Melatoninergic System in Parkinson's Disease: From Neuroprotection to the Management of Motor and Nonmotor Symptoms

Josiel Mileno Mack, Marissa Giovanna Schamne, Tuane Bazanella Sampaio, Renata Aparecida Nedel Pértile, Pedro Augusto Carlos Magno Fernandes, Regina P Markus, Rui Daniel Prediger, Josiel Mileno Mack, Marissa Giovanna Schamne, Tuane Bazanella Sampaio, Renata Aparecida Nedel Pértile, Pedro Augusto Carlos Magno Fernandes, Regina P Markus, Rui Daniel Prediger

Abstract

Melatonin is synthesized by several tissues besides the pineal gland, and beyond its regulatory effects in light-dark cycle, melatonin is a hormone with neuroprotective, anti-inflammatory, and antioxidant properties. Melatonin acts as a free-radical scavenger, reducing reactive species and improving mitochondrial homeostasis. Melatonin also regulates the expression of neurotrophins that are involved in the survival of dopaminergic neurons and reduces α-synuclein aggregation, thus protecting the dopaminergic system against damage. The unbalance of pineal melatonin synthesis can predispose the organism to inflammatory and neurodegenerative diseases such as Parkinson's disease (PD). The aim of this review is to summarize the knowledge about the potential role of the melatoninergic system in the pathogenesis and treatment of PD. The literature reviewed here indicates that PD is associated with impaired brain expression of melatonin and its receptors MT1 and MT2. Exogenous melatonin treatment presented an outstanding neuroprotective effect in animal models of PD induced by different toxins, such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat, and maneb. Despite the neuroprotective effects and the improvement of motor impairments, melatonin also presents the potential to improve nonmotor symptoms commonly experienced by PD patients such as sleep and anxiety disorders, depression, and memory dysfunction.

Figures

Figure 1
Figure 1
Summary of molecular mechanisms associated with neuroprotective effects of melatonin in in vivo and in vitro models of Parkinson's disease. The main molecular mechanism of neurotoxins is related to its ability to inhibit the complexes of the mitochondrial electron transport chain. The inhibition of these complexes leads to an increased production of reactive oxygen species (ROS) and, consequently, to mitochondrial dysfunction, oxidative stress, activation of apoptotic pathways, and neuroinflammation, culminating in neuronal cell death. Melatonin exerts neuroprotective effects through different mechanisms: protection of the complex I activity, neutralization of ROS, increased cell antioxidant defences, reducing neuroinflammation, inhibition of caspases cascade, and cellular apoptosis. Melatonin is also able to protect against induction of Bax and Cdk5/p35 expression and inhibition of Parkin/PINK1 and Bcl-2 expression induced by toxins in PD models. 6-OHDA: 6-hydroxydopamine; Bak: Bcl2 antagonist/killer; Bax: Bcl2 associated X; Bcl2: B cell leukemia/lymphoma 2; Cdk5: cyclin-dependent kinase 5; Cyt C: Cytochrome C; IAPs: inhibitors of apoptosis proteins; MPP+: 1-methyl-4-phenylpyridinium; Omi/HtrA2: HtrA serine peptidase 2; ROS: reactive oxygen species.

References

    1. Lerner A. B., Case J. D., Takahashi Y., Lee T. H., Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society. 1958;80(10):p. 2587.
    1. Wurtman R. J., Axelrod J., Chu E. W. Melatonin, a pineal substance: effect on the rat ovary. Science. 1963;141(3577):277–278. doi: 10.1126/science.141.3577.277.
    1. Axelrod J., Wurtman R. J., Snyder S. H. Control of hydroxyindole O-methyltransferase activity in the rat pineal. The Journal of Biological Chemistry. 1965;240:949–954.
    1. Carrillo-Vico A., Lardone P. J., Álvarez-Śnchez N., Rodrĩguez-Rodrĩguez A., Guerrero J. M. Melatonin: buffering the immune system. International Journal of Molecular Sciences. 2013;14(4):8638–8683. doi: 10.3390/ijms14048638.
    1. Markus R. P., Cecon E., Pires-Lapa M. A. Immune-pineal axis: nuclear factor κB (NF-KB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. International Journal of Molecular Sciences. 2013;14(6):10979–10997. doi: 10.3390/ijms140610979.
    1. Acuña-Castroviejo D., Escames G., Venegas C., et al. Extrapineal melatonin: sources, regulation, and potential functions. Cellular and Molecular Life Sciences. 2014;71(16):2997–3025. doi: 10.1007/s00018-014-1579-2.
    1. Martins E., Jr., Ferreira A. C. F., Skorupa A. L., Afeche S. C., Cipolla-Neto J., Costa Rosa L. F. B. P. Tryptophan consumption and indoleamines production by peritoneal cavity macrophages. Journal of Leukocyte Biology. 2004;75(6):1116–1121. doi: 10.1189/jlb.1203614.
    1. Muxel S. M., Pires-Lapa M. A., Monteiro A. W. A., et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS ONE. 2012;7(12) doi: 10.1371/journal.pone.0052010.e52010
    1. Conti A., Conconi S., Hertens E., Skwarlo-Sonta K., Markowska M., Maestroni G. J. M. Evidence for melatonin synthesis in mouse and human bone marrow cells. Journal of Pineal Research. 2000;28(4):193–202. doi: 10.1034/j.1600-079X.2000.280401.x.
    1. Stefulj J., Hörtner M., Ghosh M., et al. Gene expression of the key enzymes of melatonin synthesis in extrapineal tissues of the rat. Journal of Pineal Research. 2001;30(4):243–247. doi: 10.1034/j.1600-079X.2001.300408.x.
    1. Liu Y.-J., Zhuang J., Zhu H.-Y., Shen Y.-X., Tan Z.-L., Zhou J.-N. Cultured rat cortical astrocytes synthesize melatonin: absence of a diurnal rhythm. Journal of Pineal Research. 2007;43(3):232–238. doi: 10.1111/j.1600-079x.2007.00466.x.
    1. Kinker G. S., Oba-Shinjo S. M., Carvalho-Sousa C. E., et al. Melatonergic system-based two-gene index is prognostic in human gliomas. Journal of Pineal Research. 2016;60(1):84–94. doi: 10.1111/jpi.12293.
    1. Bubenik G. A. Thirty four years since the discovery of gastrointestinal melatonin. Journal of Physiology and Pharmacology. 2008;59(supplement 2):33–51.
    1. Sakaguchi K., Itoh M. T., Takahashi N., Tarumi W., Ishizuka B. The rat oocyte synthesises melatonin. Reproduction, Fertility and Development. 2013;25(4):674–682. doi: 10.1071/RD12091.
    1. Lanoix D., Beghdadi H., Lafond J., Vaillancourt C. Human placental trophoblasts synthesize melatonin and express its receptors. Journal of Pineal Research. 2008;45(1):50–60. doi: 10.1111/j.1600-079X.2008.00555.x.
    1. Soliman A., Lacasse A.-A., Lanoix D., Sagrillo-Fagundes L., Boulard V., Vaillancourt C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. Journal of Pineal Research. 2015;59(1):38–46. doi: 10.1111/jpi.12236.
    1. Pontes G. N., Cardoso E. C., Carneiro-Sampaio M. M. S., Markus R. P. Pineal melatonin and the innate immune response: the TNF-α increase after cesarean section suppresses nocturnal melatonin production. Journal of Pineal Research. 2007;43(4):365–371. doi: 10.1111/j.1600-079x.2007.00487.x.
    1. Simonneaux V., Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacological Reviews. 2003;55(2):325–395. doi: 10.1124/pr.55.2.2.
    1. Cazaméa-Catalan D., Besseau L., Falcón J., Magnanou E. The timing of Timezyme diversification in vertebrates. PLoS ONE. 2014;9(12) doi: 10.1371/journal.pone.0112380.e112380
    1. Schippers K. J., Nichols S. A. Deep, dark secrets of melatonin in animal evolution. Cell. 2014;159(1):9–10. doi: 10.1016/j.cell.2014.09.004.
    1. Park S., Byeon Y., Lee H. Y., Kim Y.-S., Ahn T., Back K. Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda) Journal of Pineal Research. 2014;57(3):348–355. doi: 10.1111/jpi.12174.
    1. Møller M., Baeres F. M. The anatomy and innervation of the mammalian pineal gland. Cell and Tissue Research. 2002;309(1):139–150. doi: 10.1007/s00441-002-0580-5.
    1. Schomerus C., Korf H.-W. Cholinergic signal transduction cascades in rat pinealocytes: functional and ontogenetic aspects. Reproduction Nutrition Development. 1999;39(3):305–314. doi: 10.1051/rnd:19990303.
    1. Villela D., Atherino V. F., Lima L. D. S., et al. Modulation of pineal melatonin synthesis by glutamate involves paracrine interactions between pinealocytes and astrocytes through NF-κB activation. BioMed Research International. 2013;2013:14. doi: 10.1155/2013/618432.618432
    1. Yu H., Benitez S. G., Jung S., et al. GABAergic signaling in the rat pineal gland. Journal of Pineal Research. 2016;61(1):69–81. doi: 10.1111/jpi.12328.
