Effect of sevoflurane on systemic and cerebral circulation, cerebral autoregulation and CO2 reactivity

Marianna Juhász, Levente Molnár, Béla Fülesdi, Tamás Végh, Dénes Páll, Csilla Molnár, Marianna Juhász, Levente Molnár, Béla Fülesdi, Tamás Végh, Dénes Páll, Csilla Molnár

Abstract

Background: Sevoflurane is one of the most frequently used inhaled anesthetics for general anesthesia. Previously it has been reported that at clinically used doses of sevoflurane, cerebral vasoreactivity is maintained. However, there are no data how sevoflurane influences systemic and cerebral circulation in parallel. The aim of our study was to assess systemic and cerebral hemodynamic changes as well as cerebral CO2-reactivity during sevoflurane anesthesia.

Methods: Twenty nine patients undergoing general anesthesia were enrolled. Anesthesia was maintained with 1 MAC sevoflurane in 40% oxygen. Ventilatory settings (respiratory rate and tidal volume) were adjusted to reach and maintain 40, 35 and 30 mmHg EtCO2 for 5 min respectively. At the end of each period, transcranial Doppler and hemodynamic parameters using applanation tonometry were recorded.

Results: Systemic mean arterial pressure significantly decreased during anesthetic induction and remained unchanged during the entire study period. Central aortic and peripherial pulse pressure and augmentation index as markers of arterial stiffness significantly increased during the anesthetic induction and remained stable at the time points when target CO2 levels were reached. Both cerebral autoregulation and cerebral CO2-reactivity was maintained at 1 MAC sevoflurane.

Discussion: Cerebral autoregulation and CO2-reactivity is preserved at 1 MAC sevoflurane. Cerebrovascular effects of anesthetic compounds have to be assessed together with systemic circulatory effects.

Trial registration: The study was registered at http://www.clinicaltrials.gov , identifier: NCT02054143, retrospectively registered. Date of registration: February 4, 2014.

Keywords: CO2-reactivity, applanation tonometry; Cerebral blood flow, cerebral autoregulation; Sevoflurane; Transcranial Doppler.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of the study
Fig. 2
Fig. 2
Applanation tonometry parameters at rest and during the course of the study. Medians and CI values are shown. * indicates p < 0.05 difference as compared to steady state values
Fig. 3
Fig. 3
Changes of middle cerebral artery mean blood flow velocity (MCAV) during the course of the study. Medians and CI values are shown. ** indicates p < 0.01, *** indicates p < 0.001 differences as compared to steady state values
Fig. 4
Fig. 4
Changes of pulsatility index during the course of the study. Medians and CI values are shown. * indicates p < 0.05, *** indicates p < 0.001 differences as compared to steady state values
Fig. 5
Fig. 5
Relationship between the %change of mean arterial pressure (MAP) and middle cerebral artery mean blood flow velocity (MCAV) after anesthetic induction and reaching the steady state
Fig. 6
Fig. 6
The proposed mechanism of action of anesthetics on cerebral blood flow regulation

