Methodology and preliminary data on feasibility of a neurofeedback protocol to improve visual attention to letters in mild Alzheimer's disease

Deirdre Galvin-McLaughlin, Daniel Klee, Tab Memmott, Betts Peters, Jack Wiedrick, Melanie Fried-Oken, Barry Oken, Consortium for Accessible Multimodal Brain-Body Interfaces (CAMBI), Deniz Erdogmus, David Smith, Steven Bedrick, Brandon Eddy, Michelle Kinsella, Matthew Lawhead, Aziz Kocanaogullari, Shiran Dudy, Deirdre Galvin-McLaughlin, Daniel Klee, Tab Memmott, Betts Peters, Jack Wiedrick, Melanie Fried-Oken, Barry Oken, Consortium for Accessible Multimodal Brain-Body Interfaces (CAMBI), Deniz Erdogmus, David Smith, Steven Bedrick, Brandon Eddy, Michelle Kinsella, Matthew Lawhead, Aziz Kocanaogullari, Shiran Dudy

Abstract

Background: Brain-computer interface (BCI) systems are controlled by users through neurophysiological input for a variety of applications, including communication, environmental control, and motor rehabilitation. Although individuals with severe speech and physical impairment are the primary users of this technology, BCIs have emerged as a potential tool for broader populations, including delivering cognitive training/interventions with neurofeedback (NFB).

Methods: This paper describes the development and preliminary testing of a protocol for use of a BCI system with NFB as an intervention for people with mild Alzheimer's disease (AD). The intervention focused on training visual attention and language skills, as AD is often associated with functional impairments in both. This funded pilot study called for enrolling five participants with mild AD in a six-week BCI EEG-based NFB intervention that followed a four-to-seven-week baseline phase. While two participants completed the study, the remaining three participants could not complete the intervention phase because of COVID-19 restrictions.

Results: Preliminary pilot results suggested: (1) participants with mild AD were able to participate in a study with multiple assessments per week and complete all outcome measures, (2) most outcome measures were reliable during the baseline phase, and (3) all participants with mild AD learned to operate a BCI spelling system with training.

Conclusions: Although preliminary results demonstrate practical feasibility to deliver NFB intervention using a BCI to adults with AD, completion of the protocol in its entirety with more participants is needed to further assess whether implementing NFB-based cognitive intervention is justified by functional treatment outcomes.

Trial registration: This study was registered with ClinicalTrials.gov (NCT03790774).

Keywords: Alzheimer disease; Attention; Brain-computer interfaces; Cognitive remediation.

Conflict of interest statement

All authors received a salary for their work from their respective institutions.

© 2022 The Authors. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Study Activities This infographic depicts the assessments conducted at each visit type and the frequency of their measure across phrases of the study. The dashed lines in the baseline phase represent the variability in number of baseline visits that varied between 4 and 7 visits based on stability of baseline performance from week-to-week.
Fig. 2
Fig. 2
Schematic of the RSVP task and the neurofeedback to the participant. Following presentation of the target letter there is a sequence of 10 letters presented following a red cross-hair fixation cross. Neurofeedback is based on individualized alpha Power Spectral Density (PSD) percentiles at a pre-specified occipitoparietal electrode. Colored boxes range from upper 15th percentile alpha power in red, 15th - 30th percentile, 30th - 45th, 45th to 70th, and the least alpha power in green from the 70th - 100th percentiles. The current feedback the participant sees is highlighted with the white edges around one colored rectangle. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Fig. 3
Fig. 3
EEG frequency data from 5 of 8 participants who made errors during pilot task Spectra are from site Oz, averaged across 2.5 s epochs during sequences where participants either made or did not make recognition errors. Besides the increased alpha power during error trials, note the steady-state visual evoked potential aligned with presentation rate of 4 Hz, which did not change based on error status. The three participants not included in this average because they did not make errors had even lower levels of alpha than the “correct” condition illustrated in the figure.
Fig. 4
Fig. 4
Outcome Measures for Completers In general, the WJTA IV Sentence Reading Fluency, Letter Cancellation with curved foils, and AUC (Fig. 2) were the most reliable. Note examples of outcome measures in for which there was: no change in the intervention (Letter Span Backward) (d and i); a sustained learning effect continuing through the baseline and then through the intervention periods (Sentence Reading Fluency) (j); a learning effect only during the baseline (Letter cancellation with straight foils) (b and g); an apparent improvement from the intervention (Letter Cancellation with curved foils) (a), and a decrease in performance in treatment phase (Letter Span forward) (c).
Fig. 5
Fig. 5
Examples of Electrophysiological Data for 3 participants (A) 5-s of representative EEG data taken from week #1 of intervention. The presented windows each include one full sequence of 10 letters (1 target; 9 non-targets) during the RSVP neurofeedback calibration task. Parieto-occipital alpha is clearly visible at sites P4 and Pz prior to fixation. Participant #1 demonstrates neck EMG contamination at posterior sites Oz, PO7, and PO8. (B) Demonstrative ERP averages of target and non-target responses at Pz, derived from week #1 of intervention (3 sessions; neurofeedback calibration). Participant #1 shows EMG contamination, but a large N2/P3 response. Participant #2 exhibits alpha signal but also a small yet clear ERP response to the target. Participant #4 demonstrates no visible target-related response.

