Serum melatonin concentration in critically ill patients randomized to sedation or non-sedation

Jakob Oxlund, Torben Knudsen, Thomas Strøm, Jørgen T Lauridsen, Poul J Jennum, Palle Toft, Jakob Oxlund, Torben Knudsen, Thomas Strøm, Jørgen T Lauridsen, Poul J Jennum, Palle Toft

Abstract

Background: Abolished circadian rhythm is associated with altered cognitive function, delirium, and as a result increased mortality in critically ill patients, especially in those who are mechanically ventilated. The causes are multifactorial, of which changes in circadian rhythmicity may play a role. Melatonin plays a crucial role as part of the circadian and sleep/wake cycle. Whether sedation effects circadian regulation is unknown. Hence, the objective of this study was to evaluate the melatonin concentration in critically ill patients randomized to sedation or non-sedation and to investigate the correlation with delirium.

Methods: All patients were included and randomized at the intensive care unit at the hospital of southwest Jutland, Denmark. Seventy-nine patients completed the study (41 sedated and 38 non-sedated). S-melatonin was measured 3 times per day, (03.00, 14.00, and 22.00), for 4 consecutive days in total, starting on the second day upon randomization/intubation. The study was conducted as a sub-study to the NON-SEDA study in which one hundred consecutive patients were randomized to sedation or non-sedation with a daily wake-up call (50 in each arm).

Primary outcome: melatonin concentration in sedated vs. non-sedated patients (analyzed using linear regression). Secondary outcome: risk of developing delirium or non-medically induced (NMI) coma in sedated vs. non-sedated patients, assessed by CAM-ICU (Confusion Assessment Method for the Intensive Care Unit) analyzed using logistic regression.

Results: Melatonin concentration was suppressed in sedated patients compared to the non-sedated. All patients experienced an elevated peak melatonin level early on in the course of their critical illness (p = 0.01). The risk of delirium or coma (NMI) was significantly lower in the non-sedated group (OR 0.42 CI 0.27; 0.66 p < 0.0001). No significant relationship between delirium development and suppressed melatonin concentration was established in this study (OR 1.004 p = 0.29 95% CI 0.997; 1.010).

Conclusion: Melatonin concentration was suppressed in sedated, critically ill patients, when compared to non-sedated controls and the frequency of delirium was elevated in sedated patients. Trail registration Clinicaltrials.gov (NCT01967680) on October 23, 2013.

Keywords: Circadian; Delirium; Melatonin; Non-sedation; Rhythm; Sedation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Consort
Fig. 2
Fig. 2
Mean melatonin concentration throughout the 4-day study period including 95% confidence interval. X axis; day and time of the sample (e.g., 2–14 = day 2 time 14:00). The reference curve is hypothetical and based on the literature, mainly M. Karasek et al. and demonstrates mean concentration of melatonin diurnal variation among healthy individuals in the age group of the study population [5, 12, 19]
Fig. 3
Fig. 3
Mean RASS score throughout the 4-day study period including 95% confidence interval
Fig. 4
Fig. 4
Patients N with positive and negative CAM-ICU test evaluated twice per day. UTE; Unable To Evaluate

