Strong inhibition of celastrol towards UDP-glucuronosyl transferase (UGT) 1A6 and 2B7 indicating potential risk of UGT-based herb-drug interaction

Yong-Sheng Zhang, Yan-Yang Tu, Xing-Chun Gao, Jun Yuan, Gang Li, Liang Wang, Jian-Ping Deng, Qi Wang, Ru-Meng Ma, Yong-Sheng Zhang, Yan-Yang Tu, Xing-Chun Gao, Jun Yuan, Gang Li, Liang Wang, Jian-Ping Deng, Qi Wang, Ru-Meng Ma

Abstract

Celastrol, a quinone methide triterpene isolated from Tripterygium wilfordii Hook F., has various biochemical and pharmacological activities, and is now being developed as a promising anti-tumor agent. Inhibitory activity of compounds towards UDP-glucuronosyltransferase (UGT) is an important cause of clinical drug-drug interactions and herb-drug interactions. The aim of the present study is to investigate the inhibition of celastrol towards two important UDP-glucuronosyltransferase (UGT) isoforms UGT1A6 and UGT2B7. Recombinant UGT isoforms and non-specific substrate 4-methylumbelliferone (4-MU) were used. The results showed that celastrol strongly inhibited the UGT1A6 and 2B7-mediated 4-MU glucuronidation reaction, with 0.9 ± 0.1% and 1.8 ± 0.2% residual 4-MU glucuronidation activity at 100 μM of celastrol, respectively. Furthermore, inhibition kinetic study (Dixon plot and Lineweaver-Burk plot) demonstrated that celastrol noncompetitively inhibited the UGT1A1-mediated 4-MU glucuronidation, and competitively inhibited UGT2B7-catalyzed 4-MU glucuronidation. The inhibition kinetic parameters (Ki) were calculated to be 0.49 μM and 0.045 μM for UGT1A6 and UGT2B7, respectively. At the therapeutic concentration of celastrol for anti-tumor utilization, the possibility of celastrol-drug interaction and celastrol-containing herbs-drug interaction were strongly indicated. However, given the complicated nature of herbs, these results should be viewed with more caution.

Figures

Figure 1
Figure 1
The structure of celastrol.
Figure 2
Figure 2
Initial screening of the inhibition of celastrol (100 μM) towards UGT1A6 and 2B7-mediated 4-MU glucuronidation. The experiment was performed in duplicate.
Figure 3
Figure 3
Inhibition kinetic analysis of celastrol (Cela) towards UGT1A6-catalyzed 4-MU glucuronidation. (A) Dixon plot of Cela’s inhibition towards UGT1A6-catalyzed 4-MU glucuronidation. (B) Lineweaver-Burk plot of Cela’s inhibition towards UGT1A6-catalyzed 4-MU glucuronidation. (C) Second plot using slope (obtained from Lineweaver-Burk plot) vs. the concentration of Cela.
Figure 4
Figure 4
Inhibition kinetic analysis of celastrol (Cela) towards UGT2B7-catalyzed 4-MU glucuronidation. (A) Dixon plot of Cela’s inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. (B) Lineweaver-Burk plot of Cela’s inhibition towards UGT2B7-catalyzed 4-MU glucuronidation. (C) Second plot using slope (obtained from Lineweaver-Burk plot) vs. the concentration of cela.