References

    1. Storandt M., Stone K., LaBarge E. Deficits in reading performance in very mild dementia of the Alzheimer type. Neuropsychology. 1995;9:174–176. doi: 10.1037/0894-4105.9.2.174.
    1. Klimova B., Maresova P., Valis M., Hort J., Kuca K. Alzheimer's disease and language impairments: social intervention and medical treatment. Clin. Interv. Aging. 2015;10:1401–1408. doi: 10.2147/CIA.S89714.
    1. Kendeou P., van den Broek P., Helder A., Karlsson J. A cognitive view of reading comprehension: implications for reading difficulties, learn. Disabil. Res. Pract. 2014;29:10–16. doi: 10.1111/ldrp.12025.
    1. Perry R.J., Hodges J.R. Attention and executive deficits in Alzheimer's disease. A critical review. Brain J. Neurol. 1999;122(Pt 3):383–404. doi: 10.1093/brain/122.3.383.
    1. Ball K., Berch D.B., Helmers K.F., Jobe J.B., Leveck M.D., Marsiske M., Morris J.N., Rebok G.W., Smith D.M., Tennstedt S.L., Unverzagt F.W., Willis S.L. Advanced cognitive training for independent and vital elderly study group, effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–2281. doi: 10.1001/jama.288.18.2271.
    1. Willis S.L., Tennstedt S.L., Marsiske M., Ball K., Elias J., Koepke K.M., Morris J.N., Rebok G.W., Unverzagt F.W., Stoddard A.M., Wright E. ACTIVE Study Group, Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–2814. doi: 10.1001/jama.296.23.2805.
    1. Rolle C.E., Anguera J.A., Skinner S.N., Voytek B., Gazzaley A. Enhancing spatial attention and working memory in younger and older adults. J. Cogn. Neurosci. 2017;29:1483–1497. doi: 10.1162/jocn_a_01159.
    1. Sala G., Tatlidil K.S., Gobet F. Video game training does not enhance cognitive ability: a comprehensive meta-analytic investigation. Psychol. Bull. 2018;144:111–139. doi: 10.1037/bul0000139.
    1. Kallio E.-L., Öhman H., Kautiainen H., Hietanen M., Pitkälä K. Cognitive training interventions for patients with Alzheimer's disease: a systematic review. J. Alzheimers Dis. JAD. 2017;56:1349–1372. doi: 10.3233/JAD-160810.
    1. Carrion C., Folkvord F., Anastasiadou D., Aymerich M. Cognitive therapy for dementia patients: a systematic review. Dement. Geriatr. Cogn. Disord. 2018;46:1–26. doi: 10.1159/000490851.
    1. Barnes D.E., Yaffe K., Belfor N., Jagust W.J., DeCarli C., Reed B.R., Kramer J.H. Computer-based cognitive training for mild cognitive impairment: results from a pilot randomized, controlled trial. Alzheimer Dis. Assoc. Disord. 2009;23:205–210. doi: 10.1097/WAD.0b013e31819c6137.
    1. Anguera J.A., Boccanfuso J., Rintoul J.L., Al-Hashimi O., Faraji F., Janowich J., Kong E., Larraburo Y., Rolle C., Johnston E., Gazzaley A. Video game training enhances cognitive control in older adults. Nature. 2013;501:97–101. doi: 10.1038/nature12486.
    1. Toril P., Reales J.M., Ballesteros S. Video game training enhances cognition of older adults: a meta-analytic study. Psychol. Aging. 2014;29:706–716. doi: 10.1037/a0037507.
    1. Wolpaw J.R. Wolpaw, brain computer interfaces, principles and practise. Biomed. Eng. OnLine. 2013;12:22. doi: 10.1186/1475-925X-12-22.
    1. Kübler A., Mushahwar V.K., Hochberg L.R., Donoghue J.P. BCI Meeting 2005--workshop on clinical issues and applications. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2006;14:131–134. doi: 10.1109/tnsre.2006.875585.
    1. Akcakaya M., Peters B., Moghadamfalahi M., Mooney A., Orhan U., Oken B., Fried-Oken M. Noninvasive brain-computer interfaces for augmentative and alternative communication. IEEE Rev. Biomed. Eng. 2014;7:31–49.
