Determinants and prognostic relevance of aortic stiffness in patients with recent ST-elevation myocardial infarction

Ivan Lechner, Martin Reindl, Christina Tiller, Magdalena Holzknecht, Sarah Niederreiter, Agnes Mayr, Gert Klug, Christoph Brenner, Axel Bauer, Bernhard Metzler, Sebastian Johannes Reinstadler, Ivan Lechner, Martin Reindl, Christina Tiller, Magdalena Holzknecht, Sarah Niederreiter, Agnes Mayr, Gert Klug, Christoph Brenner, Axel Bauer, Bernhard Metzler, Sebastian Johannes Reinstadler

Abstract

The association between aortic stiffness, cardiovascular risk factors and prognosis in patients with recent ST-elevation myocardial infarction (STEMI) is poorly understood. We analyzed the relationship between cardiovascular risk factors and arterial stiffening and assessed its prognostic significance in patients with recent STEMI. We prospectively enrolled 408 consecutive patients who sustained a first STEMI and underwent primary percutaneous coronary intervention (PPCI). Aortic pulse wave velocity (PWV), the most widely used measure of aortic stiffness, was determined by the transit-time method using velocity-encoded, phase-contrast cardiac magnetic resonance imaging. Patient characteristics were acquired at baseline and major adverse cardiac and cerebrovascular events (MACCE) were assessed at 13 [interquartile range (IQR) 12-31] months. Cox regression- and logistic regression analysis were performed to explore predictors of aortic stiffness and MACCE. Median aortic PWV was 6.6 m/s (IQR 5.6-8.3 m/s). In multivariable analysis, age [odds ratio (OR) 1.10, 95% confidence interval (CI), 1.08-1.14, p < 0.001] and hypertension (OR 2.45, 95% CI, 1.53-3.91, p < 0.001) were independently associated with increased PWV. Sex, diabetes, smoking status, dyslipidemia, and obesity were not significantly associated with PWV in adjusted analysis (all p > 0.05). High PWV significantly and independently predicted occurrence of MACCE in adjusted analysis [hazard ratio (HR) 2.45, 95% CI 1.19-5.04, p = 0.014]. In patients with recent STEMI, the impact of classical cardiovascular risk factors on aortic stiffness is mainly dependent on age and increased blood pressure. Increased aortic stiffness is associated with adverse clinical outcome post-STEMI, suggesting it as a relevant therapeutic target in this population. Trial (NCT04113356).

Keywords: Aortic stiffness; Cardiac magnetic resonance; Cardiovascular risk factors; Prognosis; Pulse wave velocity; ST-segment elevation myocardial infarction.

Conflict of interest statement

The authors declare that there is no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
CMR determined PWV assessment. CMR cardiac magnetic resonance, PWV pulse wave velocity, aA ascending aorta, dA descending aorta, abdA abdominal aorta, t time (Created with Biorender)
Fig. 2
Fig. 2
Association of aortic PWV in relation to age, hypertension and clinical outcome. PWV pulse wave velocity, STEMI ST-elevation myocardial infarction, CAD coronary artery disease, AS atherosclerosis, MACCE major adverse cardiac and cerebrovascular events (Created with Biorender)