References

    1. Dessap AM, Roche-Campo F, Launay JM, Charles-Nelson A, Katsahian S, Brun-Buisson C, Brochard L. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation: an ancillary study of a weaning trial. Chest. 2015;148(5):1231–1241. doi: 10.1378/chest.15-0525.
    1. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, Jr, Inouye SK, Bernard GR, Dittus RS. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–1762. doi: 10.1001/jama.291.14.1753.
    1. Shehabi Y, Riker RR, Bokesch PM, Wisemandle W, Shintani A. Group SS Ely EW Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med. 2010;38(12):2311–2318. doi: 10.1097/CCM.0b013e3181f85759.
    1. Boyko Y, Jennum P, Toft P. Sleep quality and circadian rhythm disruption in the intensive care unit: a review. Nat Sci Sleep. 2017;9:277–284. doi: 10.2147/NSS.S151525.
    1. Gehlbach BK, Chapotot F, Leproult R, Whitmore H, Poston J, Pohlman M, Miller A, Pohlman AS, Nedeltcheva A, Jacobsen JH, et al. Temporal disorganization of circadian rhythmicity and sleep-wake regulation in mechanically ventilated patients receiving continuous intravenous sedation. Sleep. 2012;35(8):1105–1114. doi: 10.5665/sleep.1998.
    1. Olofsson K, Alling C, Lundberg D, Malmros C. Abolished circadian rhythm of melatonin secretion in sedated and artificially ventilated intensive care patients. Acta Anaesthesiol Scand. 2004;48(6):679–684. doi: 10.1111/j.0001-5172.2004.00401.x.
    1. Korompeli A, Muurlink O, Kavrochorianou N, Katsoulas T, Fildissis G, Baltopoulos G. Circadian disruption of ICU patients: a review of pathways, expression, and interventions. J Crit Care. 2017;38:269–277. doi: 10.1016/j.jcrc.2016.12.006.
    1. Kanji S, Mera A, Hutton B, Burry L, Rosenberg E, MacDonald E, Luks V. Pharmacological interventions to improve sleep in hospitalised adults: a systematic review. BMJ Open. 2016;6(7):e012108. doi: 10.1136/bmjopen-2016-012108.
    1. Mundigler G, Delle-Karth G, Koreny M, Zehetgruber M, Steindl-Munda P, Marktl W, Ferti L, Siostrzonek P. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30(3):536–540. doi: 10.1097/00003246-200203000-00007.
    1. Marra A, McGrane TJ, Henson CP, Pandharipande PP. Melatonin in critical care. Crit Care Clin. 2019;35(2):329–340. doi: 10.1016/j.ccc.2018.11.008.
    1. Kurdi MS, Patel T. The role of melatonin in anaesthesia and critical care. Indian J Anaesth. 2013;57(2):137–144. doi: 10.4103/0019-5049.111837.
    1. Benloucif S, Burgess HJ, Klerman EB, Lewy AJ, Middleton B, Murphy PJ, Parry BL, Revell VL. Measuring melatonin in humans. J Clin Sleep Med. 2008;4(1):66–69. doi: 10.5664/jcsm.27083.
    1. Toft P, Olsen HT, Jorgensen HK, Strom T, Nibro HL, Oxlund J, Wian KA, Ytrebo LM, Kroken BA, Chew M. Non-sedation versus sedation with a daily wake-up trial in critically ill patients receiving mechanical ventilation (NONSEDA Trial): study protocol for a randomised controlled trial. Trials. 2014;15:499. doi: 10.1186/1745-6215-15-499.
    1. Olsen HT, Nedergaard HK, Strom T, Oxlund J, Wian KA, Ytrebo LM, Kroken BA, Chew M, Korkmaz S, Lauridsen JT, et al. Nonsedation or light sedation in critically Ill, mechanically ventilated patients. N Engl J Med. 2020;382(12):1103–1111. doi: 10.1056/NEJMoa1906759.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O'Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–1344. doi: 10.1164/rccm.2107138.
    1. Fonsmark L, Hein L, Nibroe H, Bundgaard H, de Haas I, Iversen S, Strom T. Danish national sedation strategy. Targeted therapy of discomfort associated with critical illness. Danish society of intensive care medicine (DSIT) and the Danish Society of Anesthesiology and Intensive Care Medicine (DASAIM) Dan Med J. 2015;62(4):5052.