    1. Markus R. P., Ferreira Z. S., Fernandes P. A., Cecon E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation. 2007;14(3-4):126–133. doi: 10.1159/000110635.
    1. Terriff D. L., Chik C. L., Price D. M., Ho A. K. Proteasomal proteolysis in the adrenergic induction of arylalkylamine-N- acetyltransferase in rat pinealocytes. Endocrinology. 2005;146(11):4795–4803. doi: 10.1210/en.2005-0642.
    1. de Oliveira Tatsch-Dias M., Levandovski R. M., de Souza I. C. C., et al. The concept of the immune-pineal axis tested in patients undergoing an abdominal hysterectomy. NeuroImmunoModulation. 2013;20(4):205–212. doi: 10.1159/000347160.
    1. Fernandes P. A. C. M., Bothorel B., Clesse D., et al. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo. Journal of Neuroendocrinology. 2009;21(2):90–97. doi: 10.1111/j.1365-2826.2008.01817.x.
    1. Ribelayga C., Pévet P., Simonneaux V. HIOMT drives the photoperiodic changes in the amplitude of the melatonin peak of the siberian hamster. American Journal of Physiology—Regulatory Integrative and Comparative Physiology. 2000;278(5):R1339–R1345.
    1. Liu T., Borjigin J. N-acetyltransferase is not the rate-limiting enzyme of melatonin synthesis at night. Journal of Pineal Research. 2005;39(1):91–96. doi: 10.1111/j.1600-079X.2005.00223.x.
    1. Bubenik G. A., Brown G. M., Grota L. J. Immunohistological localization of melatonin in the rat digestive system. Experientia. 1977;33(5):662–663. doi: 10.1007/BF01946561.
    1. Lardone P. J., Rubio A., Cerrillo I., et al. Blocking of melatonin synthesis and MT1 receptor impairs the activation of Jurkat T cells. Cellular and Molecular Life Sciences. 2010;67(18):3163–3172. doi: 10.1007/s00018-010-0374-y.
    1. Lardone P. J., Guerrero J. M., Fernández-Santos J. M., Rubio A., Martín-Lacave I., Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. Journal of Pineal Research. 2011;51(4):454–462. doi: 10.1111/j.1600-079X.2011.00909.x.
    1. Naranjo M. C., Guerrero J. M., Rubio A., et al. Melatonin biosynthesis in the thymus of humans and rats. Cellular and Molecular Life Sciences. 2007;64(6):781–790. doi: 10.1007/s00018-007-6435-1.
    1. Gómez-Corvera A., Cerrillo I., Molinero P., et al. Evidence of immune system melatonin production by two pineal melatonin deficient mice, C57BL/6 and Swiss strains. Journal of Pineal Research. 2009;47(1):15–22. doi: 10.1111/j.1600-079X.2009.00683.x.
    1. da Silveira Cruz-Machado S., Carvalho-Sousa C. E., Tamura E. K., et al. TLR4 and CD14 receptors expressed in rat pineal gland trigger NFKB pathway. Journal of Pineal Research. 2010;49(2):183–192. doi: 10.1111/j.1600-079x.2010.00785.x.
    1. da Silveira Cruz-Machado S., Pinato L., Tamura E. K., Carvalho-Sousa C. E., Markus R. P. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF) PLoS ONE. 2012;7(7) doi: 10.1371/journal.pone.0040142.e40142
    1. Carvalho-Sousa C. E., da Silveira Cruz-Machado S., Tamura K. E., et al. Molecular basis for defining the pineal gland and pinealocytes as targets for tumor necrosis factor. Frontiers in Endocrinology. 2010;2, article 10 doi: 10.3389/fendo.2011.00010.
    1. Cecon E., Fernandes P. A., Pinato L., Ferreira Z. S., Markus R. P. Daily variation of constitutively activated nuclear factor kappa B (NFKB) in rat pineal gland. Chronobiology International. 2010;27(1):52–67. doi: 10.3109/07420521003661615.
    1. Pires-Lapa M. A., Tamura E. K., Salustiano E. M. A., Markus R. P. Melatonin synthesis in human colostrum mononuclear cells enhances dectin-1-mediated phagocytosis by mononuclear cells. Journal of Pineal Research. 2013;55(3):240–246. doi: 10.1111/jpi.12066.
    1. Muxel S. M., Laranjeira-Silva M. F., Carvalho-Sousa C. E., Floeter-Winter L. M., Markus R. P. The RelA/cRel nuclear factor-kappaB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. Journal of Pineal Research. 2016;60(4):394–404.
    1. Tamura E. K., Fernandes P. A., Marçola M., Cruz-Machado S. D. S., Markus R. P. Long-lasting priming of endothelial cells by plasma melatonin levels. PLoS ONE. 2010;5(11) doi: 10.1371/journal.pone.0013958.e13958
    1. Marçola M., da Silveira Cruz-Machado S., Fernandes P. A. C. M., Monteiro A. W. A., Markus R. P., Tamura E. K. Endothelial cell adhesiveness is a function of environmental lighting and melatonin level. Journal of Pineal Research. 2013;54(2):162–169. doi: 10.1111/j.1600-079x.2012.01025.x.
    1. de Luxán-Delgado B., Caballero B., Potes Y., et al. Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. Journal of Pineal Research. 2014;56(2):126–133. doi: 10.1111/jpi.12104.
    1. Laranjeira-Silva M. F., Zampieri R. A., Muxel S. M., Floeter-Winter L. M., Markus R. P. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. Journal of Pineal Research. 2015;59(4):478–487. doi: 10.1111/jpi.12279.
    1. Fernandes P. A., Tamura E. K., D'Argenio-Garcia L., et al. Dual effect of catecholamines and corticosterone crosstalk on pineal gland melatonin synthesis. Neuroendocrinology. 2016 doi: 10.1159/000445189.
    1. Ferreira Z. S., Fernandes P. A. C. M., Duma D., Assreuy J., Avellar M. C. W., Markus R. P. Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor kappa B. Journal of Pineal Research. 2005;38(3):182–188. doi: 10.1111/j.1600-079X.2004.00191.x.
    1. Jockers R., Delagrange P., Dubocovich M. L., et al. Update on melatonin receptors: IUPHAR Review 20. British Journal of Pharmacology. 2016;173(18):2702–2725. doi: 10.1111/bph.13536.
    1. Dubocovich M. L., Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–110. doi: 10.1385/endo:27:2:101.
    1. Kamal M., Gbahou F., Guillaume J.-L., et al. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. The Journal of Biological Chemistry. 2015;290(18):11537–11546. doi: 10.1074/jbc.m114.559542.
    1. Dufourny L., Levasseur A., Migaud M., et al. GPR50 is the mammalian ortholog of Mel1c: evidence of rapid evolution in mammals. BMC Evolutionary Biology. 2008;8, article 105 doi: 10.1186/1471-2148-8-105.
    1. Levoye A., Dam J., Ayoub M. A., et al. The orphan GPR50 receptor specifically inhibits MT1 melatonin receptor function through heterodimerization. The EMBO Journal. 2006;25(13):3012–3023. doi: 10.1038/sj.emboj.7601193.
    1. Jeong J.-K., Park S.-Y. Melatonin regulates the autophagic flux via activation of alpha-7 nicotinic acetylcholine receptors. Journal of Pineal Research. 2015;59(1):24–37. doi: 10.1111/jpi.12235.
    1. Lahiri D. K. Melatonin affects the metabolism of the β-amyloid precursor protein in different cell types. Journal of Pineal Research. 1999;26(3):137–146. doi: 10.1111/j.1600-079x.1999.tb00575.x.
    1. Dragicevic N., Copes N., O'Neal-Moffitt G., et al. Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. Journal of Pineal Research. 2011;51(1):75–86. doi: 10.1111/j.1600-079x.2011.00864.x.
    1. Schapira A. H. V., Olanow C. W. Neuroprotection in Parkinson Disease: mysteries, myths, and misconceptions. Journal of the American Medical Association. 2004;291(3):358–364. doi: 10.1001/jama.291.3.358.
    1. Manchester L. C., Coto-Montes A., Boga J. A., et al. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. Journal of Pineal Research. 2015;59(4):403–419. doi: 10.1111/jpi.12267.
    1. Poeggeler B., Saarela S., Reiter R. J., et al. Melatonin—a highly potent endogenous radical scavenger and electron donor: New aspects of the oxidation chemistry of this indole accessed in vitro. Annals of the New York Academy of Sciences. 1994;738:419–420.
    1. Hardeland R., Tan D.-X., Reiter R. J. Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. Journal of Pineal Research. 2009;47(2):109–126. doi: 10.1111/j.1600-079x.2009.00701.x.
    1. Choi S.-I., Dadakhujaev S., Ryu H., Im Kim T., Kim E. K. Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. Journal of Pineal Research. 2011;51(1):94–103. doi: 10.1111/j.1600-079x.2011.00866.x.
    1. O'Neal-Moffitt G., Delic V., Bradshaw P. C., Olcese J. Prophylactic melatonin significantly reduces Alzheimer's neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Molecular Neurodegeneration. 2015;10(1, article 27) doi: 10.1186/s13024-015-0027-6.