References

    1. Chirinos JA, Segers P, Hughes T, Townsend R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;74(9):1237–1263. doi: 10.1016/j.jacc.2019.07.012.
    1. Kaolawanich Y, Boonyasirinant T. Incremental prognostic value of aortic stiffness in addition to myocardial ischemia by cardiac magnetic resonance imaging. BMC Cardiovasc Disord. 2020;20(1):287. doi: 10.1186/s12872-020-01550-w.
    1. Imbalzano E, Vatrano M, Mandraffino G, Ghiadoni L, Gangemi S, Bruno RM, et al. Arterial stiffness as a predictor of recovery of left ventricular systolic function after acute myocardial infarction treated with primary percutaneous coronary intervention. Int J Cardiovasc Imaging. 2015;31(8):1545–1551. doi: 10.1007/s10554-015-0733-8.
    1. Feistritzer HJ, Klug G, Reinstadler SJ, Reindl M, Niess L, Nalbach T, et al. Prognostic value of aortic stiffness in patients after st-elevation myocardial infarction. J Am Heart Assoc. 2017 doi: 10.1161/JAHA.117.005590.
    1. Akkus O, Sahin DY, Bozkurt A, Nas K, Ozcan KS, Illyes M, et al. Evaluation of arterial stiffness for predicting future cardiovascular events in patients with ST segment elevation and non-ST segment elevation myocardial infarction. Sci World J. 2013;2013:792693. doi: 10.1155/2013/792693.
    1. Benetos A, Waeber B, Izzo J, Mitchell G, Resnick L, Asmar R, et al. Influence of age, risk factors, and cardiovascular and renal disease on arterial stiffness: clinical applications. Am J Hypertens. 2002;15(12):1101–1108. doi: 10.1016/s0895-7061(02)03029-7.
    1. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension. 2009;54(6):1328–1336. doi: 10.1161/HYPERTENSIONAHA.109.137653.
    1. Payne RA, Wilkinson IB, Webb DJ. Arterial stiffness and hypertension: emerging concepts. Hypertension. 2010;55(1):9–14. doi: 10.1161/HYPERTENSIONAHA.107.090464.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol. 2011;57(14):1511–1522. doi: 10.1016/j.jacc.2010.12.017.
    1. Klug G, Feistritzer HJ, Reinstadler SJ, Mayr A, Kremser C, Schocke M, et al. Use and limitations of cardiac magnetic resonance derived measures of aortic stiffness in patients after acute myocardial infarction. Magn Reson Imaging. 2014;32(10):1259–1265. doi: 10.1016/j.mri.2014.08.020.
    1. Grotenhuis HB, Westenberg JJ, Steendijk P, van der Geest RJ, Ottenkamp J, Bax JJ, et al. Validation and reproducibility of aortic pulse wave velocity as assessed with velocity-encoded MRI. J Magn Reson Imaging. 2009;30(3):521–526. doi: 10.1002/jmri.21886.
    1. Reindl M, Tiller C, Holzknecht M, Lechner I, Beck A, Plappert D, et al. Prognostic implications of global longitudinal strain by feature-tracking cardiac magnetic resonance in ST-elevation myocardial infarction. Circ Cardiovasc Imaging. 2019;12(11):e009404. doi: 10.1161/CIRCIMAGING.119.009404.
    1. O'Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol. 2013;61(4):e78–e140. doi: 10.1016/j.jacc.2012.11.019.
    1. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation. 2012;126(16):2020–2035. doi: 10.1161/cir.0b013e31826e1058.
    1. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJB, Culebras A, et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. doi: 10.1161/str.0b013e318296aeca.
    1. Eitel I, Stiermaier T, Lange T, Rommel KP, Koschalka A, Kowallick JT, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction. Jacc Cardiovasc Imaging. 2018;11(10):1433–1444. doi: 10.1016/j.jcmg.2017.11.034.
    1. Reinstadler SJ, Klug G, Feistritzer HJ, Mayr A, Bader K, Mair J, et al. Relation of plasma adiponectin levels and aortic stiffness after acute ST-segment elevation myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2014;3(1):10–17. doi: 10.1177/2048872613516015.
    1. Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG, et al. Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson. 2005;7(2):481–485. doi: 10.1081/jcmr-200053623.
    1. Reindl M, Tiller C, Holzknecht M, Lechner I, Hein N, Pamminger M, et al. Aortic stiffness and infarct healing in survivors of acute ST-segment–elevation myocardial infarction. J Am Heart Assoc. 2020;9(3):e014740. doi: 10.1161/jaha.119.014740.
    1. Feistritzer HJ, Reinstadler SJ, Klug G, Kremser C, Seidner B, Esterhammer R, et al. Comparison of an oscillometric method with cardiac magnetic resonance for the analysis of aortic pulse wave velocity. PLoS ONE. 2015;10(1):e0116862. doi: 10.1371/journal.pone.0116862.
    1. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M, et al. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. Eur Heart J. 2016;37(13):1044–1059. doi: 10.1093/eurheartj/ehv372.
    1. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–1327. doi: 10.1016/j.jacc.2009.10.061.
