Impact of Vitamin D Supplementation on Multiple Sclerosis

Fenil Gandhi, Sharan Jhaveri, Chaithanya Avanthika, Abhishek Singh, Nidhi Jain, Azouba Gulraiz, Pratiksha Shah, Fareeha Nasir, Fenil Gandhi, Sharan Jhaveri, Chaithanya Avanthika, Abhishek Singh, Nidhi Jain, Azouba Gulraiz, Pratiksha Shah, Fareeha Nasir

Abstract

Multiple sclerosis (MS) is an autoimmune disease affecting a large number of people every year. The exact causal factor for this disease is unclear, but it commonly affects middle-aged women, with known triggers like stress, childbirth, infections, poor diet, lack of sleep, etc. Many epidemiological studies have indicated that various genetic abnormalities are also critical drivers of the onset of MS. The major risk factors of MS identified include hypovitaminosis D while environmental protective factors include allele HLA DRB1 1501, obesity, Epstein-Barr virus infection, sexual hormones, and smoking. Our article explores the correlation between the deficiency of vitamin D and the onset and progression of MS. The study uses a systematic review methodology by researching and reviewing scholarly articles exploring the topic. We conducted online searches of literature on Google Scholar and PubMed using the keywords "vitamin D deficiency" and "multiple sclerosis" and accessed the relevant secondary literature sources for review. The variables under study included vitamin D insufficiency as the dependent variable while MS was the independent variable. Causal variables included environmental, genetic, and protective factors. We hypothesized that there is indeed a correlation between vitamin D deficiency and MS. The findings from our review indicate a strong correlation between the insufficiency of vitamin D and the onset and progression of MS. These results are essential in devising interventions to accomplish primary and secondary prevention of MS, as well as integrating vitamin D supplementation in current treatment protocols for MS.

Keywords: chronic illness; general internal medicine; internal medicine; multiple sclerosis; neurology and systemic disease; public awareness of vitamin d; relapsing-remitting multiple sclerosis; relationship between diseases and nutrition; vitamin d supplementation.

Conflict of interest statement

The authors have declared that no competing interests exist.

Copyright © 2021, Gandhi et al.