    1. Kress JP, Pohlman AS, O'Connor MF, Hall JB. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med. 2000;342(20):1471–1477. doi: 10.1056/NEJM200005183422002.
    1. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU) Crit Care Med. 2001;29(7):1370–1379. doi: 10.1097/00003246-200107000-00012.
    1. Karasek M, Winczyk K. Melatonin in humans. J Physiol Pharmacol. 2006;57(Suppl 5):19–39.
    1. Maas MB, Lizza BD, Abbott SM, Liotta EM, Gendy M, Eed J, Naidech AM, Reid KJ, Zee PC. Factors disrupting melatonin secretion rhythms during critical illness. Crit Care Med. 2020;48:854–861. doi: 10.1097/CCM.0000000000004333.
    1. Frisk U, Olsson J, Nylen P, Hahn RG. Low melatonin excretion during mechanical ventilation in the intensive care unit. Clin Sci (Lond) 2004;107(1):47–53. doi: 10.1042/CS20030374.
    1. Reber A, Huber PR, Ummenhofer W, Gurtler CM, Zurschmiede C, Drewe J, Schneider M. General anaesthesia for surgery can influence circulating melatonin during daylight hours. Acta Anaesthesiol Scand. 1998;42(9):1050–1056. doi: 10.1111/j.1399-6576.1998.tb05375.x.
    1. McIntyre IM, Burrows GD, Norman TR. Suppression of plasma melatonin by a single dose of the benzodiazepine alprazolam in humans. Biol Psychiatry. 1988;24(1):108–112. doi: 10.1016/0006-3223(88)90131-X.
    1. Monteleone P, Forziati D, Orazzo C, Maj M. Preliminary observations on the suppression of nocturnal plasma melatonin levels by short-term administration of diazepam in humans. J Pineal Res. 1989;6(3):253–258. doi: 10.1111/j.1600-079X.1989.tb00421.x.
    1. Shilo L, Dagan Y, Smorjik Y, Weinberg U, Dolev S, Komptel B, Balaum H, Shenkman L. Patients in the intensive care unit suffer from severe lack of sleep associated with loss of normal melatonin secretion pattern. Am J Med Sci. 1999;317(5):278–281. doi: 10.1016/S0002-9629(15)40528-2.
    1. Wu JY, Hsu SC, Ku SC, Ho CC, Yu CJ, Yang PC. Adrenal insufficiency in prolonged critical illness. Crit Care. 2008;12(3):R65. doi: 10.1186/cc6895.
    1. Mistraletti G, Donatelli F, Carli F. Metabolic and endocrine effects of sedative agents. Curr Opin Crit Care. 2005;11(4):312–317. doi: 10.1097/01.ccx.0000166397.50517.1f.
    1. Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, Dahan A, Meijer JH. The opioid fentanyl affects light input, electrical activity and Per gene expression in the hamster suprachiasmatic nuclei. Eur J Neurosci. 2005;21(11):2958–2966. doi: 10.1111/j.1460-9568.2005.04131.x.
    1. Ruokonen E, Takala J. Dangers of growth hormone therapy in critically ill patients. Ann Med. 2000;32(5):317–322. doi: 10.3109/07853890008995933.
    1. Maestroni GJ. The immunoneuroendocrine role of melatonin. J Pineal Res. 1993;14(1):1–10. doi: 10.1111/j.1600-079X.1993.tb00478.x.
    1. Brzozowski T, Konturek PC, Konturek SJ, Pajdo R, Bielanski W, Brzozowska I, Stachura J, Hahn EG. The role of melatonin and L-tryptophan in prevention of acute gastric lesions induced by stress, ethanol, ischemia, and aspirin. J Pineal Res. 1997;23(2):79–89. doi: 10.1111/j.1600-079X.1997.tb00339.x.
    1. Maestroni GJ. Melatonin as a therapeutic agent in experimental endotoxic shock. J Pineal Res. 1996;20(2):84–89. doi: 10.1111/j.1600-079X.1996.tb00244.x.
    1. Dominguez-Rodriguez A. Melatonin in cardiovascular disease. Expert Opin Investig Drugs. 2012;21(11):1593–1596. doi: 10.1517/13543784.2012.716037.

Source: PubMed

3
Suscribir