Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine

Leonie M Weskamm, Anahita Fathi, Matthijs P Raadsen, Anna Z Mykytyn, Till Koch, Michael Spohn, Monika Friedrich, MVA-MERS-S Study Group, Bart L Haagmans, Stephan Becker, Gerd Sutter, Christine Dahlke, Marylyn M Addo, Etienne Bartels, Swantje Gundlach, Thomas Hesterkamp, Verena Krähling, Susan Lassen, My Linh Ly, Joseph H Pötsch, Stefan Schmiedel, Asisa Volz, Madeleine E Zinser, Leonie M Weskamm, Anahita Fathi, Matthijs P Raadsen, Anna Z Mykytyn, Till Koch, Michael Spohn, Monika Friedrich, MVA-MERS-S Study Group, Bart L Haagmans, Stephan Becker, Gerd Sutter, Christine Dahlke, Marylyn M Addo, Etienne Bartels, Swantje Gundlach, Thomas Hesterkamp, Verena Krähling, Susan Lassen, My Linh Ly, Joseph H Pötsch, Stefan Schmiedel, Asisa Volz, Madeleine E Zinser

Abstract

The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.

Trial registration: ClinicalTrials.gov NCT03615911.

Keywords: IgG ELISpot; IgG subclasses; MERS-CoV; MVA-MERS-S; immune persistence; late booster vaccination; long-term immunity; memory B cells; neutralizing antibodies; viral vector vaccine.

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Study design Study participants (n = 10) received two vaccinations wit MVA-MERS-S (V1 and V2) 28 days apart and a late third vaccination (V3) at 12 ± 4 months after prime. Blood was frequently sampled for up to 2 years after V3 at indicated time points (see also Table S1). Figure was created with BioRender.com.
Figure 2
Figure 2
MERS-CoV-S-specific humoral and T cell responses induced by three vaccinations with MVA-MERS-S (A) Longitudinal dynamics of S-specific IgG antibodies. Shown are the optical density (OD) values measured at 450–620 nm by ELISA. Data are represented as individual data points (mean of technical duplicates) and median ± interquartile range (IQR). (B) Neutralization activity of serum antibodies as measured by 50% plaque-reduction neutralization test (PRNT50). Data are represented as individual data points and median ± IQR. (C) Spearman correlation between S-specific IgG antibodies and serum neutralization activity. (D) T cell responses as measured by IFNγ ELISpot after stimulation with five overlapping peptide (OLP) pools (M1–M5), spanning the entire MERS-CoV-S amino acid sequence. Shown are the median values of spot forming units (SFUs; mean of technical triplicates) across all vaccinees (n = 10) for each OLP pool. Number of samples, median, and p values for each time point and all three assays are shown in Table S2.
Figure 3
Figure 3
Isotype and subclass distribution within vaccine-induced MERS-CoV-S-specific antibodies S1- (A) and S2- (B) specific responses of IgM, IgG1–4, and IgA1–2 at different time points after vaccination, displayed as fold changes of median fluorescence intensities (MFIs; measured by bead-based ELISA) compared with baseline values at V1:day 0. Data are represented as individual data points (mean of technical duplicates) and median ± IQR. Number of samples and median fold changes are shown in Table S3.
Figure 4
Figure 4
Longitudinal dynamics of MERS-CoV-S-specific IgG1 and IgG3 antibodies Vaccine-induced S1/S2-specific IgG1 (A) and IgG3 (B) are displayed as MFI, measured by bead-based multiplex ELISA. Data are represented as individual data points (mean of technical duplicates) and median ± IQR. LLD, lower limit of detection. Number of samples, median, and p values for each time point are shown in Table S4.
Figure 5
Figure 5
Antigen-specific B cell responses induced by MVA-MERS-S vaccination (A) Representative IgG ELISpot images of antigen-specific and control wells for PBMCs taken before the first (V1:day 0) and after the third vaccination (V3:day 14). (B) Frequencies of vaccine-induced S1/S2-specific B cells displayed as SFUs/106 PBMCs as determined by IgG ELISpot. Data are represented as individual data points (mean of technical duplicates) and median ± IQR. The dotted line indicates the cutoff value (6.6 SFUs/106 PBMCs). (C) p values as determined by Wilcoxon signed rank test (between time points) and Mann Whitney U test (between S1 and S2 responses). Number of samples, median, and p values for each time point are shown in Table S5.
Figure 6
Figure 6
Characterization of vaccine-induced memory B cells (A) Gating strategy for analysis of isotypes and MERS-CoV-S-specific cells within the memory B cell (MBC) population (representative contour plots belong to time point V3:day 14 from one study participant; gating strategy for identification of MBCs within whole PBMCs shown in Figure S2). (B) Longitudinal dynamics of antigen-specific MBCs induced by three vaccinations with MVA-MERS-S (V1, V2, and V3). Data are displayed as frequencies of S-specific cells within IgM+/IgG+/IgA+ MBCs. Boxplots indicate median ± IQR. Number of samples, median, and p values compared with V1:day 0 are shown in Table S6. (C) Resting, intermediate, atypical, and activated MBC phenotypes as identified by expression of CD21 and CD27 (top left panel). Representative plots are shown for one study participant at V3:day 0 and V3:day 14 and depict overlaid contour plots of total IgG+ MBCs and S-specific IgG+ MBCs (bottom left panel). Longitudinal distributions of phenotypes within the S-specific IgG+ MBC compartment are shown as mean values of all study participants.
Figure 7
Figure 7
Correlation between vaccine-induced antibody and B cell responses Correlation analysis of MERS-CoV-S1- (A) and -S2- (B) specific IgG1, IgG3, and ASBC responses at different time points after vaccinations 1, 2, and 3 (V1, V2, and V3). S-specific MBC responses were included into correlograms of both the S1 and S2 antigen. Positive correlations are shown in blue and negative correlations in red, as indicated by the color bar. Sample numbers included into correlation analysis are provided in Table S7.