    1. Franco D. G., Markus R. P. The cellular state determines the effect of melatonin on the survival of mixed cerebellar cell culture. PLoS ONE. 2014;9(9) doi: 10.1371/journal.pone.0106332.e106332
    1. Pinato L., da Silveira Cruz-Machado S., Franco D. G., et al. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. Brain Structure & Function. 2015;220(2):827–840. doi: 10.1007/s00429-013-0686-4.
    1. Dong Y., Fan C., Hu W., et al. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. Journal of Pineal Research. 2016;60(3):253–262. doi: 10.1111/jpi.12300.
    1. Ortiz F., Acuña-Castroviejo D., Doerrier C., et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. Journal of Pineal Research. 2015;58(1):34–49. doi: 10.1111/jpi.12191.
    1. Feng Z., Chang Y., Cheng Y., et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. Journal of Pineal Research. 2004;37(2):129–136. doi: 10.1111/j.1600-079X.2004.00144.x.
    1. Markus R. P., Silva C. L. M., Franco D. G., Barbosa E. M., Jr., Ferreira Z. S. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacology & Therapeutics. 2010;126(3):251–262. doi: 10.1016/j.pharmthera.2010.02.009.
    1. Parada E., Buendia I., León R., et al. Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. Journal of Pineal Research. 2014;56(2):204–212. doi: 10.1111/jpi.12113.
    1. Savaskan E., Ayoub M. A., Ravid R., et al. Reduced hippocampal MT2 melatonin receptor expression in Alzheimer's disease. Journal of Pineal Research. 2005;38(1):10–16. doi: 10.1111/j.1600-079X.2004.00169.x.
    1. Brunner P., Sözer-Topcular N., Jockers R., et al. Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer's disease. European Journal of Histochemistry. 2006;50(4):311–316.
    1. Wu Y.-H., Zhou J.-N., Van Heerikhuize J., Jockers R., Swaab D. F. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer's disease. Neurobiology of Aging. 2007;28(8):1239–1247. doi: 10.1016/j.neurobiolaging.2006.06.002.
    1. Adi N., Mash D. C., Ali Y., Singer C., Shehadeh L., Papapetropoulos S. Melatonin MT1 and MT2 receptor expression in Parkinson's disease. Medical Science Monitor. 2010;16(2):BR61–BR67.
    1. Uchida K., Okamoto N., Ohara K., Morita Y. Daily rhythm of serum melatonin in patients with dementia of the degenerate type. Brain Research. 1996;717(1-2):154–159. doi: 10.1016/0006-8993(96)00086-8.
    1. Zhou J.-N., Liu R.-Y., Kamphorst W., Hofman M. A., Swaab D. F. Early neuropathological Alzheimer's changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. Journal of Pineal Research. 2003;35(2):125–130. doi: 10.1034/j.1600-079X.2003.00065.x.
    1. Videnovic A., Breen D. P., Barker R. A., Zee P. C. The central clock in patients with Parkinson disease—reply. JAMA Neurology. 2014;71(11):1456–1457.
    1. Cecon E., Chen M., Marçola M., Fernandes P. A. C., Jockers R., Markus R. P. Amyloid β peptide directly impairs pineal gland melatonin synthesis and melatonin receptor signaling through the ERK pathway. FASEB Journal. 2015;29(6):2566–2582. doi: 10.1096/fj.14-265678.
    1. Wade A. G., Farmer M., Harari G., et al. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer's disease: a 6-month, randomized, placebo-controlled, multicenter trial. Clinical Interventions in Aging. 2014;9:947–961. doi: 10.2147/cia.s65625.
    1. Rosales-Corral S., Tan D.-X., Reiter R. J., et al. Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-β peptide in rat brain: a comparative, in vivo study versus vitamin C and E. Journal of Pineal Research. 2003;35(2):80–84. doi: 10.1034/j.1600-079x.2003.00057.x.
    1. Aziz N. A., Pijl H., Frölich M., et al. Delayed onset of the diurnal melatonin rise in patients with Huntington's disease. Journal of Neurology. 2009;256(12):1961–1965. doi: 10.1007/s00415-009-5196-1.
    1. Farez M. F., Mascanfroni I. D., Méndez-Huergo S. P., et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162(6):1338–1352. doi: 10.1016/j.cell.2015.08.025.
    1. Ritzenthaler T., Nighoghossian N., Berthiller J., et al. Nocturnal urine melatonin and 6-sulphatoxymelatonin excretion at the acute stage of ischaemic stroke. Journal of Pineal Research. 2009;46(3):349–352. doi: 10.1111/j.1600-079X.2009.00670.x.
    1. Morera-Fumero A. L., Abreu-Gonzalez P. Role of melatonin in schizophrenia. International Journal of Molecular Sciences. 2013;14(5):9037–9050. doi: 10.3390/ijms14059037.
    1. Fertl E., Auff E., Doppelbauer A., Waldhauser F. Circadian secretion pattern of melatonin in de novo Parkinsonian patients: evidence for phase-shifting properties of l-dopa. Journal of Neural Transmission—Parkinson's Disease and Dementia Section. 1993;5(3):227–234. doi: 10.1007/bf02257677.
    1. Fertl E., Auff E., Doppelbauer A., Waldhauser F. Circadian secretion pattern of melatonin in Parkinson's disease. Journal of Neural Transmission—Parkinson's Disease and Dementia Section. 1991;3(1):41–47. doi: 10.1007/bf02251135.
    1. Bordet R., Devos D., Brique S., et al. Study of circadian melatonin secretion pattern at different stages of Parkinson's disease. Clinical Neuropharmacology. 2003;26(2):65–72. doi: 10.1097/00002826-200303000-00005.
    1. Videnovic A., Noble C., Reid K. J., et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurology. 2014;71(4):463–469. doi: 10.1001/jamaneurol.2013.6239.
    1. Chen H., Schernhammer E., Schwarzschild M. A., Ascherio A. A prospective study of night shift work, sleep duration, and risk of Parkinson's disease. American Journal of Epidemiology. 2006;163(8):726–730. doi: 10.1093/aje/kwj096.
    1. Gao J., Huang X., Park Y., et al. Daytime napping, nighttime sleeping, and parkinson disease. American Journal of Epidemiology. 2011;173(9):1032–1038. doi: 10.1093/aje/kwq478.
    1. Venegas C., García J. A., Escames G., et al. Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. Journal of Pineal Research. 2012;52(2):217–227. doi: 10.1111/j.1600-079x.2011.00931.x.
    1. Seifman M. A., Adamides A. A., Nguyen P. N., et al. Endogenous melatonin increases in cerebrospinal fluid of patients after severe traumatic brain injury and correlates with oxidative stress and metabolic disarray. Journal of Cerebral Blood Flow and Metabolism. 2008;28(4):684–696. doi: 10.1038/sj.jcbfm.9600603.
    1. Leston J., Harthé C., Mottolese C., Mertens P., Sindou M., Claustrat B. Is pineal melatonin released in the third ventricle in humans? A study in movement disorders. Neurochirurgie. 2015;61(2-3):85–89. doi: 10.1016/j.neuchi.2013.04.004.
    1. Legros C., Chesneau D., Boutin J. A., Barc C., Malpaux B. Melatonin from cerebrospinal fluid but not from blood reaches sheep cerebral tissues under physiological conditions. Journal of Neuroendocrinology. 2014;26(3):151–163. doi: 10.1111/jne.12134.
    1. Singh S., Dikshit M. Apoptotic neuronal death in Parkinson's disease: involvement of nitric oxide. Brain Research Reviews. 2007;54(2):233–250. doi: 10.1016/j.brainresrev.2007.02.001.
    1. Samii A., Nutt J. G., Ransom B. R. Parkinson's disease. The Lancet. 2004;363(9423):1783–1793. doi: 10.1016/s0140-6736(04)16305-8.
    1. Burch D., Sheerin F. Parkinson's disease. Thye Lancet. 2005;365(9459):622–627. doi: 10.1016/s0140-6736(05)17915-x.
    1. Mansouri Z., Sabetkasaei M., Moradi F., Masoudnia F., Ataie A. Curcumin has neuroprotection effect on homocysteine rat model of Parkinson. Journal of Molecular Neuroscience. 2012;47(2):234–242. doi: 10.1007/s12031-012-9727-3.
    1. Massano J. Parkinson's disease: a clinical update. Acta Medica Portuguesa. 2011;24(4):827–834.
    1. Dinis-Oliveira R. J., Remião F., Carmo H., et al. Paraquat exposure as an etiological factor of Parkinson's disease. NeuroToxicology. 2006;27(6):1110–1122. doi: 10.1016/j.neuro.2006.05.012.
    1. Rodríguez-Nogales C., Garbayo E., Carmona-Abellán M. M., Luquin M. R., Blanco-Prieto M. J. Brain aging and Parkinson's disease: new therapeutic approaches using drug delivery systems. Maturitas. 2016;84:25–31. doi: 10.1016/j.maturitas.2015.11.009.
    1. Michel P., Hirsch E., Hunot S. Understanding dopaminergic cell death pathways in parkinson disease. Neuron. 2016;90(4):675–691. doi: 10.1016/j.neuron.2016.03.038.
    1. McCormack A. L., Thiruchelvam M., Manning-Bog A. B., et al. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiology of Disease. 2002;10(2):119–127. doi: 10.1006/nbdi.2002.0507.