    1. Rezeika A., Benda M., Stawicki P., Gembler F., Saboor A., Volosyak I. Brain–computer interface spellers: a review. Brain Sci. 2018;8:57. doi: 10.3390/brainsci8040057.
    1. Evans J.M., Dellinger M., Russell H., editors. Neurofeedback: the First 50 Years. first ed. Academic Press; San Diego, CA: 2020.
    1. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., Weiskopf N., Blefari M.L., Rana M., Oblak E., Birbaumer N., Sulzer J. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 2017;18:86–100. doi: 10.1038/nrn.2016.164.
    1. Paluch K., Jurewicz K., Rogala J., Krauz R., Szczypińska M., Mikicin M., Wróbel A., Kublik E. Beware: recruitment of muscle activity by the EEG-neurofeedback trainings of high frequencies. Front. Hum. Neurosci. 2017;11 doi: 10.3389/fnhum.2017.00119.
    1. Oken B., Memmott T., Eddy B., Wiedrick J., Fried-Oken M. Vigilance state fluctuations and performance using brain–computer interface for communication. Brain-Comput. Interfaces. 2018;5:146–156. doi: 10.1080/2326263X.2019.1571356.
    1. Huang J., Hensch T., Ulke C., Sander C., Spada J., Jawinski P., Hegerl U. Evoked potentials and behavioral performance during different states of brain arousal. BMC Neurosci. 2017;18 doi: 10.1186/s12868-017-0340-9.
    1. Arvaneh M., Ward T.E., Robertson I.H. Effects of feedback latency on P300-based brain-computer interface. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf. 2015:2315–2318. doi: 10.1109/EMBC.2015.7318856. 2015.
    1. Arvaneh M., Robertson I.H., Ward T.E. A P300-based brain-computer interface for improving attention. Front. Hum. Neurosci. 2019;12 doi: 10.3389/fnhum.2018.00524.
    1. Jirayucharoensak S., Israsena P., Pan-Ngum S., Hemrungrojn S., Maes M. A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment. Clin. Interv. Aging. 2019;14:347–360. doi: 10.2147/CIA.S189047.
    1. Lavy Y., Dwolatzky T., Kaplan Z., Guez J., Todder D. Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Appl. Psychophysiol. Biofeedback. 2019;44:41–49. doi: 10.1007/s10484-018-9418-0.
    1. Ordikhani-Seyedlar M., Lebedev M.A., Sorensen H.B.D., Puthusserypady S. Neurofeedback therapy for enhancing visual attention: state-of-the-art and challenges. Front. Neurosci. 2016;10:352. doi: 10.3389/fnins.2016.00352.
    1. Lim C.G., Lee T.S., Guan C., Fung D.S.S., Zhao Y., Teng S.S.W., Zhang H., Krishnan K.R.R. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder. PloS One. 2012;7 doi: 10.1371/journal.pone.0046692.
    1. Laborda-Sánchez F., Cansino S. The effects of neurofeedback on aging-associated cognitive decline: a systematic review. Appl. Psychophysiol. Biofeedback. 2021:1–10. doi: 10.1007/s10484-020-09497-6.
    1. Jiang Y., Abiri R., Zhao X. Tuning up the old brain with new tricks: attention training via neurofeedback. Front. Aging Neurosci. 2017;9 doi: 10.3389/fnagi.2017.00052.
    1. Lee T.-S., Quek S.Y., Goh S.J.A., Phillips R., Guan C., Cheung Y.B., Feng L., Wang C.C., Chin Z.Y., Zhang H., Lee J., Ng T.P., Krishnan K.R.R. A pilot randomized controlled trial using EEG-based brain–computer interface training for a Chinese-speaking group of healthy elderly. Clin. Interv. Aging. 2015;10:217–227. doi: 10.2147/CIA.S73955.
    1. Yeo S.N., Lee T.S., Sng W.T., Heo M.Q., Bautista D., Cheung Y.B., Zhang H.H., Wang C., Chin Z.Y., Feng L., Zhou J., Chong M.S., Ng T.P., Krishnan K.R., Guan C. Effectiveness of a personalized brain-computer interface system for cognitive training in healthy elderly: a randomized controlled trial. J. Alzheimers Dis. JAD. 2018;66:127–138. doi: 10.3233/JAD-180450.