References

    1. WHO . 2021. MERS Situation Update.
    1. Modjarrad K., Moorthy V.S., Ben Embarek P., Van Kerkhove M., Kim J., Kieny M.P. A roadmap for MERS-CoV research and product development: report from a World Health Organization consultation. Nat. Med. 2016;22:701–705. doi: 10.1038/nm.4131.
    1. Zaki A.M., van Boheemen S., Bestebroer T.M., Osterhaus A.D., Fouchier R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012;367:1814–1820. doi: 10.1056/NEJMoa1211721.
    1. Gossner C., Danielson N., Gervelmeyer A., Berthe F., Faye B., Kaasik Aaslav K., Adlhoch C., Zeller H., Penttinen P., Coulombier D. Human-dromedary camel interactions and the risk of acquiring zoonotic Middle East respiratory syndrome coronavirus infection. Zoonoses Public Health. 2016;63:1–9. doi: 10.1111/zph.12171.
    1. Hui D.S., Azhar E.I., Kim Y.J., Memish Z.A., Oh M.D., Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect. Dis. 2018;18:e217–e227. doi: 10.1016/S1473-3099(18)30127-0.
    1. Cauchemez S., Fraser C., Van Kerkhove M.D., Donnelly C.A., Riley S., Rambaut A., Enouf V., van der Werf S., Ferguson N.M. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect. Dis. 2014;14:50–56. doi: 10.1016/S1473-3099(13)70304-9.
    1. Cauchemez S., Nouvellet P., Cori A., Jombart T., Garske T., Clapham H., Moore S., Mills H.L., Salje H., Collins C., et al. Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. USA. 2016;113:9081–9086. doi: 10.1073/pnas.1519235113.
    1. WHO 2022.
    1. West D.J., Calandra G.B. Vaccine induced immunologic memory for hepatitis B surface antigen: implications for policy on booster vaccination. Vaccine. 1996;14:1019–1027. doi: 10.1016/0264-410x(96)00062-x.
    1. Bauer T., Jilg W. Hepatitis B surface antigen-specific T and B cell memory in individuals who had lost protective antibodies after hepatitis B vaccination. Vaccine. 2006;24:572–577. doi: 10.1016/j.vaccine.2005.08.058.
    1. Yong C.Y., Ong H.K., Yeap S.K., Ho K.L., Tan W.S. Recent advances in the vaccine development against Middle East respiratory syndrome-coronavirus. Front. Microbiol. 2019;10:1781. doi: 10.3389/fmicb.2019.01781.
    1. Park B.K., Maharjan S., Lee S.I., Kim J., Bae J.Y., Park M.S., Kwon H.J. Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex. BMB Rep. 2019;52:397–402. doi: 10.5483/bmbrep.2019.52.6.185.
    1. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016;3:237–261. doi: 10.1146/annurev-virology-110615-042301.
    1. Lu L., Liu Q., Zhu Y., Chan K.H., Qin L., Li Y., Wang Q., Chan J.F.W., Du L., Yu F., et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun. 2014;5:3067. doi: 10.1038/ncomms4067.
    1. Zhang N., Jiang S., Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev. Vaccines. 2014;13:761–774. doi: 10.1586/14760584.2014.912134.
    1. Koch T., Dahlke C., Fathi A., Kupke A., Krähling V., Okba N.M.A., Halwe S., Rohde C., Eickmann M., Volz A., et al. Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infect. Dis. 2020;20:827–838. doi: 10.1016/s1473-3099(20)30248-6.
