Scoliosis-Specific exercises can reduce the progression of severe curves in adult idiopathic scoliosis: a long-term cohort study

Alessandra Negrini, Maria Gabriella Negrini, Sabrina Donzelli, Michele Romano, Fabio Zaina, Stefano Negrini, Alessandra Negrini, Maria Gabriella Negrini, Sabrina Donzelli, Michele Romano, Fabio Zaina, Stefano Negrini

Abstract

Background: Scoliosis fusion surgery is generally considered the only means to stop the progression of adult idiopathic scoliosis (ADIS), but for patients refusing surgery there is lack of evidence in favour of conservative treatment. The aim of the present study was to verify the possible effectiveness of scoliosis-specific exercises when facing ADIS progression.

Methods: We designed a retrospective cohort study. We included 34 ADIS patients in treatment at our Institute (5 males and 29 females, mean age was 38.0 ± 11.0), exclusively treated with specific Scoliosis Specific SEAS exercises.

Instrumentation: SEAS exercises are scoliosis-specific exercises. In adult patients they are aimed to recover postural collapse, postural control and vertebral stability through an active self-correction. Postural integration is a key element, including the neuromotor integration of correct postures and an ergonomic education program. Therapy includes at least two weekly exercise sessions each lasting 45 min.

Outcome measures: Radiographic progression was the main outcome and it was analysed as a continuous variable.

Statistics: One way ANOVA and paired t-test were applied for continuous data, while chi-square test was applied for categorical data. Alpha was set at 0.05.

Results: The mean Cobb angle of the patients included into the present study, was 55.8 ± 13.2 °. Fifteen patients had previous x-rays testifying scoliosis progression: the average curve progression (worsening) was 9.8 ± 6.6 ° at a median of 25 (range 17-48) years. The remaining were characterized by more severe curves, exceeding 40 ° Cobb (mean curvature 50.9 ± 13.6) but it was not possible to prove that the curves had progressed in these cases. After an average period of 2 years of treatment (range 1-18y), 68 % of the patients experienced an improvement in their scoliosis. However in one patient (3 %) the scoliosis worsened by 5 ° in 18 years (progression rate reduced from 0.5 ° to 0.27 ° per year). Patients improved 4.6 ± 5.0 ° Cobb (P < 0.05), with no differences based on the localization of the curve, gender, age, length of treatment, Cobb degrees at the start of observation or treatment.

Conclusions: Scoliosis Specific SEAS Exercises proved to be superior to natural history in ADIS, at least in individual cases and should be considered as a first line treatment especially in patients refusing scoliosis surgery.

Figures

Fig. 1
Fig. 1
Results after about 2 years of therapy, according to the 3° Cobb degrees measurement error
Fig. 2
Fig. 2
The postural component of scoliosis [19]. A scoliosis curve is made of many different components, including a postural one. Duval-Beaupére [19] described the case of three different radiographs: standing (SR), lying down (LR) and in correction e.g. using a cast (CR). The structural bony component can be measured with the CR; the structural ligamentous component comes from the difference between LR and CR; the postural component from the difference between SR and LR