    1. Fotuhi M., Lubinski B., Trullinger M., Hausterman N., Riloff T., Hadadi M., Raji C.A. A personalized 12-week “brain fitness program” for improving cognitive function and increasing the volume of Hippocampus in elderly with mild cognitive impairment. J. Prev. Alzheimers Dis. 2016;3:133–137. doi: 10.14283/jpad.2016.92.
    1. Luijmes R.E., Pouwels S., Boonman J. The effectiveness of neurofeedback on cognitive functioning in patients with Alzheimer's disease: preliminary results. Neurophysiol. Clin. Neurophysiol. 2016;46:179–187. doi: 10.1016/j.neucli.2016.05.069.
    1. Jang J.-H., Kim J., Park G., Kim H., Jung E.-S., Cha J.-Y., Kim C.-Y., Kim S., Lee J.-H., Yoo H. Beta wave enhancement neurofeedback improves cognitive functions in patients with mild cognitive impairment: a preliminary pilot study. Medicine (Baltimore) 2019;98 doi: 10.1097/MD.0000000000018357.
    1. Surmeli T., Eralp E., Mustafazade I., Kos H., Özer G.E., Surmeli O.H. Quantitative EEG neurometric analysis-guided neurofeedback treatment in dementia: 20 cases. How neurometric analysis is important for the treatment of dementia and as a biomarker? Clin. EEG Neurosci. 2016;47:118–133. doi: 10.1177/1550059415590750.
    1. Koberda J.L. Z-score LORETA neurofeedback as a potential therapy in cognitive dysfunction and dementia. J. Psychol. Clin. Psychiatry. 2014;1 doi: 10.15406/jpcpy.2014.01.00037.
    1. Memmott T., Koçanaoğulları A., Lawhead M., Klee D., Dudy S., Fried-Oken M., Oken B. BciPy: brain–computer interface software in Python, Brain-Comput. Interfaces. 2021:1–18. doi: 10.1080/2326263X.2021.1878727. 0.
    1. Gabler N.B., Duan N., Vohra S., Kravitz R.L. N-of-1 trials in the medical literature: a systematic review. Med. Care. 2011;49:761–768. doi: 10.1097/MLR.0b013e318215d90d.
    1. Ledford J.R., Gast D.L., editors. Single Case Research Methodology: Applications in Special Education and Behavioral Sciences. third ed. Routledge - Taylor & Francis; New York, NY: 2018.
    1. Thibault R.T., MacPherson A., Lifshitz M., Roth R.R., Raz A. Neurofeedback with fMRI: a critical systematic review. NeuroImage. 2018;172:786–807. doi: 10.1016/j.neuroimage.2017.12.071.
    1. Oken B.S. Placebo effects: clinical aspects and neurobiology. Brain. 2008;131:2812–2823. doi: 10.1093/brain/awn116.
    1. Kiernan R.J., Mueller J., Langston J.W., Van Dyke C. The Neurobehavioral Cognitive Status Examination: a brief but quantitative approach to cognitive assessment. Ann. Intern. Med. 1987;107:481–485. doi: 10.7326/0003-4819-107-4-481.
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology. 1984;34:939–944. doi: 10.1212/wnl.34.7.939.
    1. Morris J.C. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43 doi: 10.1212/WNL.43.11.2412-a. 2412–2412.
    1. Nasreddine Z.S., Phillips N.A., Bédirian V., Charbonneau S., Whitehead V., Collin I., Cummings J.L., Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Upton J. In: Encycl. Behav. Med. Gellman M.D., Turner J.R., editors. Springer; New York, NY: 2013. Mini-mental state examination; pp. 1248–1249.
    1. Knopman D.S., Roberts R.O., Geda Y.E., Pankratz V.S., Christianson T.J., Petersen R.C., Rocca W.A. Validation of the telephone interview for cognitive status-modified in subjects with normal cognition, mild cognitive impairment, or dementia. Neuroepidemiology. 2010;34:34–42.
    1. Brookshire R., Nicholas L. The Psychological Corporation; Tucson, AZ: 1993. Discourse Comprehension Test.
