000000805
    1. Yamamoto K., Chiba N., Chiba T., Kambe T., Abe K., Kawakami K., et al. (2015). Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration. Mol. Pain 11:69 10.1186/s12990-015-0072-8
    1. Yang I. H., Siddique R., Hosmane S., Thakor N., Hoke A. (2009). Compartmentalized microfluidic culture platform to study mechanism of paclitaxel-induced axonal degeneration. Exp. Neurol. 218, 124–128. 10.1016/j.expneurol.2009.04.017
    1. Zhang H., Dougherty P. M. (2014). Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology 120, 1463–1475. 10.1097/ALN.0000000000000176
    1. Zhang H., Li Y., de Carvalho-Barbosa M., Kavelaars A., Heijnen C. J., Albrecht P. J., et al. . (2016). Dorsal root ganglion infiltration by macrophages contributes to paclitaxel chemotherapy-induced peripheral neuropathy. J. Pain 17, 775–786. 10.1016/j.jpain.2016.02.011
    1. Zhang H., Yoon S. Y., Zhang H., Dougherty P. M. (2012). Evidence that spinal astrocytes but not microglia contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J. Pain 13, 293–303. 10.1016/j.jpain.2011.12.002
    1. Zhang L., Dermawan K., Jin M., Liu R., Zheng H., Xu L., et al. . (2008). Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin. Immunol. 129, 219–229. 10.1016/j.clim.2008.07.013
    1. Zheng H., Xiao W. H., Bennett G. J. (2011). Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp. Neurol. 232, 154–161. 10.1016/j.expneurol.2011.08.016
    1. Zhu Y., Liu N., Xiong S. D., Zheng Y. J., Chu Y. W. (2011). CD4+Foxp3+ regulatory T-cell impairment by paclitaxel is independent of toll-like receptor 4. Scand. J. Immunol. 73, 301–308. 10.1111/j.1365-3083.2011.02514.x
    1. Zitvogel L., Apetoh L., Ghiringhelli F., Kroemer G. (2008). Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73. 10.1038/nri2216
    1. Zwelling L. A., Anderson T., Kohn K. W. (1979). DNA-protein and DNA interstrand cross-linking by cis- and trans-platinum(II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res. 39, 365–369.

Source: PubMed

3
Suscribir