References

    1. Collis DK, Ponseti IV. Long-term follow-up of patients with idiopathic scoliosis not treated surgically. J Bone Joint Surg Am. 1969;51(3):425–445.
    1. Guigui P, Rillardon L. Adult spinal deformities. Rev Prat. 2006;56(7):701–708.
    1. Aebi M. The adult scoliosis. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2005;14(10):925–948. doi: 10.1007/s00586-005-1053-9.
    1. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA, J Am Med Assoc. 2003;289(5):559–567. doi: 10.1001/jama.289.5.559.
    1. Weinstein SL. Natural history. Spine. 1999;24(24):2592–2600. doi: 10.1097/00007632-199912150-00006.
    1. Marty-Poumarat C, Scattin L, Marpeau M, Garreau De Loubresse C, Aegerter P. Natural history of progressive adult scoliosis. Spine. 2007;32(11):1227–1234. doi: 10.1097/01.brs.0000263328.89135.a6.
    1. Zmurko MG, Mooney JF, Podeszwa DA, Minster GJ, Mendelow MJ, Guirgues A. Inter- and intraobserver variance of Cobb angle measurements with digital radiographs. J Surg Orthop Adv. 2003;12(4):208–213.
    1. Richards BS, Bernstein RM, D’Amato CR, Thompson GH. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine. 2005;30(18):2068–2075. doi: 10.1097/01.brs.0000178819.90239.d0.
    1. Weiss HR. Influence of an in-patient exercise program on scoliotic curve. Ital J Orthop Traumatol. 1992;18(3):395–406.
    1. Morningstar MW, Woggon D, Lawrence G. Scoliosis treatment using a combination of manipulative and rehabilitative therapy: a retrospective case series. BMC Musculoskelet Disord. 2004;5:32. doi: 10.1186/1471-2474-5-32.
    1. Tarola GA. Manipulation for the control of back pain and curve progression in patients with skeletally mature idiopathic scoliosis: two cases. J Manipulative Physiol Ther. 1994;17(4):253–257.
    1. Brooks WJ, Krupinski EA, Hawes MC. Reversal of childhood idiopathic scoliosis in an adult, without surgery: a case report and literature review. Scoliosis. 2009;4:27. doi: 10.1186/1748-7161-4-27.
    1. Negrini A, Parzini S, Negrini MG, Romano M, Atanasio S, Zaina F, et al. Adult scoliosis can be reduced through specific SEAS exercises: a case report. Scoliosis. 2008;3:20. doi: 10.1186/1748-7161-3-20.
    1. Zaina F, Negrini S, Atanasio S, Fusco C, Romano M, Negrini A. Specific exercises performed in the period of brace weaning can avoid loss of correction in Adolescent Idiopathic Scoliosis (AIS) patients: Winner of SOSORT’s 2008 Award for Best Clinical Paper. Scoliosis. 2009;4:8. doi: 10.1186/1748-7161-4-8.
    1. Negrini S, Negrini A, Romano M, Verzini N, Negrini A, Parzini S. A controlled prospective study on the efficacy of SEAS.02 exercises in preventing progression and bracing in mild idiopathic scoliosis. Stud Health Technol Inform. 2006;123:523–526.
    1. Negrini S, Zaina F, Romano M, Negrini A, Parzini S. Specific exercises reduce brace prescription in adolescent idiopathic scoliosis: a prospective controlled cohort study with worst-case analysis. J Rehabil Med. 2008;40(6):451–455. doi: 10.2340/16501977-0195.
    1. Negrini S, Negrini A, Romano M, Verzini N, Negrini A, Parzini S. A controlled prospective study on the efficacy of SEAS.02 exercises in preparation to bracing for idiopathic scoliosis. Stud Health Technol Inform. 2006;123:519–522.
    1. Negrini S, Atanasio S, Zaina F, Romano M. Rehabilitation of adolescent idiopathic scoliosis: results of exercises and bracing from a series of clinical studies. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med. 2008;44(2):169–176.
    1. Negrini A., Romano M.A. blind radiographic controlled study on efficacy of Active self correction according to SEAS.02 3rd International Conference on conservative management of spinal deformities 2006, Poznan (Poland).
    1. Weinstein SL. Idiopathic scoliosis. Natural history. Spine. 1986;11(8):780–783. doi: 10.1097/00007632-198610000-00006.
    1. Duval-Beaupère G, Lespargot A, Grossiord A. Flexibility of scoliosis. What does it mean? Is this terminology appropriate? Spine. 1985;10(5):428–432. doi: 10.1097/00007632-198506000-00005.
    1. Torell G, Nachemson A, Haderspeck-Grib K, Schultz A. Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine. 1985;10(5):425–427. doi: 10.1097/00007632-198506000-00004.
    1. Zetterberg C, Hansson T, Lindström J, Irstam L, Andersson GB. Postural and time-dependent effects on body height and scoliosis angle in adolescent idiopathic scoliosis. Acta Orthop Scand. 1983;54(6):836–840. doi: 10.3109/17453678308992918.
    1. Beauchamp M, Labelle H, Grimard G, Stanciu C, Poitras B, Dansereau J. Diurnal variation of Cobb angle measurement in adolescent idiopathic scoliosis. Spine. 1993;18(12):1581–1583. doi: 10.1097/00007632-199309000-00002.
    1. Stokes IAF, Burwell RG, Dangerfield PH, IBSE Biomechanical spinal growth modulation and progressive adolescent scoliosis--a test of the “vicious cycle” pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE. Scoliosis. 2006;1:16. doi: 10.1186/1748-7161-1-16.
    1. Romano M, Negrini S. Manual therapy as a conservative treatment for adolescent idiopathic scoliosis: a systematic review. Scoliosis. 2008;3:2. doi: 10.1186/1748-7161-3-2.
    1. De Mauroy JC. Idiopathic scoliosis and chaos. Stud Health Technol Inform. 2008;135:53–57.
    1. Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P. Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine. 2010;35(22):E1193–E1198. doi: 10.1097/BRS.0b013e3181e50808.
    1. Roussouly P, Nnadi C. Sagittal plane deformity: an overview of interpretation and management. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2010;19(11):1824–1836. doi: 10.1007/s00586-010-1476-9.
    1. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine. 2005;30(3):346–353. doi: 10.1097/01.brs.0000152379.54463.65.
    1. Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30(18):2024–2029. doi: 10.1097/01.brs.0000179086.30449.96.
    1. Schwab F, Lafage V, Patel A, Farcy J-P. Sagittal plane considerations and the pelvis in the adult patient. Spine. 2009;34(17):1828–1833. doi: 10.1097/BRS.0b013e3181a13c08.
    1. Negrini S. The evidence –based ISICO Approach to spinal deformities. 1st edition ed. ISICO: Milan, Boston; 2007.

Source: PubMed

3
Suscribir