    1. Wechsler D. fourth ed. Pearson; San Antonio, TX: 2008. Wechsler Adult Intelligence Scale.
    1. Gast D.L., Spriggs A.D., Graph. Data . In: Single Case Research Methodology: Applications in Special Education and Behavioral Sciences. Anal Vis., editor. Routledge; 2014. pp. 176–210.
    1. Oken B.S., Orhan U., Roark B., Erdogmus D., Fowler A., Mooney A., Peters B., Miller M., Fried-Oken M.B. Brain–computer interface with language model–electroencephalography fusion for locked-in syndrome. Neurorehabil. Neural Repair. 2014;28:387–394. doi: 10.1177/1545968313516867.
    1. Mather N., Wendling B.J. John Wiley & Sons Inc; Hoboken, NJ, US: 2015. Essentials of WJ IV® Tests of Achievement.
    1. Baddeley A.D., Baddeley H.A., Bucks R.S., Wilcock G.K. Attentional control in Alzheimer's disease. Brain J. Neurol. 2001;124:1492–1508. doi: 10.1093/brain/124.8.1492.
    1. R core team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, n.d.
    1. Conrad R., Hull A.J. Information, acoustic confusion and memory span. Br. J. Psychol. 1964;55:429–432. doi: 10.1111/j.2044-8295.1964.tb00928.x.
    1. Peirce J., Gray J.R., Simpson S., MacAskill M., Höchenberger R., Sogo H., Kastman E., Lindeløv J.K. PsychoPy2: experiments in behavior made easy. Behav. Res. Methods. 2019;51:195–203. doi: 10.3758/s13428-018-01193-y.
    1. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 1999;110:1842–1857. doi: 10.1016/s1388-2457(99)00141-8.
    1. Thut G., Nietzel A., Brandt S.A., Pascual-Leone A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 2006;26:9494–9502. doi: 10.1523/JNEUROSCI.0875-06.2006.
    1. Schwartz M.S., Andrasik F., editors. Biofeedback: A Pracitioner's Guide. The Guilford Press; New York, NY, USA: 2016.
    1. Welch P. The use of the fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967;15:70–73.
    1. Lloyd Blackwell I.I.I.J. Stata J.; 2005. Estimation and Testing of Fixed-Effect Panel-Data Systems.
    1. Diggle P., Liang K., Zeger S., Heagerty P. second ed. Oxford University Press; New York, NY, USA: 2002. Analysis of Longitudinal Data.
    1. Allison P. SAGE Publications, Inc., 2455 Teller Road, Thousand Oaks California 91320 United States of America; 2009. Fixed Effects Regression Models.
    1. Bland J.M., Altman D.G. Statistics notes: calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ. 1995;310:446. doi: 10.1136/bmj.310.6977.446.
    1. Fisher R.A. 1920. A Mathematical Examination of the Methods of Determining the Accuracy of an Observation by the Mean Error, and by the Mean Square Error. 012.
    1. vol. 16. Stata Corp LLC; College Station, TX: 2019. StataCorp, stata statistical software. (Release).
    1. Oken B.S., Kaye J.A. Electrophysiologic function in the healthy, extremely old. Neurology. 1992;42:519–526. doi: 10.1212/wnl.42.3.519.
    1. Oken B.S., Amen A. Clin. Neurol. Aging. third ed. Oxford University Press; 2010. Electroencephalography and evoked potentials in geriatrics; pp. 113–127.
    1. Klee D., Colgan D.D., Hanes D., Oken B. The effects of an internet-based mindfulness meditation intervention on electrophysiological markers of attention. Int. J. Psychophysiol. 2020;158:103–113. doi: 10.1016/j.ijpsycho.2020.10.002.
    1. Klee D., Memmott T., Smedemark-Margulies N., Celik B., Erdogmus D., Oken B.S. Target-related alpha attenuation in a brain-computer interface rapid serial visual presentation calibration. Front. Hum. Neurosci. 2022;16 doi: 10.3389/fnhum.2022.882557.

Source: PubMed

3
Suscribir