    1. Wood-Kaczmar A., Gandhi S., Wood N. W. Understanding the molecular causes of Parkinson's disease. Trends in Molecular Medicine. 2006;12(11):521–528. doi: 10.1016/j.molmed.2006.09.007.
    1. Sulzer D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease. Trends in Neurosciences. 2007;30(5):244–250. doi: 10.1016/j.tins.2007.03.009.
    1. Ransohoff R. M. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–783. doi: 10.1126/science.aag2590.
    1. De Virgilio A., Greco A., Fabbrini G., et al. Parkinson's disease: autoimmunity and neuroinflammation. Autoimmunity Reviews. 2016;15(10):1005–1011. doi: 10.1016/j.autrev.2016.07.022.
    1. Jenner P., Olanow C. W. The pathogenesis of cell death in Parkinson's disease. Neurology. 2006;66(10):S24–S30. doi: 10.1212/WNL.66.10_suppl_4.S24.
    1. Singh N., Pillay V., Choonara Y. E. Advances in the treatment of Parkinson's disease. Progress in Neurobiology. 2007;81(1):29–44. doi: 10.1016/j.pneurobio.2006.11.009.
    1. Dias V., Junn E., Mouradian M. M. The role of oxidative stress in parkinson's disease. Journal of Parkinson's Disease. 2013;3(4):461–491. doi: 10.3233/JPD-130230.
    1. Klongpanichapak S., Phansuwan-Pujito P., Ebadi M., Govitrapong P. Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. Journal of Pineal Research. 2007;43(1):65–73. doi: 10.1111/j.1600-079X.2007.00444.x.
    1. Leentjens A. F. G., Dujardin K., Marsh L., Martinez-Martin P., Richard I. H., Starkstein S. E. Anxiety and motor fluctuations in Parkinson's disease: a cross-sectional observational study. Parkinsonism and Related Disorders. 2012;18(10):1084–1088. doi: 10.1016/j.parkreldis.2012.06.007.
    1. Sidhu A., Wersinger C., Vernier P. α-Synuclein regulation of the dopaminergic transporter: a possible role in the pathogenesis of Parkinson's disease. FEBS Letters. 2004;565(1–3):1–5. doi: 10.1016/j.febslet.2004.03.063.
    1. Dehay B., Fernagut P. O. Alpha-synuclein-based models of Parkinson's disease. Revue Neurologique. 2016;172(6-7):371–378. doi: 10.1016/j.neurol.2016.04.003.
    1. Altschuler E. Aluminium-containing antacids as a cause of idiopathic Parkinson's disease. Medical Hypotheses. 1999;53(1):22–23. doi: 10.1054/mehy.1997.0701.
    1. Davis L. E., Adair J. C. Parkinsonism from methanol poisoning: benefit from treatment with anti-Parkinson drugs. Movement Disorders. 1999;14(3):520–522. doi: 10.1002/1531-8257(199905)14:360;520::aid-mds102662;;2-v.
    1. Snyder S. H., D’Amato R. J. MPTP: a neurotoxin relevant to the pathophysiology of Parkinson’s disease: The 1985 George C. Cotzias Lecture. Neurology. 1986;36(2):250–258. doi: 10.1212/wnl.36.2.250.
    1. Giasson B. I., Lee V. M.-Y. A new link between pesticides and Parkinson's disease. Nature Neuroscience. 2000;3(12):1227–1228. doi: 10.1038/81737.
    1. Lees A. J., Hardy J., Revesz T. Parkinson's disease. The Lancet. 2009;373(9680):2055–2066. doi: 10.1016/S0140-6736(09)60492-X.
    1. Bruguerolle B., Simon N. Biologic rhythms and Parkinson's disease: a chronopharmacologic approach to considering fluctuations in function. Clinical Neuropharmacology. 2002;25(4):194–201. doi: 10.1097/00002826-200207000-00002.
    1. Willis G. L. Parkinson's disease as a neuroendocrine disorder of circadian function: dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Reviews in the Neurosciences. 2008;19(4-5):245–316.
    1. Boeve B. F., Silber M. H., Ferman T. J., et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep Medicine. 2013;14(8):754–762. doi: 10.1016/j.sleep.2012.10.015.
    1. Breen D. P., Vuono R., Nawarathna U., et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurology. 2014;71(5):589–595. doi: 10.1001/jamaneurol.2014.65.
    1. Chaudhuri K. R., Healy D. G., Schapira A. H. V. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurology. 2006;5(3):235–245. doi: 10.1016/s1474-4422(06)70373-8.
    1. Chaudhuri K. R., Schapira A. H. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. The Lancet Neurology. 2009;8(5):464–474. doi: 10.1016/S1474-4422(09)70068-7.
    1. Bonito-Oliva A., Masini D., Fisone G. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions. Frontiers in Behavioral Neuroscience. 2014;8, article 290 doi: 10.3389/fnbeh.2014.00290.
    1. Braak H., Del Tredici K., Rüb U., De Vos R. A. I., Jansen Steur E. N. H., Braak E. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of Aging. 2003;24(2):197–211. doi: 10.1016/S0197-4580(02)00065-9.
    1. Roy A., Pahan K. Prospects of statins in Parkinson disease. The Neuroscientist. 2011;17(3):244–255. doi: 10.1177/1073858410385006.
    1. Sonsalla P. K., Wong L.-Y., Harris S. L., et al. Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson's disease. Experimental Neurology. 2012;234(2):482–487. doi: 10.1016/j.expneurol.2012.01.022.
    1. Maranis S., Tsouli S., Konitsiotis S. Treatment of motor symptoms in advanced Parkinson's disease: a practical approach. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2011;35(8):1795–1807. doi: 10.1016/j.pnpbp.2011.05.014.
    1. Castro-Hernández J., Afonso-Oramas D., Cruz-Muros I., et al. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiology of Disease. 2015;74:325–335. doi: 10.1016/j.nbd.2014.12.007.
    1. Burton S., Daya S., Potgieter B. Melatonin modulates apomorphine-induced rotational behaviour. Experientia. 1991;47(5):466–469. doi: 10.1007/BF01959946.
    1. Mayo J. C., Sainz R. M., Uria H., Antolin I., Esteban M. M., Rodriguez C. Melatonin prevents apoptosis induced by 6-hydroxydopamine in neuronal cells: implications for Parkinson's disease. Journal of Pineal Research. 1998;24(3):179–192. doi: 10.1111/j.1600-079x.1998.tb00531.x.
    1. Joo W. S., Jin B. K., Park C. W., Maeng S. H., Kim Y. S. Melatonin increases striatal dopaminergic function in 6-OHDA-lesioned rats. NeuroReport. 1998;9(18):4123–4126. doi: 10.1097/00001756-199812210-00022.
    1. Mayo J. C., Sainz R. M., Antolín I., Rodriguez C. Ultrastructural confirmation of neuronal protection by melatonin against the neurotoxin 6-hydroxydopamine cell damage. Brain Research. 1999;818(2):221–227. doi: 10.1016/S0006-8993(98)01262-1.
    1. Dabbeni-Sala F., Di Santo S., Franceschini D., Skaper S. D., Giusti P. Melatonin protects against 6-OHDA-induced neurotoxicity in rats: a role for mitochondrial complex I activity. The FASEB Journal. 2001;15(1):164–170. doi: 10.1096/fj.00-0129com.
    1. Aguiar L. M. V., Vasconcelos S. M. M., Sousa F. C. F., Viana G. S. B. Melatonin reverses neurochemical alterations induced by 6-OHDA in rat striatum. Life Sciences. 2002;70(9):1041–1051. doi: 10.1016/S0024-3205(01)01480-1.
    1. Chetsawang B., Govitrapong P., Ebadi M. The neuroprotective effect of melatonin against the induction of c-Jun phosphorylation by 6-hydroxydopamine on SK-N-SH cells. Neuroscience Letters. 2004;371(2-3):205–208. doi: 10.1016/j.neulet.2004.08.068.
    1. Sharma R., McMillan C. R., Tenn C. C., Niles L. P. Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Research. 2006;1068(1):230–236. doi: 10.1016/j.brainres.2005.10.084.
    1. Singh S., Ahmed R., Sagar R. K., Krishana B. Neuroprotection of the nigrostriatal dopaminergic neurons by melatonin in hemiparkinsonium rat. Indian Journal of Medical Research. 2006;124(4):419–426.
    1. Gutierrez-Valdez A. L., Anaya-Martínez V., Ordoñez-Librado J. L., et al. Effect of chronic L-dopa or melatonin treatments after dopamine deafferentation in rats: dyskinesia, motor performance, and cytological analysis. ISRN Neurology. 2012;2012:16. doi: 10.5402/2012/360379.360379
    1. Yildirim F. B., Ozsoy O., Tanriover G., et al. Mechanism of the beneficial effect of melatonin in experimental Parkinson's disease. Neurochemistry International. 2014;79:1–11. doi: 10.1016/j.neuint.2014.09.005.
    1. Kim Y. S., Joo W. S., Jin B. K., Cho Y. H., Baik H. H., Park C. W. Melatonin protects 6-OHDA-induced neuronal death of nigrostriatal dopaminergic system. NeuroReport. 1998;9(10):2387–2390. doi: 10.1097/00001756-199807130-00043.