    1. Folegatti P.M., Bittaye M., Flaxman A., Lopez F.R., Bellamy D., Kupke A., Mair C., Makinson R., Sheridan J., Rohde C., et al. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infect. Dis. 2020;20:816–826. doi: 10.1016/S1473-3099(20)30160-2.
    1. Modjarrad K., Roberts C.C., Mills K.T., Castellano A.R., Paolino K., Muthumani K., Reuschel E.L., Robb M.L., Racine T., Oh M.D., et al. Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. Lancet Infect. Dis. 2019;19:1013–1022. doi: 10.1016/S1473-3099(19)30266-X.
    1. Bosaeed M., Balkhy H.H., Almaziad S., Aljami H.A., Alhatmi H., Alanazi H., Alahmadi M., Jawhary A., Alenazi M.W., Almasoud A., et al. Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe. 2022;3:e11–e20. doi: 10.1016/S2666-5247(21)00193-2.
    1. Song F., Fux R., Provacia L.B., Volz A., Eickmann M., Becker S., Osterhaus A.D., Haagmans B.L., Sutter G. Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies. J. Virol. 2013;87:11950–11954. doi: 10.1128/JVI.01672-13.
    1. Fathi A., Dahlke C., Krahling V., Kupke A., Okba N.M.A., Raadsen M.P., Heidepriem J., Muller M.A., Paris G., Lassen S., et al. Increased neutralization and IgG epitope identification after MVA-MERS-S booster vaccination against Middle East respiratory syndrome. medRxiv. 2022 doi: 10.1101/2022.02.14.22270168. Preprint at.
    1. Sanz I., Wei C., Jenks S.A., Cashman K.S., Tipton C., Woodruff M.C., Hom J., Lee F.E. Challenges and opportunities for consistent classification of human B cell and plasma cell populations. Front. Immunol. 2019;10:2458. doi: 10.3389/fimmu.2019.02458.
    1. Slifka M.K., Antia R., Whitmire J.K., Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity. 1998;8:363–372. doi: 10.1016/s1074-7613(00)80541-5.
    1. Palgen J.L., Tchitchek N., Rodriguez-Pozo A., Jouhault Q., Abdelhouahab H., Dereuddre-Bosquet N., Contreras V., Martinon F., Cosma A., Lévy Y., et al. Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines. 2020;5:24. doi: 10.1038/s41541-020-0175-8.
    1. Sallusto F., Lanzavecchia A., Araki K., Ahmed R. From vaccines to memory and back. Immunity. 2010;33:451–463. doi: 10.1016/j.immuni.2010.10.008.
    1. Voysey M., Costa Clemens S.A., Madhi S.A., Weckx L.Y., Folegatti P.M., Aley P.K., Angus B., Baillie V.L., Barnabas S.L., Bhorat Q.E., et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397:881–891. doi: 10.1016/S0140-6736(21)00432-3.
    1. Voysey M., Pollard A.J. ChAdOx1 nCoV-19 vaccine: asymptomatic efficacy estimates - authors' reply. Lancet. 2021;397:2248. doi: 10.1016/S0140-6736(21)00976-4.
    1. Pitisuttithum P., Nitayaphan S., Chariyalertsak S., Kaewkungwal J., Dawson P., Dhitavat J., Phonrat B., Akapirat S., Karasavvas N., Wieczorek L., et al. Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV. 2020;7:e238–e248. doi: 10.1016/S2352-3018(19)30406-0.