References

    1. Vitamin D intake and incidence of multiple sclerosis. Munger KL, Zhang SM, O'Reilly E, Hernán MA, Olek MJ, Willett WC, Ascherio A. Neurology. 2004;62:60–65.
    1. Vitamin D status and the risk of multiple sclerosis: a systematic review and meta-analysis. Duan S, Lv Z, Fan X, Wang L, Han F, Wang H, Bi S. Neurosci Lett. 2014;570:108–113.
    1. Relationship between 25-OH-D serum level and relapse rate in multiple sclerosis patients before and after vitamin D supplementation. Pierrot-Deseilligny C, Rivaud-Péchoux S, Clerson P, de Paz R, Souberbielle JC. Ther Adv Neurol Disord. 2012;5:187–198.
    1. Influence of diet in multiple sclerosis: a systematic review. Bagur MJ, Murcia MA, Jiménez-Monreal AM, Tur JA, Bibiloni MM, Alonso GL, Martínez-Tomé M. Adv Nutr. 2017;8:463–472.
    1. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Friese MA, Schattling B, Fugger L. . Nat Rev Neurol. 2014;10:225–238.
    1. Latitude, sun exposure and vitamin D supplementation: associations with quality of life and disease outcomes in a large international cohort of people with multiple sclerosis. Jelinek GA, Marck CH, Weiland TJ, Pereira N, van der Meer DM, Hadgkiss EJ. . BMC Neurol. 2015;15:132.
    1. Vitamin D and multiple sclerosis: an update. Pierrot-Deseilligny C, Souberbielle JC. Mult Scler Relat Disord. 2017;14:35–45.
    1. Ultraviolet radiation, vitamin D and multiple sclerosis. Lucas RM, Byrne SN, Correale J, Ilschner S, Hart PH. Neurodegener Dis Manag. 2015;5:413–424.
    1. Number of people with MS. 2013
    1. Atlas of Multiple Sclerosis 2013: a growing global problem with widespread inequity. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ. Neurology. 2014;83:1022–1024.
    1. Multiple sclerosis epidemiology in Middle East and North Africa: a systematic review and meta-analysis. Heydarpour P, Khoshkish S, Abtahi S, Moradi-Lakeh M, Sahraian MA. Neuroepidemiology. 2015;44:232–244.
    1. The accuracy of prevalence rates of multiple sclerosis: a critical review. Poser CM, Brinar VV. Neuroepidemiology. 2007;29:150–155.
    1. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. Simpson S Jr, Blizzard L, Otahal P, Van der Mei I, Taylor B. J Neurol Neurosurg Psychiatry. 2011;82:1132–1141.
    1. MS epidemiology world wide. One view of current status. Kurtzke JF. Acta Neurol Scand Suppl. 1995;161:23–33.
    1. Regional variations in the prevalence of multiple sclerosis in French farmers. Vukusic S, Van Bockstael V, Gosselin S, Confavreux C. J Neurol Neurosurg Psychiatry. 2007;78:707–709.
    1. Argentine Patagonia: prevalence and clinical features of multiple sclerosis. Melcon MO, Gold L, Carrá A, et al. Mult Scler. 2008;14:656–662.
    1. Prevalence of multiple sclerosis in Canada: a systematic review. Poppe AY, Wolfson C, Zhu B. Can J Neurol Sci. 2008;35:593–601.
    1. The changing demographic pattern of multiple sclerosis epidemiology. Koch-Henriksen N, Sørensen PS. Lancet Neurol. 2010;9:520–532.
    1. Multiple Sclerosis in Rural Norway. Swank R, Lerstad O, Strøm A, Backer J. N Engl J Med. 1952;246:721–728.
    1. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Orton SM, Herrera BM, Yee IM, et al. Lancet Neurol. 2006;5:932–936.
    1. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Beecham AH, Patsopoulos NA, Xifara DK, et al. Nat Genet. 2013;45:1353–1360.
    1. Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I. Lancet Neurol. 2015;14:263–273.
    1. Multiple sclerosis. Compston A, Coles A. Lancet. 2008;372:1502–1517.
    1. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Sawcer S, Hellenthal G, Pirinen M, et al. Nature. 2011;476:214–219.
    1. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Hemmer B, Kerschensteiner M, Korn T. Lancet Neurol. 2015;14:406–419.
    1. Innate immune activation in neurodegenerative disease. Heneka MT, Kummer MP, Latz E. Nat Rev Immunol. 2014;14:463–477.
    1. Immunopathology of multiple sclerosis. Dendrou CA, Fugger L, Friese MA. Nat Rev Immunol. 2015;15:545–558.
    1. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Fischer MT, Sharma R, Lim JL, et al. Brain. 2012;135:886–899.
    1. Optic neuritis: a mechanistic view. Burton EV, Greenberg BM, Frohman EM. Pathophysiology. 2011;18:81–92.
    1. Membranes, myelin, and the pathophysiology of multiple sclerosis. Waxman SG. N Engl J Med. 1982;306:1529–1533.
    1. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A. JAMA. 2006;296:2832–2838.
    1. Vitamin D status during pregnancy and risk of multiple sclerosis in offspring of women in the Finnish Maternity Cohort. Munger KL, Åivo J, Hongell K, Soilu-Hänninen M, Surcel HM, Ascherio A. JAMA Neurol. 2016;73:515–519.
    1. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Gianfrancesco MA, Stridh P, Rhead B, et al. Neurology. 2017;88:1623–1629.
    1. Neonatal vitamin D status and risk of multiple sclerosis. Ueda P, Rafatnia F, Bäärnhielm M, et al. Ann Neurol. 2014;76:338–346.
    1. Regulation of the extrarenal CYP27B1-hydroxylase. Adams JS, Rafison B, Witzel S, et al. J Steroid Biochem Mol Biol. 2014;144 Pt A:22–27.
    1. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. Adams JS, Ren S, Liu PT, et al. J Immunol. 2009;182:4289–4295.
    1. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Liu PT, Stenger S, Li H, et al. Science. 2006;311:1770–1773.
    1. Vitamin D, invariant natural killer T-cells and experimental autoimmune disease. Cantorna MT, Zhao J, Yang L. Proc Nutr Soc. 2012;71:62–66.