    1. Ozsoy O., Yildirim F. B., Ogut E., et al. Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model. Free Radical Research. 2015;49(8):1004–1014. doi: 10.3109/10715762.2015.1027198.
    1. Jin B. K., Shin D. Y., Jeong M. Y., et al. Melatonin protects nigral dopaminergic neurons from 1-methyl-4- phenylpyridinium (MPP+) neurotoxicity in rats. Neuroscience Letters. 1998;245(2):61–64. doi: 10.1016/S0304-3940(98)00170-0.
    1. Absi E., Ayala A., Machado A., Parrado J. Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of complex I of the mitochondrial respiratory chain. Journal of Pineal Research. 2000;29(1):40–47. doi: 10.1034/j.1600-079x.2000.290106.x.
    1. Shur T. C., Jih I. C., Mei H. H., I-Chian Li E. Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway. Journal of Pineal Research. 2002;32(4):262–269. doi: 10.1034/j.1600-079x.2002.01871.x.
    1. Chen L.-J., Gao Y.-Q., Li X.-J., Shen D.-H., Sun F.-Y. Melatonin protects against MPTP/MPP+-induced mitochondrial DNA oxidative damage in vivo and in vitro. Journal of Pineal Research. 2005;39(1):34–42. doi: 10.1111/j.1600-079x.2005.00209.x.
    1. Alvira D., Tajes M., Verdaguer E., et al. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease. Journal of Pineal Research. 2006;40(3):251–258. doi: 10.1111/j.1600-079X.2005.00308.x.
    1. Chetsawang J., Govitrapong P., Chetsawang B. Melatonin inhibits MPP+-induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells. Journal of Pineal Research. 2007;43(2):115–120. doi: 10.1111/j.1600-079X.2007.00449.x.
    1. Huang J.-Y., Hong Y.-T., Chuang J.-I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro. Journal of Neurochemistry. 2009;109(5):1400–1412. doi: 10.1111/j.1471-4159.2009.06061.x.
    1. Acuña-Castroviejo D., Coto-Montes A., Monti M. G., Ortiz G. G., Reiter R. J. Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sciences. 1996;60(2):Pl23–Pl29.
    1. Khaldy H., Escames G., León J., Bikjdaouene L., Acuña-Castroviejo D. Synergistic effects of melatonin and deprenyl against MPTP-induced mitochondrial damage and DA depletion. Neurobiology of Aging. 2003;24(3):491–500. doi: 10.1016/S0197-4580(02)00133-1.
    1. Tapias V., Escames G., López L. C., et al. Melatonin and its brain metabolite N1-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in Parkinsonian mice. Journal of Neuroscience Research. 2009;87(13):3002–3010. doi: 10.1002/jnr.22123.
    1. Niranjan R., Nath C., Shukla R. The mechanism of action of MPTP-induced neuroinflammation and its modulation by melatonin in rat astrocytoma cells, C6. Free Radical Research. 2010;44(11):1304–1316. doi: 10.3109/10715762.2010.501080.
    1. Patki G., Lau Y.-S. Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson's disease. Pharmacology Biochemistry and Behavior. 2011;99(4):704–711. doi: 10.1016/j.pbb.2011.06.026.
    1. Zaitone S. A., Hammad L. N., Farag N. E. Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice. Pharmacological Reports. 2013;65(5):1213–1226. doi: 10.1016/S1734-1140(13)71479-8.
    1. Naskar A., Prabhakar V., Singh R., Dutta D., Mohanakumar K. P. Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Journal of Pineal Research. 2015;58(3):262–274. doi: 10.1111/jpi.12212.
    1. Díaz-Casado M. E., Lima E., García J. A., et al. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network. Journal of Pineal Research. 2016;61(1):96–107. doi: 10.1111/jpi.12332.
    1. Coulom H., Birman S. Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster . The Journal of Neuroscience. 2004;24(48):10993–10998. doi: 10.1523/jneurosci.2993-04.2004.
    1. Saravanan K. S., Sindhu K. M., Mohanakumar K. P. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. Journal of Pineal Research. 2007;42(3):247–253. doi: 10.1111/j.1600-079X.2006.00412.x.
    1. Bassani T. B., Gradowski R. W., Zaminelli T., et al. Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson's disease model in rats. Brain Research. 2014;1593:95–105. doi: 10.1016/j.brainres.2014.09.068.
    1. Carriere C. H., Kang N. H., Niles L. P. Chronic low-dose melatonin treatment maintains nigrostriatal integrity in an intrastriatal rotenone model of Parkinson's disease. Brain Research. 2016;1633:115–125. doi: 10.1016/j.brainres.2015.12.036.
    1. Ishido M. Melatonin inhibits maneb-induced aggregation of α-synuclein in rat pheochromocytoma cells. Journal of Pineal Research. 2007;42(2):125–130. doi: 10.1111/j.1600-079X.2006.00390.x.
    1. Singhal N. K., Srivastava G., Patel D. K., Jain S. K., Singh M. P. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Journal of Pineal Research. 2011;50(2):97–109. doi: 10.1111/j.1600-079x.2010.00819.x.
    1. Brito-Armas J. M., Baekelandt V., Castro-Hernández J. R., González-Hernández T., Rodríguez M., Fuentes R. C. Melatonin prevents dopaminergic cell loss induced by lentiviral vectors expressing A30P mutant alpha-synuclein. Histology and Histopathology. 2013;28(8):999–1006.
    1. Wan Q., Man H.-Y., Liu F., et al. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nature Neuroscience. 1999;2(5):401–403. doi: 10.1038/8062.
    1. Hogan M. V., El-Sherif Y., Wieraszko A. The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. Journal of Pineal Research. 2001;30(2):87–96. doi: 10.1034/j.1600-079x.2001.300204.x.
    1. El-Sherif Y., Witt-Enderby P., Li P.-K., Tesoriero J., Hogan M. V., Wieraszko A. The actions of a charged melatonin receptor ligand, TMEPI, and an irreversible MT2 receptor agonist, BMNEP, on mouse hippocampal evoked potentials in vitro. Life Sciences. 2004;75(26):3147–3156. doi: 10.1016/j.lfs.2004.06.009.
    1. Wang L. M., Suthana N. A., Chaudhury D., Weaver D. R., Colwell C. S. Melatonin inhibits hippocampal long-term potentiation. The European Journal of Neuroscience. 2005;22(9):2231–2237. doi: 10.1111/j.1460-9568.2005.04408.x.
    1. Larson J., Jessen R. E., Uz T., et al. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neuroscience Letters. 2006;393(1):23–26. doi: 10.1016/j.neulet.2005.09.040.
    1. O'Neal-Moffitt G., Pilli J., Kumar S. S., Olcese J. Genetic deletion of MT1/MT2 melatonin receptors enhances murine cognitive and motor performance. Neuroscience. 2014;277:506–521. doi: 10.1016/j.neuroscience.2014.07.018.
    1. Golus P., King M. G. The effects of melatonin on open field behavior. Pharmacology, Biochemistry and Behavior. 1981;15(6):883–885. doi: 10.1016/0091-3057(81)90048-4.
    1. Golombek D. A., Martini M., Cardinali D. P. Melatonin as an anxiolytic in rats: time dependence and interaction with the central GABAergic system. European Journal of Pharmacology. 1993;237(2-3):231–236. doi: 10.1016/0014-2999(93)90273-K.
    1. Pierrefiche G., Zerbib R., Laborit H. Anxiolytic activity of melatonin in mice: involvement of benzodiazepine receptors. Research Communications in Chemical Pathology and Pharmacology. 1993;82(2):131–142.
    1. Naranjo-Rodriguez E. B., Osornio A. O., Hernandez-Avitia E., Mendoza-Fernandez V., Escobar A. Anxiolytic-like actions of melatonin, 5-metoxytryptophol, 5-hydroxytryptophol and benzodiazepines on a conflict procedure. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2000;24(1):117–129. doi: 10.1016/S0278-5846(99)00075-5.
    1. Kopp C., Vogel E., Rettori M.-C., Delagrange P., Misslin R. Anxiolytic-like properties of melatonin receptor agonists in mice: involvement of mt1 and/or MT2 receptors in the regulation of emotional responsiveness. Neuropharmacology. 2000;39(10):1865–1871. doi: 10.1016/s0028-3908(99)00263-4.
    1. Millan M. J., Brocco M., Gobert A., Dekeyne A. Anxiolytic properties of agomelatine, an antidepressant with melatoninergic and serotonergic properties: role of 5-HT2C receptor blockade. Psychopharmacology. 2005;177(4):448–458. doi: 10.1007/s00213-004-1962-z.
    1. Papp M., Litwa E., Gruca P., Mocaër E. Anxiolytic-like activity of agomelatine and melatonin in three animal models of anxiety. Behavioural Pharmacology. 2006;17(1):9–18. doi: 10.1097/01.fbp.0000181601.72535.9d.
    1. Loiseau F., Le Bihan C., Hamon M., Thiébot M.-H. Effects of melatonin and agomelatine in anxiety-related procedures in rats: Interaction with diazepam. European Neuropsychopharmacology. 2006;16(6):417–428. doi: 10.1016/j.euroneuro.2005.11.007.