    1. Kreijtz J.H., Goeijenbier M., Moesker F.M., van den Dries L., Goeijenbier S., De Gruyter H.L., Lehmann M.H., Mutsert G., van de Vijver D.A., Volz A., et al. Safety and immunogenicity of a modified-vaccinia-virus-Ankara-based influenza A H5N1 vaccine: a randomised, double-blind phase 1/2a clinical trial. Lancet Infect. Dis. 2014;14:1196–1207. doi: 10.1016/S1473-3099(14)70963-6.
    1. de Vries R.D., Altenburg A.F., Nieuwkoop N.J., de Bruin E., van Trierum S.E., Pronk M.R., Lamers M.M., Richard M., Nieuwenhuijse D.F., Koopmans M.P.G., et al. Induction of cross-clade antibody and T-cell responses by a modified vaccinia virus ankara-based influenza A(H5N1) vaccine in a randomized phase 1/2a clinical trial. J. Infect. Dis. 2018;218:614–623. doi: 10.1093/infdis/jiy214.
    1. Munro A.P.S., Janani L., Cornelius V., Aley P.K., Babbage G., Baxter D., Bula M., Cathie K., Chatterjee K., Dodd K., et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021;398:2258–2276. doi: 10.1016/S0140-6736(21)02717-3.
    1. Wang C., van Haperen R., Gutiérrez-Álvarez J., Li W., Okba N.M.A., Albulescu I., Widjaja I., van Dieren B., Fernandez-Delgado R., Sola I., et al. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nat. Commun. 2021;12:1715. doi: 10.1038/s41467-021-21968-w.
    1. Nguyen-Contant P., Embong A.K., Kanagaiah P., Chaves F.A., Yang H., Branche A.R., Topham D.J., Sangster M.Y. S protein-reactive IgG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. mBio. 2020;11 doi: 10.1128/mBio.01991-20. e01991-20.
    1. Zohar T., Loos C., Fischinger S., Atyeo C., Wang C., Slein M.D., Burke J., Yu J., Feldman J., Hauser B.M., et al. Compromised humoral functional evolution tracks with SARS-CoV-2 mortality. Cell. 2020;183:1508–1519.e12. doi: 10.1016/j.cell.2020.10.052.
    1. Fischinger S., Dolatshahi S., Jennewein M.F., Rerks-Ngarm S., Pitisuttithum P., Nitayaphan S., Michael N., Vasan S., Ackerman M.E., Streeck H., Alter G. IgG3 collaborates with IgG1 and IgA to recruit effector function in RV144 vaccinees. JCI Insight. 2020;5:140925. doi: 10.1172/jci.insight.140925.
    1. Arnold K.B., Chung A.W. Prospects from systems serology research. Immunology. 2018;153:279–289. doi: 10.1111/imm.12861.
    1. Rowntree L.C., Chua B.Y., Nicholson S., Koutsakos M., Hensen L., Douros C., Selva K., Mordant F.L., Wong C.Y., Habel J.R., et al. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features. Clin. Transl. Immunol. 2021;10:e1258. doi: 10.1002/cti2.1258.
    1. Selva K.J., van de Sandt C.E., Lemke M.M., Lee C.Y., Shoffner S.K., Chua B.Y., Davis S.K., Nguyen T.H.O., Rowntree L.C., Hensen L., et al. Systems serology detects functionally distinct coronavirus antibody features in children and elderly. Nat. Commun. 2021;12:2037. doi: 10.1038/s41467-021-22236-7.
    1. Boudreau C.M., Alter G. Extra-neutralizing FcR-mediated antibody functions for a universal influenza vaccine. Front. Immunol. 2019;10:440. doi: 10.3389/fimmu.2019.00440.