    1. Vitamin D status indicators in indigenous populations in East Africa. Luxwolda MF, Kuipers RS, Kema IP, van der Veer E, Dijck-Brouwer DA, Muskiet FA. Eur J Nutr. 2013;52:1115–1125.
    1. Sunlight and Vitamin D. A global perspective for health. Wacker M, Holick MF. Dermatoendocrinol. 2013;5:51–108.
    1. Vitamin D: a new promising therapy for congenital ichthyosis. Sethuraman G, Marwaha RK, Challa A, Yenamandra VK, Ramakrishnan L, Thulkar S, Sharma VK. Pediatrics. 2016;137:0.
    1. Immunomodulatory role of vitamin D: a review. Skrobot A, Demkow U, Wachowska M. Adv Exp Med Biol. 2018;1108:13–23.
    1. Multiple sclerosis and vitamin D: an update. VanAmerongen BM, Dijkstra CD, Lips P, Polman CH. Eur J Clin Nutr. 2004;58:1095–1109.
    1. Axonal damage in multiple sclerosis. Haines JD, Inglese M, Casaccia P. Mt Sinai J Med. 2011;78:231–243.
    1. Multiple sclerosis: pathogenesis, symptoms, diagnoses and cell-based therapy. Ghasemi N, Razavi S, Nikzad E. Cell J. 2017;19:1–10.
    1. HLA-DRB1*15 association with multiple sclerosis is confirmed in a multigenerational Italian family. Mosca L, Mantero V, Penco S, et al. Funct Neurol. 2017;32:83–88.
    1. Vitamin D responsive elements within the HLA-DRB1 promoter region in Sardinian multiple sclerosis associated alleles. Cocco E, Meloni A, Murru MR, et al. PLoS One. 2012;7:0.
    1. Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1*1501 is regulated by vitamin D. Ramagopalan SV, Maugeri NJ, Handunnetthi L, et al. PLoS Genet. 2009;5:0.
    1. Vitamin D for the treatment of multiple sclerosis: a meta-analysis. McLaughlin L, Clarke L, Khalilidehkordi E, Butzkueven H, Taylor B, Broadley SA. J Neurol. 2018;265:2893–2905.
    1. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Finamor DC, Sinigaglia-Coimbra R, Neves LC, et al. Dermatoendocrinol. 2013;5:222–234.
    1. Immunologic effects of vitamin D on human health and disease. Charoenngam N, Holick MF. Nutrients. 2020;12:2097.
    1. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Thompson AJ, Banwell BL, Barkhof F, et al. Lancet Neurol. 2018;17:162–173.
    1. Olek MJ, González-Scarano F, Dashe JF. Waltham, MA: UpToDate; 2017. Diagnosis of Multiple Sclerosis in Adults.
    1. Biller J. Philadelphia, Pennsylvania: Lippincott Williams & Wilkins; 2012. Practical Neurology.
    1. Cerebrospinal fluid in multiple sclerosis. Rammohan KW. Ann Indian Acad Neurol. 2009;12:246–253.
    1. Oligoclonal band number as a marker for prognosis in multiple sclerosis. Avasarala JR, Cross AH, Trotter JL. Arch Neurol. 2001;58:2044–2045.
    1. ACTH: the forgotten therapy. Montero-Melendez T. Semin Immunol. 2015;27:216–226.
    1. Defining the clinical course of multiple sclerosis. The 2013 revisions. Lublin FD, Reingold SC, Cohen JA, et al. Neurology. 2014;83:278–286.
    1. Treatment of multiple sclerosis: a review. Hauser SL, Cree BA. Am J Med. 2020;133:1380–1390.
    1. Vitamin D increases glucocorticoid efficacy via inhibition of mTORC1 in experimental models of multiple sclerosis. Hoepner R, Bagnoud M, Pistor M, et al. Acta Neuropathol. 2019;138:443–456.
    1. Vitamin D enhances responses to interferon-β in MS. Feng X, Wang Z, Howlett-Prieto Q, Einhorn N, Causevic S, Reder AT. Neurol Neuroimmunol Neuroinflamm. 2019;6:0.
    1. Vitamin D as an early predictor of multiple sclerosis activity and progression. Ascherio A, Munger KL, White R, et al. JAMA Neurol. 2014;71:306–314.
    1. Effect of vitamin D supplements on relapse rate and Expanded Disability Status Scale (EDSS) in multiple sclerosis (MS): a systematic review and meta-analysis. Hanaei S, Sahraian MA, Mohammadifar M, Ramagopalan SV, Ghajarzadeh M. Int J Prev Med. 2021;12:42.
    1. Metabolic alterations in multiple sclerosis and the impact of vitamin D supplementation. Bhargava P, Fitzgerald KC, Calabresi PA, Mowry EM. JCI Insight. 2017;211:975–985.
    1. Vitamin D receptor-retinoid X receptor heterodimer signaling regulates oligodendrocyte progenitor cell differentiation. de la Fuente AG, Errea O, van Wijngaarden P, et al. . J Cell Biol. 2015;211:975–985.
    1. An update on vitamin D and disease activity in multiple sclerosis. Smolders J, Torkildsen Ø, Camu W, Holmøy T. . CNS Drugs. 2019;33:1187–1199.
    1. Self-reported use of vitamin D supplements is associated with higher physical quality of life scores in multiple sclerosis. Simpson-Yap S, Jelinek P, Weiland T, Nag N, Neate S, Jelinek G. Mult Scler Relat Disord. 2021;49:102760.
    1. Effectiveness of vitamin D supplementation in the management of multiple sclerosis: a systematic review. Berezowska M, Coe S, Dawes H. Int J Mol Sci. 2019;20:1301.
    1. Vitamin D in clinically isolated syndrome: evidence for possible neuroprotection. Mowry EM, Pelletier D, Gao Z, Howell MD, Zamvil SS, Waubant E. Eur J Neurol. 2016;23:327–332.
    1. Safety and immunologic effects of high- vs low-dose cholecalciferol in multiple sclerosis. Sotirchos ES, Bhargava P, Eckstein C, et al. Neurology. 2016;86:382–390.
    1. How much vitamin D is too much? A case report and review of the literature. De Vincentis S, Russo A, Milazzo M, et al. Endocr Metab Immune Disord Drug Targets. 2020;[Epub ahead of print]
    1. Vitamin d toxicity-a clinical perspective. Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P, Jones G. Front Endocrinol (Lausanne) 2018;9:550.

Source: PubMed

3
Suscribir