    1. Tian S.-W., Laudon M., Han L., et al. Antidepressant- and anxiolytic effects of the novel melatonin agonist Neu-P11 in rodent models. Acta Pharmacologica Sinica. 2010;31(7):775–783. doi: 10.1038/aps.2010.80.
    1. El Mrabet F. Z., Ouaaki S., Mesfioui A., El Hessni A., Ouichou A. Pinealectomy and exogenous melatonin regulate anxiety-like and depressive-like behaviors in male and female wistar rats. Neuroscience & Medicine. 2012;3:394–403.
    1. Ochoa-Sanchez R., Rainer Q., Comai S., et al. Anxiolytic effects of the melatonin MT2 receptor partial agonist UCM765: comparison with melatonin and diazepam. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2012;39(2):318–325. doi: 10.1016/j.pnpbp.2012.07.003.
    1. Kim G. H., Kim J. E., Rhie S. J., Yoon S. The role of oxidative stress in neurodegenerative diseases. Experimental Neurobiology. 2015;24(4):325–340. doi: 10.5607/en.2015.24.4.325.
    1. Jackson-Lewis V., Blesa J., Przedborski S. Animal models of Parkinson's disease. Parkinsonism and Related Disorders. 2012;18(1):S183–S185.
    1. Ungerstedt U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. European Journal of Pharmacology. 1968;5(1):107–110. doi: 10.1016/0014-2999(68)90164-7.
    1. Bové J., Prou D., Perier C., Przedborski S. Toxin-induced models of Parkinson's disease. NeuroRx. 2005;2(3):484–494. doi: 10.1602/neurorx.2.3.484.
    1. Mendez J. S., Finn B. W. Use of 6 hydroxydopamine to create lesions in catecholamine neurons in rats. Journal of Neurosurgery. 1975;42(2):166–173. doi: 10.3171/jns.1975.42.2.0166.
    1. Reiter R. J., Tan D. X., Galano A. Melatonin: exceeding expectations. Physiology. 2014;29(5):325–333. doi: 10.1152/physiol.00011.2014.
    1. Langston J. W., Ballard P., Tetrud J. W., Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–980. doi: 10.1126/science.6823561.
    1. Mochizuki H., Nakamura N., Nishi K., Mizuno Y. Apoptosis is induced by 1-methyl-4-phenylpyridinium ion (MPP+) in ventral mesencephalic-striatal co-culture in rat. Neuroscience Letters. 1994;170(1):191–194. doi: 10.1016/0304-3940(94)90271-2.
    1. Khaldy H., Escames G., León J., Vives F., Luna J. D., Acuña-Castroviejo D. Comparative effects of melatonin, L-deprenyl, trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. Journal of Pineal Research. 2000;29(2):100–107. doi: 10.1034/j.1600-079X.2000.290206.x.
    1. Ibáñez C. F., Andressoo J.-O. Biology of GDNF and its receptors—relevance for disorders of the central nervous system. Neurobiology of Disease. 2016 doi: 10.1016/j.nbd.2016.01.021.
    1. Armstrong K. J., Niles L. P. Induction of GDNF mRNA expression by melatonin in rat C6 glioma cells. NeuroReport. 2002;13(4):473–475. doi: 10.1097/00001756-200203250-00023.
    1. Niles L. P., Armstrong K. J., Rincón Castro L. M., et al. Neural stem cells express melatonin receptors and neurotrophic factors: colocalization of the MT1 receptor with neuronal and glial markers. BMC Neuroscience. 2004;5, article 41 doi: 10.1186/1471.2202-5-41.
    1. Tang Y. P., Ma Y. L., Chao C. C., Chen K. Y., Lee E. H. Y. Enhanced glial cell line-derived neurotrophic factor mRNA expression upon (−)-deprenyl and melatonin treatments. Journal of Neuroscience Research. 1998;53(5):593–604. doi: 10.1002/(sici)1097-4547(19980901)53:560;593::aid-jnr962;;2-4.
    1. Howells D. W., Porritt M. J., Wong J. Y. F., et al. Reduced BDNF mRNA expression in the Parkinson's disease substantia nigra. Experimental Neurology. 2000;166(1):127–135. doi: 10.1006/exnr.2000.7483.
    1. Imbesi M., Uz T., Manev H. Role of melatonin receptors in the effects of melatonin on BDNF and neuroprotection in mouse cerebellar neurons. Journal of Neural Transmission. 2008;115(11):1495–1499. doi: 10.1007/s00702-008-0066-z.
    1. Zhang L., Zhang H.-Q., Liang X.-Y., Zhang H.-F., Zhang T., Liu F.-E. Melatonin ameliorates cognitive impairment induced by sleep deprivation in rats: role of oxidative stress, BDNF and CaMKII. Behavioural Brain Research. 2013;256:72–81. doi: 10.1016/j.bbr.2013.07.051.
    1. Molteni R., Calabrese F., Pisoni S., et al. Synergistic mechanisms in the modulation of the neurotrophin BDNF in the rat prefrontal cortex following acute agomelatine administration. The World Journal of Biological Psychiatry. 2010;11(2):148–153. doi: 10.3109/15622970903447659.
    1. Klongpanichapak S., Phansuwan-Pujito P., Ebadi M., Govitrapong P. Melatonin inhibits amphetamine-induced increase in α-synuclein and decrease in phosphorylated tyrosine hydroxylase in SK–N–SH cells. Neuroscience Letters. 2008;436(3):309–313. doi: 10.1016/j.neulet.2008.03.053.
    1. Sae-Ung K., Uéda K., Govitrapong P., Phansuwan-Pujito P. Melatonin reduces the expression of alpha-synuclein in the dopamine containing neuronal regions of amphetamine-treated postnatal rats. Journal of Pineal Research. 2012;52(1):128–137. doi: 10.1111/j.1600-079X.2011.00927.x.
    1. Chang C.-F., Huang H.-J., Lee H.-C., Hung K.-C., Wu R.-T., Lin A. M.-Y. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. Journal of Pineal Research. 2012;52(3):312–321. doi: 10.1111/j.1600-079X.2011.00945.x.
    1. Freire C., Koifman S. Pesticide exposure and Parkinson's disease: epidemiological evidence of association. NeuroToxicology. 2012;33(5):947–971. doi: 10.1016/j.neuro.2012.05.011.
    1. Zhou H., Chen J., Lu X., et al. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. Journal of Pineal Research. 2012;52(1):120–127. doi: 10.1111/j.1600-079X.2011.00926.x.
    1. Willis G. L., Moore C., Armstrong S. M. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson's disease. Reviews in the Neurosciences. 2012;23(2):199–226. doi: 10.1515/revneuro-2011-0072.
    1. Medeiros C. A. M., Carvalhedo de Bruin P. F., Lopes L. A., Magalhães M. C., de Lourdes Seabra M., Sales de Bruin V. M. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson's disease. A randomized, double blind, placebo-controlled study. Journal of Neurology. 2007;254(4):459–464. doi: 10.1007/s00415-006-0390-x.
    1. Chuang J. I., Lin M. T. Pharmacological effects of melatonin treatment on both locomotor activity and brain serotonin release in rats. Journal of Pineal Research. 1994;17(1):11–16. doi: 10.1111/j.1600-079x.1994.tb00107.x.
    1. Willis G. L., Armstrong S. M. A therapeutic role for melatonin antagonism in experimental models of Parkinson's disease. Physiology & Behavior. 1999;66(5):785–795. doi: 10.1016/s0031-9384(99)00023-2.
    1. Rutten S., Vriend C., van den Heuvel O. A., Smit J. H., Berendse H. W., van der Werf Y. D. Bright light therapy in Parkinson's disease: an overview of the background and evidence. Parkinson's Disease. 2012;2012:9. doi: 10.1155/2012/767105.767105
    1. Willis G. L., Turner E. J. D. Primary and secondary features of Parkinson's disease improve with strategic exposure to bright light: a case series study. Chronobiology International. 2007;24(3):521–537. doi: 10.1080/07420520701420717.
    1. Paus S., Schmitz-Hübsch T., Wüllner U., Vogel A., Klockgether T., Abele M. Bright light therapy in Parkinson's disease: a pilot study. Movement Disorders. 2007;22(10):1495–1498. doi: 10.1002/mds.21542.
    1. Willis G. L., Robertson A. D. Recovery from experimental Parkinson's disease in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine hydrochloride treated marmoset with the melatonin analogue ML-23. Pharmacology Biochemistry and Behavior. 2005;80(1):9–26. doi: 10.1016/j.pbb.2004.10.022.
    1. Willis G. L. Intraocular microinjections repair experimental Parkinson's disease. Brain Research. 2008;1217:119–131. doi: 10.1016/j.brainres.2008.03.083.
    1. Bodis-Wollner I. Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neurosciences. 1990;13(7):296–302. doi: 10.1016/0166-2236(90)90113-O.
    1. Zisapel N. Melatonin-dopamine interactions: from basic neurochemistry to a clinical setting. Cellular and Molecular Neurobiology. 2001;21(6):605–616. doi: 10.1023/a:1015187601628.
    1. Shieh K.-R., Chu Y.-S., Pan J.-T. Circadian change of dopaminergic neuron activity: effects of constant light and melatonin. NeuroReport. 1997;8(9-10):2283–2287. doi: 10.1097/00001756-199707070-00037.