    1. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V. Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol. 2020;75(8):919–930. doi: 10.1016/j.jacc.2019.11.062.
    1. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff collaborative trial (ACCT) J Am Coll Cardiol. 2005;46(9):1753–1760. doi: 10.1016/j.jacc.2005.07.037.
    1. Reinstadler SJ, Stiermaier T, Eitel C, Metzler B, Waha Sd, Fuernau G, et al. Relationship between diabetes and ischaemic injury among patients with revascularized ST-elevation myocardial infarction. Diabetes Obes Metab. 2017;19(12):1706–1713. doi: 10.1111/dom.13002.
    1. Reinstadler SJ, Metzler B. Myocardial damage after primary PCI: does obesity really matter? Jacc Cardiovasc Interv. 2020;13(8):973–975. doi: 10.1016/j.jcin.2020.02.037.
    1. Reinstadler SJ, Reindl M, Tiller C, Holzknecht M, Klug G, Metzler B. Obesity paradox in ST-elevation myocardial infarction: is it all about infarct size? Eur Heart J. 2018;5(2):180–182. doi: 10.1093/ehjqcco/qcy042.
    1. Haig C, Carrick D, Carberry J, Mangion K, Maznyczka A, Wetherall K, et al. Current smoking and prognosis after acute ST-segment elevation myocardial infarction: new pathophysiological insights. Jacc Cardiovasc Imaging. 2018;12(6):993–1003. doi: 10.1016/j.jcmg.2018.05.022.
    1. Karayiannides S, Norhammar A, Frøbert O, James SK, Lagerqvist B, Lundman P. Prognosis in patients with diabetes mellitus and STEMI undergoing primary PCI. J Am Coll Cardiol. 2018;72(12):1427–1428. doi: 10.1016/j.jacc.2018.06.061.
    1. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation. 2002;105(10):1202–1207. doi: 10.1161/hc1002.105135.
    1. Humphrey JD, Harrison DG, Figueroa CA, Lacolley P, Laurent S. Central artery stiffness in hypertension and aging: a problem with cause and consequence. Circ Res. 2016;118(3):379–381. doi: 10.1161/CIRCRESAHA.115.307722.
    1. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andres V. Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol. 2020;75(8):919–930. doi: 10.1016/j.jacc.2019.11.062.
    1. Reinstadler SJ, Stiermaier T, Eitel C, Saad M, Metzler B, de Waha S, et al. Antecedent hypertension and myocardial injury in patients with reperfused ST-elevation myocardial infarction. J Cardiovasc Magn Reson. 2016;18(1):80. doi: 10.1186/s12968-016-0299-1.
    1. Vallée A, Cinaud A, Protogerou A, Zhang Y, Topouchian J, Safar ME, et al. Arterial stiffness and coronary ischemia: new aspects and paradigms. Curr Hypertens Rep. 2020;22(1):5. doi: 10.1007/s11906-019-1006-z.
    1. Mattace-Raso FUS, van der Cammen TJM, Hofman A, Popele NMV, Bos ML, Schalekamp MADH, et al. Arterial stiffness and risk of coronary heart disease and stroke. Circulation. 2006;113(5):657–63. doi: 10.1161/circulationaha.105.555235.
    1. Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation. 2006;113(5):657–663. doi: 10.1161/CIRCULATIONAHA.105.555235.
    1. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation. 1993;87(4):1179–1187. doi: 10.1161/01.cir.87.4.1179.
    1. Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;39(43):3847–3854. doi: 10.1093/eurheartj/ehy346.
    1. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–646. doi: 10.1016/j.jacc.2013.09.063.
    1. Group TSR A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–2116. doi: 10.1056/nejmoa1511939.
    1. Vaduganathan M, Claggett BL, Juraschek SP, Solomon SD. Assessment of long-term benefit of intensive blood pressure control on residual life span. JAMA Cardiol. 2020;5(5):576–581. doi: 10.1001/jamacardio.2019.6192.
    1. Lacy PS, O'Brien DG, Stanley AG, Dewar MM, Swales PPR, Williams B. Increased pulse wave velocity is not associated with elevated augmentation index in patients with diabetes. J Hypertens. 2004;22(10):1937–1944. doi: 10.1097/00004872-200410000-00016.
    1. Pedersen F, Butrymovich V, Kelbaek H, Wachtell K, Helqvist S, Kastrup J, et al. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J Am Coll Cardiol. 2014;64(20):2101–2108. doi: 10.1016/j.jacc.2014.08.037.
    1. Alzuhairi KS, Lonborg J, Ahtarovski KA, Nepper-Christensen L, Kyhl K, Lassen JF, et al. Sub-acute cardiac magnetic resonance to predict irreversible reduction in left ventricular ejection fraction after ST-segment elevation myocardial infarction: a DANAMI-3 sub-study. Int J Cardiol. 2020;301:215–219. doi: 10.1016/j.ijcard.2019.10.034.
    1. Eitel I, Wohrle J, Suenkel H, Meissner J, Kerber S, Lauer B, et al. Intracoronary compared with intravenous bolus abciximab application during primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: cardiac magnetic resonance substudy of the AIDA STEMI trial. J Am Coll Cardiol. 2013;61(13):1447–1454. doi: 10.1016/j.jacc.2013.01.048.

Source: PubMed

3
Suscribir