References

    1. Setty A.R., Sigal L.H. Herbal medications commonly used in the practice of rheumatology: Mechanisms of action, efficacy, and side effects. Semin. Arthritis Rheum. 2005;34:773–784. doi: 10.1016/j.semarthrit.2005.01.011.
    1. Zhu H., Liu X.W., Cai T.Y., Cao J., Tu C.X., Lu W., He Q.J., Yang B. Celastrol acts as a potent antimetastatic agent targeting β1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway. J. Pharmacol. Exp. Ther. 2010;334:489–499. doi: 10.1124/jpet.110.165654.
    1. Tao X., Younger J., Fan F.Z., Wang B., Lipsky P.E. Benefit of an extract of Tripterygium wilfordii Hook F in patients with rheumatoid arthritis: A double-blind, placebocontrolled study. Arthritis Rheum. 2002;46:735–743. doi: 10.1002/art.10112.
    1. Pinna G.F., Fiorucci M., Reimund J.M., Taquet N., Arondel Y., Muller C.D. Celastrol inhibits pro-inflammatory cytokine secretion in Crohn’s disease biopsies. Biochem. Biophys. Res. Commun. 2004;322:778–786. doi: 10.1016/j.bbrc.2004.07.186.
    1. Cleren C., Calingasan N.Y., Chen J., Beal M.F. Celastrol protects against MPTP- and 3-nitropropionic acidinduced neurotoxicity. J. Neurochem. 2005;94:995–1004. doi: 10.1111/j.1471-4159.2005.03253.x.
    1. Allison A.C., Cacabelos R., Lombardi V.R., Alvarez X.A., Vigo C. Celastrol, a potent antioxidant and antiinflammatory drug, as a possible treatment for Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2001;25:1341–1357. doi: 10.1016/S0278-5846(01)00192-0.
    1. Huang Y.L., Zhou Y.X., Fan K.S., Zhou D. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing VEGFR expression. Cancer Lett. 2008;264:101–106. doi: 10.1016/j.canlet.2008.01.043.
    1. Dai Y., DeSano J., Tang W.H., Meng X.J., Meng Y., Burstein E., Lawrence T.S., Xu L.A. Natural proteasome inhibitor celastrol suppresses androgen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB. PLoS One. 2010;5:e14153.
    1. Zhou S., Koh H.L., Gao Y., Gong Z.Y., Lee E.J. Bioactivation of herbal constituents: Simple alerts in the complex system. Life Sci. 2004;74:935–968. doi: 10.1016/j.lfs.2003.09.035.
    1. Lin J.H., Lu A.Y.H. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 1997;49:403–449.
    1. Hao M., Zhao Y., Chen P., Huang H., Liu H., Jiang H., Zhang R., Wang H. Structure-activity relationship and substrate-dependent phenomena in effects of ginsenosides on activities of drug-metabolizing P450 enzymes. PLoS One. 2008;3:e2697.
    1. Fang Z.Z., Zhang Y.Y., Ge G.B., Liang S.C., Sun D.X., Zhu L.L., Dong P.P., Cao Y.F., Yang L. Identification of cytochrome P450 (CYP) isoforms involved in metabolism of corynoline and assessment of its herb-drug interaction. Phytother. Res. 2011;25:256–263.
    1. Sun D.X., Fang Z.Z., Zhang Y.Y., Cao Y.F., Yang L., Yin J. Inhibitory effects of curcumenol on human liver cytochrome P450 enzymes. Phytother. Res. 2010;24:1213–1216.
    1. Quintieri L., Palatini P., Moro S., Floreani M. Inhibition of cytochrome P450 2C8-mediated drug metabolism by the flavonoid diosmetin. Drug Metab. Pharmacokinet. 2011;26:559–568.
    1. Miners J.O., Mackenzie P.I. Drug glucuronidation in human. Pharmacol. Ther. 1991;51:347–369. doi: 10.1016/0163-7258(91)90065-T.
    1. Kiang T.K., Ensom M.H., Chang T.K. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther. 2005;106:97–132. doi: 10.1016/j.pharmthera.2004.10.013.
    1. Ritter J.K. Roles of glucuronidation and UDP—glucuronosyltransferasesin xenobiotic bioactivation reactions. Chem. Biol. Interact. 2000;129:171–193. doi: 10.1016/S0009-2797(00)00198-8.
    1. Tukey R.H., Strassburg C.P. Human UDP-glucuronosyltransferases:metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000;40:581–616. doi: 10.1146/annurev.pharmtox.40.1.581.
    1. Dong R.H., Fang Z.Z., Zhu L.L., Liang S.C., Ge G.B., Yang L., Liu Z.Y. Investigation of UDP-glucuronosyltransferases (UGT) inhibitory properties of carvacrol. Phytother. Res. 2012;26:86–90. doi: 10.1002/ptr.3525.
    1. Tsoutsikos P., Miners J.O., Stapleton A., Thomas A., Sallustio B.C., Knights K.M. Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7. Biochem. Pharmacol. 2010;65:919–921.
    1. Nishimura Y., Maeda S., Ikushiro S., Mackenzie P.I., Ishii Y., Yamada H. Inhibitory effects of adenine nucleotides and related substances on UDP-glucuronosyltransferase: structure-effect relationships and evidence for an allosteric mechanism. Biochim. Biophys. Acta. 2007;1770:1557–1566. doi: 10.1016/j.bbagen.2007.07.011.
    1. Bock K.W., Wiltfang J., Blume R., Ullrich D., Bircher J. Paracetamol as a test drug to determine glucuronide formation in man. Effects of inducers and of smoking. Eur. J. Clin. Pharmacol. 1987;31:677–683. doi: 10.1007/BF00541295.
    1. Krishnaswamy S., Duan S.X., von Moltke L.L., Greenblatt D.J., Sudmeier J.L., Bachovchin W.W., Court M.H. Serotonin (5-hydroxytryptamine) glucuronidation in vitro: Assay development, human liver microsome activities and species differences. Xenobiotica. 2003;33:169–180. doi: 10.1080/0049825021000048809.
    1. Krishnaswamy S., Duan S.X., von Moltke L.L., Court M.H. Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug. Metab. Dispos. 2003;31:133–139. doi: 10.1124/dmd.31.1.133.
    1. Uchaipichat V., Mackenzie P.I., Guo X.H., Gardner-Stephen D., Galetin A., Houston J.B., Miners J.O. Human UDP- glucuronosyltransferases: Isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug. Metab. Dispos. 2004;32:413–423. doi: 10.1124/dmd.32.4.413.
    1. Du W., Huang H. Correlation analysis of secondary metabolites and environmental factors in Tripterygium wilfordii. Acta Bot. Sin. 2008;25:707–713.

Source: PubMed

3
Suscribir