    1. Khaldy H., León J., Escames G., Bikjdaouene L., García J. J., Acuña-Castroviejo D. Circadian rhythms of dopamine and dihydroxyphenyl acetic acid in the mouse striatum: effects of pinealectomy and of melatonin treatment. Neuroendocrinology. 2002;75(3):201–208. doi: 10.1159/000048238.
    1. Iranzo A. Sleep in neurodegenerative diseases. Sleep Medicine Clinics. 2016;11(1):1–18. doi: 10.1016/j.jsmc.2015.10.011.
    1. Abbott R. D., Ross G. W., White L. R., et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology. 2005;65(9):1442–1446. doi: 10.1212/01.wnl.0000183056.89590.0d.
    1. Tholfsen L. K., Larsen J. P., Schulz J., Tysnes O.-B., Gjerstad M. D. Development of excessive daytime sleepiness in early Parkinson disease. Neurology. 2015;85(2):162–168. doi: 10.1212/WNL.0000000000001737.
    1. Trotti L. M., Bliwise D. L. Treatment of the sleep disorders associated with Parkinson's disease. Neurotherapeutics. 2014;11(1):68–77. doi: 10.1007/s13311-013-0236-z.
    1. Mishima K., Okawa M., Hishikawa Y., Hozumi S., Hori H., Takahashi K. Morning bright light therapy for sleep and behavior disorders in elderly patients with dementia. Acta Psychiatrica Scandinavica. 1994;89(1):1–7.
    1. Leentjens A. F. G., Scholtissen B., Vreeling F. W., Verhey F. R. J. The serotonergic hypothesis for depression in Parkinson's disease: an experimental approach. Neuropsychopharmacology. 2006;31(5):1009–1015. doi: 10.1038/sj.npp.1300914.
    1. Jennum P., Christensen J. A., Zoetmulder M. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development. Nature and Science of Sleep. 2016;8:107–120. doi: 10.2147/nss.s99240.
    1. Schenck C. H., Boeve B. F., Mahowald M. W. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Medicine. 2013;14(8):744–748. doi: 10.1016/j.sleep.2012.10.009.
    1. Iranzo A., Tolosa E., Gelpi E., et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An Observational Cohort Study. The Lancet Neurology. 2013;12(5):443–453. doi: 10.1016/s1474-4422(13)70056-5.
    1. Plomhause L., Dujardin K., Duhamel A., et al. Rapid eye movement sleep behavior disorder in treatment-naïve Parkinson disease patients. Sleep Medicine. 2013;14(10):1035–1037. doi: 10.1016/j.sleep.2013.04.018.
    1. Gagnon J.-F., Bédard M.-A., Fantini M. L., et al. REM sleep behavior disorder and REM sleep without atonia in Parkinson's disease. Neurology. 2002;59(4):585–589. doi: 10.1212/WNL.59.4.585.
    1. Sixel-Döring F., Trautmann E., Mollenhauer B., Trenkwalder C. Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology. 2011;77(11):1048–1054. doi: 10.1212/WNL.0b013e31822e560e.
    1. Gjerstad M. D., Boeve B., Wentzel-Larsen T., Aarsland D., Larsen J. P. Occurrence and clinical correlates of REM sleep behaviour disorder in patients with Parkinson's disease over time. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(4):387–391. doi: 10.1136/jnnp.2007.116830.
    1. Kunz D., Bes F. Melatonin as a therapy in REM sleep behavior disorder patients: an open-labeled pilot study on the possible influence of melatonin on REM-sleep regulation. Movement Disorders. 1999;14(3):507–511. doi: 10.1002/1531-8257(199905)14:3<507::aid-mds1021>;2-8.
    1. Ylikoski A., Martikainen K., Sieminski M., Partinen M. Parkinson’s disease and insomnia. Neurological Sciences. 2015;36(11):2003–2010. doi: 10.1007/s10072-015-2288-9.
    1. Trenkwalder C., Kies B., Rudzinska M., et al. Rotigotine effects on early morning motor function and sleep in Parkinson's disease: a double-blind, randomized, placebo-controlled study (RECOVER) Movement Disorders. 2011;26(1):90–99. doi: 10.1002/mds.23441.
    1. Ray Chaudhuri K., Martinez-Martin P., Rolfe K. A., et al. Improvements in nocturnal symptoms with ropinirole prolonged release in patients with advanced Parkinson's disease. European Journal of Neurology. 2012;19(1):105–113. doi: 10.1111/j.1468-1331.2011.03442.x.
    1. Zibetti M., Rizzone M., Merola A., et al. Sleep improvement with levodopa/carbidopa intestinal gel infusion in Parkinson disease. Acta Neurologica Scandinavica. 2013;127(5):e28–e32. doi: 10.1111/ane.12075.
    1. Guardiola-Lemaître B., Lenègre A., Porsolt R. D. Combined effects of diazepam and melatonin in two tests for anxiolytic activity in the mouse. Pharmacology, Biochemistry and Behavior. 1992;41(2):405–408. doi: 10.1016/0091-3057(92)90118-y.
    1. Rios Romenets S., Creti L., Fichten C., et al. Doxepin and cognitive behavioural therapy for insomnia in patients with Parkinson's disease—a randomized study. Parkinsonism and Related Disorders. 2013;19(7):670–675. doi: 10.1016/j.parkreldis.2013.03.003.
    1. Ding W., Ding L.-J., Li F.-F., Han Y., Mu L. Neurodegeneration and cognition in Parkinson's disease: a review. European Review for Medical and Pharmacological Sciences. 2015;19(12):2275–2281.
    1. Foltynie T., Brayne C. E. G., Robbins T. W., Barker R. A. The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPaIGN study. Brain. 2004;127, part 3:550–560. doi: 10.1093/brain/awh067.
    1. Richards M., Cote L. J., Stern Y. Executive function in Parkinson's disease: set-shifting or set-maintenance? Journal of Clinical and Experimental Neuropsychology. 1993;15(2):266–279. doi: 10.1080/01688639308402562.
    1. Montse A., Pere V., Carme J., Francesc V., Eduardo T. Visuospatial deficits in Parkinson's disease assessed by judgment of line orientation test: error analyses and practice effects. Journal of Clinical and Experimental Neuropsychology. 2001;23(5):592–598. doi: 10.1076/jcen.23.5.592.1248.
    1. Mak E., Zhou J., Tan L. C. S., Au W. L., Sitoh Y. Y., Kandiah N. Cognitive deficits in mild Parkinson's disease are associated with distinct areas of grey matter atrophy. Journal of Neurology, Neurosurgery and Psychiatry. 2014;85(5):576–580. doi: 10.1136/jnnp-2013-305805.
    1. Takahashi Y., Okada T. Involvement of the nitric oxide cascade in melatonin-induced inhibition of long-term potentiation at hippocampal CA1 synapses. Neuroscience Research. 2011;69(1):1–7. doi: 10.1016/j.neures.2010.09.004.
    1. Ramírez-Rodríguez G., Vega-Rivera N. M., Benítez-King G., Castro-García M., Ortíz-López L. Melatonin supplementation delays the decline of adult hippocampal neurogenesis during normal aging of mice. Neuroscience Letters. 2012;530(1):53–58. doi: 10.1016/j.neulet.2012.09.045.
    1. Datieva V. K., Rosinskaya A. V., Levin O. S. The use of melatonin in the treatment of chronic fatigue syndrome and circadian rhythm disorders in Parkinson's disease. Zh Nevrol Psikhiatr. 2013;113(7):77–81.
    1. Capitelli C., Sereniki A., Lima M. M. S., Reksidler A. B., Tufik S., Vital M. A. B. F. Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. European Journal of Pharmacology. 2008;594(1–3):101–108. doi: 10.1016/j.ejphar.2008.07.022.
    1. Bertaina-Anglade V., Drieu-La-Rochelle C., Mocaër E., Seguin L. Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacology Biochemistry and Behavior. 2011;98(4):511–517. doi: 10.1016/j.pbb.2011.02.015.
    1. He P., Ouyang X., Zhou S., et al. A novel melatonin agonist Neu-P11 facilitates memory performance and improves cognitive impairment in a rat model of Alzheimer' disease. Hormones and Behavior. 2013;64(1):1–7. doi: 10.1016/j.yhbeh.2013.04.009.
    1. Baydas G., Özer M., Yasar A., Tuzcu M., Koz S. T. Melatonin improves learning and memory performances impaired by hyperhomocysteinemia in rats. Brain Research. 2005;1046(1-2):187–194. doi: 10.1016/j.brainres.2005.04.011.
    1. Pushpanathan M. E., Loftus A. M., Thomas M. G., Gasson N., Bucks R. S. The relationship between sleep and cognition in Parkinson's disease: a meta-analysis. Sleep Medicine Reviews. 2016;26:21–32. doi: 10.1016/j.smrv.2015.04.003.
    1. Comai S., Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. Journal of Psychiatry and Neuroscience. 2014;39(1):6–21. doi: 10.1503/jpn.130009.
    1. Aarsland D., Påhlhagen S., Ballard C. G., Ehrt U., Svenningsson P. Depression in Parkinson disease—epidemiology, mechanisms and management. Nature Reviews Neurology. 2012;8(1):35–47. doi: 10.1038/nrneurol.2011.189.