    1. Barrett J.R., Belij-Rammerstorfer S., Dold C., Ewer K.J., Folegatti P.M., Gilbride C., Halkerston R., Hill J., Jenkin D., Stockdale L., et al. Author Correction: phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nat. Med. 2021;27:1113. doi: 10.1038/s41591-021-01372-z.
    1. Damelang T., Rogerson S.J., Kent S.J., Chung A.W. Role of IgG3 in infectious diseases. Trends Immunol. 2019;40:197–211. doi: 10.1016/j.it.2019.01.005.
    1. Chung A.W., Ghebremichael M., Robinson H., Brown E., Choi I., Lane S., Dugast A.S., Schoen M.K., Rolland M., Suscovich T.J., et al. Polyfunctional Fc-effector profiles mediated by IgG subclass selection distinguish RV144 and VAX003 vaccines. Sci. Transl. Med. 2014;6:228ra38. doi: 10.1126/scitranslmed.3007736.
    1. Khoury D.S., Cromer D., Reynaldi A., Schlub T.E., Wheatley A.K., Juno J.A., Subbarao K., Kent S.J., Triccas J.A., Davenport M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021;27:1205–1211. doi: 10.1038/s41591-021-01377-8.
    1. Earle K.A., Ambrosino D.M., Fiore-Gartland A., Goldblatt D., Gilbert P.B., Siber G.R., Dull P., Plotkin S.A. Evidence for antibody as a protective correlate for COVID-19 vaccines. Vaccine. 2021;39:4423–4428. doi: 10.1016/j.vaccine.2021.05.063.
    1. Moss P. The T cell immune response against SARS-CoV-2. Nat. Immunol. 2022;23:186–193. doi: 10.1038/s41590-021-01122-w.
    1. Kim Y.S., Aigerim A., Park U., Kim Y., Park H., Rhee J.Y., Choi J.P., Park W.B., Park S.W., Kim Y., et al. Sustained responses of neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) in recovered patients and their therapeutic applicability. Clin. Infect. Dis. 2021;73:e550–e558. doi: 10.1093/cid/ciaa1345.
    1. Plotkin S. History of vaccination. Proc. Natl. Acad. Sci. USA. 2014;111:12283–12287. doi: 10.1073/pnas.1400472111.
    1. Tay M.Z., Rouers A., Fong S.W., Goh Y.S., Chan Y.H., Chang Z.W., Xu W., Tan C.W., Chia W.N., Torres-Ruesta A., et al. Decreased memory B cell frequencies in COVID-19 delta variant vaccine breakthrough infection. EMBO Mol. Med. 2022;14:e15227. doi: 10.15252/emmm.202115227.
    1. Cheon S., Park U., Park H., Kim Y., Nguyen Y.T.H., Aigerim A., Rhee J.Y., Choi J.P., Park W.B., Park S.W., et al. Longevity of seropositivity and neutralizing antibodies in recovered MERS patients: a 5-year follow-up study. Clin. Microbiol. Infect. 2022;28:292–296. doi: 10.1016/j.cmi.2021.06.009.
    1. Alshukairi A.N., Khalid I., Ahmed W.A., Dada A.M., Bayumi D.T., Malic L.S., et al. Antibody Response and Disease Severity in Healthcare Worker MERS Survivors. Emerg Infect Dis. 2016;22:1113–1115.
    1. Brown E.P., Licht A.F., Dugast A.S., Choi I., Bailey-Kellogg C., Alter G., Ackerman M.E. High-throughput, multiplexed IgG subclassing of antigen-specific antibodies from clinical samples. J. Immunol. Methods. 2012;386:117–123. doi: 10.1016/j.jim.2012.09.007.

Source: PubMed

3
Suscribir