References

    1. Settakis G, Molnár C, Kerényi L, Kollár J, Legemate D, Csiba L, Fülesdi B. Acetazolamide as a vasodilatory stimulus in cerebrovascular diseases and in conditions affecting the cerebral vasculature. Eur J Neurol. 2003;10(6):609–620. doi: 10.1046/j.1468-1331.2003.00675.x.
    1. Nishiyama T, Matsukawa T, Yokoyama T, Hanaoka K. Cerebrovascular carbon dioxide reactivity during general anesthesia: a comparison between sevoflurane and isoflurane. Anesth Analg. 1999;89:1437–1441.
    1. Dagal A, Lam AM. Cerebral autoregulation and anesthesia. Curr Opin Anaesthesiol. 2009;22:547–552. doi: 10.1097/ACO.0b013e32833020be.
    1. Mariappan R, Mehta J, Chui J, Manninen P, Venkatraghavan L. Cerebrovascular reactivity to carbon dioxide under anesthesia: a qualitative systematic review. J Neurosurg Anesthesiol. 2015;27(2):123–135. doi: 10.1097/ANA.0000000000000092.
    1. Goettel N, Patet C, Rossi A, Burkhart CS, Czosnyka M, Strebel SP, Steiner LA. Monitoring of cerebral blood flow autoregulation in adults undergoing sevoflurane anesthesia: a prospective cohort study of two age groups. J Clin Monit Comput. 2016;30:255–264. doi: 10.1007/s10877-015-9754-z.
    1. Sárkány P, Lengyel S, Nemes R, Orosz L, Páll D, Molnár C, Fülesdi B. Non-invasive pulse wave analysis for monitoring the cardiovascular effects of CO2 pneumoperitoneum during laparoscopic cholecystectomy--a prospective case-series study. BMC Anesthesiol. 2014;14:98. doi: 10.1186/1471-2253-14-98.
    1. Settakis G, Lengyel A, Molnár C, Bereczki D, Csiba L, Fülesdi B. Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests. J Neuroimaging. 2002;12:252–258. doi: 10.1111/j.1552-6569.2002.tb00129.x.
    1. Kadoi Y, Takahashi K, Saito S, Goto F. The comparative effects of sevoflurane versus isoflurane on cerebrovascular carbon dioxide reactivity in patients with diabetes mellitus. Anesth Analg. 2006;103:168–172. doi: 10.1213/01.ane.0000221188.09510.75.
    1. Matta BF, Heath KJ, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology. 1999;91:677–680. doi: 10.1097/00000542-199909000-00019.
    1. Ebert TJ, Harkin CP, Muzi M. Cardiovascular responses to sevoflurane: a review. Anesth Analg. 1995;81(6):S11–S22. doi: 10.1097/00000539-199512001-00003.
    1. Fülesdi B, Limburg M, Bereczki D, Michels RP, Neuwirth G, Legemate D, Valikovics A, Csiba L. Impairment of cerebrovascular reactivity in long-term type 1 diabetes. Diabetes. 1997;46:1840–1845. doi: 10.2337/diab.46.11.1840.
    1. Páll D, Lengyel S, Komonyi E, Molnár C, Paragh G, Fülesdi B, Katona E. Impaired cerebral vasoreactivity in white coat hypertensive adolescents. Eur J Neurol. 2011;18:584–589. doi: 10.1111/j.1468-1331.2010.03209.x.
    1. Settakis G, Páll D, Molnár C, Bereczki D, Csiba L, Fülesdi B. Cerebrovascular reactivity in hypertensive and healthy adolescents: TCD with vasodilatory challenge. J Neuroimaging. 2003;13:106–112. doi: 10.1111/j.1552-6569.2003.tb00166.x.
    1. Siró P, Molnár C, Katona É, Antek C, Kollár J, Settakis G, Fülesdi B. Carotid intima-media thickness and cerebrovascular reactivity in long-term type 1 diabetes mellitus. J Clin Ultrasound. 2009;37:451–456. doi: 10.1002/jcu.20617.
    1. Molnár C, Settakis G, Sárkány P, Kálmán S, Szabó S, Fülesdi B. Effect of sevoflurane on cerebral blood flow and cerebrovascular resistance at surgical level of anaesthesia: a transcranial Doppler study. Eur J Anaesthesiol. 2007;24:179–184. doi: 10.1017/S0265021506001335.
    1. Gupta S, Heath K, Matta BF. Effect of incremental doses of sevoflurane on cerebral pressure autoregulation in humans. Br J Anaesth. 1997;79:469–472. doi: 10.1093/bja/79.4.469.
    1. Summors AC, Gupta AK, Matta BF. Dynamic cerebral autoreg ulation during sevoflurane anesthesia: a comparison with isoflurane. Anesth Analg. 1999;88:341–345.
    1. Sperna Weiland NH, Hermanides J, van der Ster BJP, Hollmann MW, Preckel B, Stok WJ, van Lieshout JJ, Immink RV. Sevoflurane based anaesthesia does not affect already impaired cerebral autoregulation in patients with type 2 diabetes mellitus. Br J Anaesth. 2018;121:1298–1307. doi: 10.1016/j.bja.2018.07.037.

Source: PubMed

3
Suscribir