    1. Cooney J. W., Stacy M. Neuropsychiatric issues in Parkinson’s disease. Current Neurology and Neuroscience Reports. 2016;16(5, article 49) doi: 10.1007/s11910-016-0647-4.
    1. Riedel O., Klotsche J., Spottke A., et al. Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease. Journal of Neurology. 2010;257(7):1073–1082. doi: 10.1007/s00415-010-5465-z.
    1. Starkstein S. E., Fedoroff J. P., Price T. R., Leiguarda R., Robinson R. G. Anosognosia in patients with cerebrovascular lesions. A study of causative factors. Stroke. 1992;23(10):1446–1453. doi: 10.1161/01.str.23.10.1446.
    1. Jacob E. L., Gatto N. M., Thompson A., Bordelon Y., Ritz B. Occurrence of depression and anxiety prior to Parkinson's disease. Parkinsonism and Related Disorders. 2010;16(9):576–581. doi: 10.1016/j.parkreldis.2010.06.014.
    1. Alonso A., García Rodríguez L. A., Logroscino G., Hernán M. A. Use of antidepressants and the risk of Parkinson's disease: a prospective study. Journal of Neurology, Neurosurgery and Psychiatry. 2009;80(6):671–674. doi: 10.1136/jnnp.2008.152983.
    1. Walter U., Dressler D., Wolters A., Wittstock M., Benecke R. Transcranial brain sonography findings in clinical subgroups of idiopathic Parkinson's disease. Movement Disorders. 2007;22(1):48–54. doi: 10.1002/mds.21197.
    1. Braak H., Del Tredici K. A new look at the corticostriatal-thalamocortical circuit in sporadic Parkinson's disease. Der Nervenarzt. 2008;79(12):1440–1445. doi: 10.1007/s00115-008-2542-y.
    1. Micale V., Arezzi A., Rampello L., Drago F. Melatonin affects the immobility time of rats in the forced swim test: the role of serotonin neurotransmission. European Neuropsychopharmacology. 2006;16(7):538–545. doi: 10.1016/j.euroneuro.2006.01.005.
    1. Mantovani M., Pértile R., Calixto J. B., Santos A. R. S., Rodrigues A. L. S. Melatonin exerts an antidepressant-like effect in the tail suspension test in mice: evidence for involvement of N-methyl-D-aspartate receptors and the L-arginine-nitric oxide pathway. Neuroscience Letters. 2003;343(1):1–4. doi: 10.1016/s0304-3940(03)00306-9.
    1. Binfaré R. W., Mantovani M., Budni J., Santos A. R. S., Rodrigues A. L. S. Involvement of dopamine receptors in the antidepressant-like effect of melatonin in the tail suspension test. European Journal of Pharmacology. 2010;638(1–3):78–83. doi: 10.1016/j.ejphar.2010.04.011.
    1. Detanico B. C., Piato Â. L., Freitas J. J., et al. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. European Journal of Pharmacology. 2009;607(1–3):121–125. doi: 10.1016/j.ejphar.2009.02.037.
    1. Rivara S., Pala D., Bedini A., Spadoni G. Therapeutic uses of melatonin and melatonin derivatives: a patent review (2012–2014) Expert Opinion on Therapeutic Patents. 2015;25(4):425–441. doi: 10.1517/13543776.2014.1001739.
    1. Karatsoreos I. N., McEwen B. S. Timing is everything: a collection on how clocks affect resilience in biological systems. F1000Research. 2014;3, article 273 doi: 10.12688/f1000research.5756.1.
    1. Bolitho S. J., Naismith S. L., Rajaratnam S. M. W., et al. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Medicine. 2014;15(3):342–347. doi: 10.1016/j.sleep.2013.10.016.
    1. Yamanishi T., Tachibana H., Oguru M., et al. Anxiety and depression in patients with Parkinson's disease. Internal Medicine. 2013;52(5):539–545. doi: 10.2169/internalmedicine.52.8617.
    1. Dissanayaka N. N. N. W., White E., O'Sullivan J. D., Marsh R., Pachana N. A., Byrne G. J. The clinical spectrum of anxiety in Parkinson's disease. Movement Disorders. 2014;29(8):967–975. doi: 10.1002/mds.25937.
    1. Prediger R. D. S., Matheus F. C., Schwarzbold M. L., Lima M. M. S., Vital M. A. B. F. Anxiety in Parkinson's disease: a critical review of experimental and clinical studies. Neuropharmacology. 2012;62(1):115–124. doi: 10.1016/j.neuropharm.2011.08.039.
    1. Dissanayaka N. N. W., Sellbach A., Matheson S., et al. Anxiety disorders in Parkinson's disease: prevalence and risk factors. Movement Disorders. 2010;25(7):838–845. doi: 10.1002/mds.22833.
    1. Pontone G. M., Williams J. R., Anderson K. E., et al. Prevalence of anxiety disorders and anxiety subtypes in patients with Parkinson's disease. Movement Disorders. 2009;24(9):1333–1338. doi: 10.1002/mds.22611.
    1. Jiang S.-M., Yuan Y.-S., Tong Q., et al. The association between clinically relevant anxiety and other non-motor symptoms in Parkinson’s disease. Neurological Sciences. 2015;36(11):2105–2109. doi: 10.1007/s10072-015-2320-0.
    1. Dissanayaka N. N. W., Torbey E., Pachana N. A. Anxiety rating scales in Parkinson's disease: a critical review updating recent literature. International Psychogeriatrics. 2015;27(11):1777–1784. doi: 10.1017/s1041610215000885.
    1. Broen M. P., Köhler S., Moonen A. J., et al. Modeling anxiety in Parkinson's disease. Movement Disorders. 2016;31(3):310–316. doi: 10.1002/mds.26461.
    1. Rutten S., Ghielen I., Vriend C., et al. Anxiety in Parkinson's disease: symptom dimensions and overlap with depression and autonomic failure. Parkinsonism and Related Disorders. 2015;21(3):189–193. doi: 10.1016/j.parkreldis.2014.11.019.
    1. Lauterbach E. C., Freeman A., Vogel R. L. Correlates of generalized anxiety and panic attacks in dystonia and Parkinson disease. Cognitive and Behavioral Neurology. 2003;16(4):225–233. doi: 10.1097/00146965-200312000-00004.
    1. Tessitore A., Hariri A. R., Fera F., et al. Dopamine modulates the response of the human amygdala: a study in Parkinson's disease. The Journal of Neuroscience. 2002;22(20):9099–9103.
    1. Chen J. J., Marsh L. Anxiety in Parkinson's disease: identification and management. Therapeutic Advances in Neurological Disorders. 2014;7(1):52–59. doi: 10.1177/1756285613495723.
    1. Del Tredici K., Braak H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson's disease-related dementia. Journal of Neurology, Neurosurgery and Psychiatry. 2013;84(7):774–783. doi: 10.1136/jnnp-2011-301817.
    1. Wee N., Kandiah N., Acharyya S., et al. Depression and anxiety are co-morbid but dissociable in mild Parkinson's disease: A Prospective Longitudinal Study of patterns and predictors. Parkinsonism and Related Disorders. 2016;23:50–56. doi: 10.1016/j.parkreldis.2015.12.001.
    1. Naguib M., Samarkandi A. H. The comparative dose-response effects of melatonin and midazolam for premedication of adult patients: a double-blinded, placebo-controlled study. Anesthesia and Analgesia. 2000;91(2):473–479.
    1. Yousaf F., Seet E., Venkatraghavan L., Abrishami A., Chung F. Efficacy and safety of melatonin as an anxiolytic and analgesic in the perioperative period: a qualitative systematic review of randomized trials. Anesthesiology. 2010;113(4):968–976. doi: 10.1097/aln.0b013e3181e7d626.
    1. Perna G., Alciati A., Riva A., Micieli W., Caldirola D. Long-term pharmacological treatments of anxiety disorders: an updated systematic review. Current Psychiatry Reports. 2016;18(3, article 23) doi: 10.1007/s11920-016-0668-3.
    1. Crippa J. A. S., Hallak J. E. C., Zuardi A. W., Chagas M. H. N., Quevedo J., Nardi A. E. Agomelatine in the treatment of social anxiety disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010;34(7):1357–1358. doi: 10.1016/j.pnpbp.2010.07.007.
    1. Huijbregts K. M., Batelaan N. M., Schonenberg J., Veen G., van Balkom A. J. Agomelatine as a novel treatment option in panic disorder, results from an 8-week open-label trial. Journal of Clinical Psychopharmacology. 2015;35(3):336–338. doi: 10.1097/jcp.0000000000000313.
    1. Kalyn Y. B., Safarova T. P., Yakovleva O. B., et al. Experience of the antidepressive therapy with valdoxan (agomelatine) in a psychogeriatric unit of the psychiatric hospital. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2015;115(11):55–62. doi: 10.17116/jnevro201511511155-62.
    1. Niles L. Melatonin interaction with the benzodiazepine-GABA receptor complex in the CNS. Advances in Experimental Medicine and Biology. 1991;294:267–277. doi: 10.1007/978-1-4684-5952-4_24.

Source: PubMed

3
Suscribir