Permutation inference for the general linear model

Anderson M Winkler, Gerard R Ridgway, Matthew A Webster, Stephen M Smith, Thomas E Nichols, Anderson M Winkler, Gerard R Ridgway, Matthew A Webster, Stephen M Smith, Thomas E Nichols

Abstract

Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more flexible with respect to the experimental design and nuisance variables, and conduct detailed simulations to identify the best method for settings that are typical for imaging research scenarios. We present a generic framework for permutation inference for complex general linear models (GLMS) when the errors are exchangeable and/or have a symmetric distribution, and show that, even in the presence of nuisance effects, these permutation inferences are powerful while providing excellent control of false positives in a wide range of common and relevant imaging research scenarios. We also demonstrate how the inference on GLM parameters, originally intended for independent data, can be used in certain special but useful cases in which independence is violated. Detailed examples of common neuroimaging applications are provided, as well as a complete algorithm - the "randomise" algorithm - for permutation inference with the GLM.

Keywords: General linear model; Multiple regression; Permutation inference; Randomise.

Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Examples of a permutation matrix (a), of a sign flipping matrix (b), and of a matrix that does permutation and sign flipping (c). Pre-multiplication by a permutation matrix shuffles the order of the data, whereas by a sign flipping matrix changes the sign of a random subset of data points.
Fig. 2
Fig. 2
Left: Example of a permutation matrix that shuffles data within block only. The blocks are not required to be of the same size. The elements outside the diagonal blocks are always equal to zero, such that data cannot be swapped across blocks. Right: Example of a sign flipping matrix. Differently than within-block permutation matrices, here sign flipping matrices are transparent to the definitions of the blocks, such that the block definitions do not need to be taken into account, albeit their corresponding variance groups are considered when computing the statistic.
Fig. 3
Fig. 3
(a) Example of a permutation matrix that shuffles whole blocks of data. The blocks need to be of the same size. (b) Example of a sign flipping matrix that changes the signs of the blocks as a whole. Both matrices can be constructed by the Kronecker product (represented by the symbol ⊗) of a permutation or a sign flipping matrix (with size determined by the number of blocks) and an identity matrix (with size determined by the number of observations per block).
Fig. 4
Fig. 4
Heatmaps for the comparison of the distributions obtained under different variance settings for identical sample sizes. In each map, the cells below the main diagonal contain the results for the pairwise F statistic, and above, for the G statistic. The percentages refer to the fraction of the 1000 tests in which the distribution of the statistic for one variance setting was found different than for another in the same simulation scenario. Each variance setting is indicated by letters (ae), corresponding to the same letters in Table 5. Smaller percentages indicate robustness of the statistic to heteroscedasticity. Confidence intervals (95%) are shown in parenthesis.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4010955/bin/fx1.jpg

References

    1. Anderson M.J., Legendre P. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 1999;62(3):271–303.
    1. Anderson M.J., Robinson J. Permutation tests for linear models. Aust. N.Z. J. Stat. 2001;43(1):75–88.
    1. Anderson M., ter Braak C.J.F. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Simul. 2003;73(2):85–113.
    1. Arndt S., Cizadlo T., Andreasen N.C., Heckel D., Gold S., O'Leary D.S. Tests for comparing images based on randomization and permutation methods. J. Cereb. Blood Flow Metab. 1996;16(6):1271–1279.
    1. Aspin A.A., Welch B.L. Tables for use in comparisons whose accuracy involves two variances, separately estimated. Biometrika. 1949;36(3):290–296.
    1. Beaton A.E. Salvaging experiments: interpreting least squares in non-random samples. In: Hogben D., Fife D., editors. Computer Science and Statistics: Tenth Annual Symposium of the Interface. United States Department of Commerce; Gaithersburg, Maryland: 1978. pp. 137–145.
    1. Beckmann C.F., Jenkinson M., Smith S.M. Tech. rep. University of Oxford; Oxford: 2001. General multi-level linear modelling for group analysis in FMRI.
    1. Belmonte M., Yurgelun-Todd D. Permutation testing made practical for functional magnetic resonance image analysis. IEEE Trans. Med. Imaging. 2001;20(3):243–248.
    1. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57(1):289–300.
    1. Blair R.C., Higgins J.J., Karniski W., Kromrey J.D. A study of multivariate permutation tests which may replace Hotelling's T2 test in prescribed circumstances. Multivar. Behav. Res. 1994;29(2):141–163.
    1. Box G.E.P., Andersen S.L. Permutation theory in the derivation of robust criteria and the study of departures from assumption. J. R. Stat. Soc. Ser. B. 1955;17(1):1–34.
    1. Brammer M.J., Bullmore E.T., Simmons A., Williams S.C., Grasby P.M., Howard R.J., Woodruff P.W., Rabe-Hesketh S. Generic brain activation mapping in functional magnetic resonance imaging: a nonparametric approach. Magn. Reson. Imaging. 1997;15(7):763–770.
    1. Breakspear M., Brammer M.J., Bullmore E.T., Das P., Williams L.M. Spatiotemporal wavelet resampling for functional neuroimaging data. Hum. Brain Mapp. 2004;23(1):1–25.
    1. Brown B.M., Maritz J.S. Distribution-free methods in regression. Aust. J. Stat. 1982;24(3):318–331.
    1. Brunner E., Munzel U. The nonparametric Behrens–Fisher problem: asymptotic theory and a small-sample approximation. Biom. J. 2000;42(1):17–25.
    1. Bullmore E., Brammer M., Williams S.C., Rabe-Hesketh S., Janot N., David A., Mellers J., Howard R., Sham P. Statistical methods of estimation and inference for functional MR image analysis. Magn. Reson. Med. 1996;35(2):261–277.
    1. Bullmore E.T., Suckling J., Overmeyer S., Rabe-Hesketh S., Taylor E., Brammer M.J. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans. Med. Imaging. 1999;18(1):32–42.
    1. Bullmore E., Long C., Suckling J., Fadili J., Calvert G., Zelaya F., Carpenter T.A., Brammer M. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum. Brain Mapp. 2001;12(2):61–78.
    1. Button K.S., Ioannidis J.P.A., Mokrysz C., Nosek B.A., Flint J., Robinson E.S.J., Munafò M.R. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013;14(5):365–376.
    1. Cade B.S., Richards J.D. Permutation tests for least absolute deviation regression. Biometrics. 1996;52(3):886–902.
    1. Christensen R. Springer; New York: 2002. Plane Answers to Complex Questions: The Theory of Linear Models.
    1. Chung J.H., Fraser D.A.S. Randomization tests for a multivariate two-sample problem. J. Am. Stat. Assoc. 1958;53(283):729–735.
    1. Dekker D., Krackhardt D., Snijders T.A.B. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika. 2007;72(4):563–581.
    1. Draper N.R., Stoneman D.M. Testing for the inclusion of variables in linear regression by a randomisation technique. Technometrics. 1966;8(4):695–699.
    1. Dwass M. Modified randomization tests for nonparametric hypotheses. Ann. Math. Stat. 1957;28(1):181–187.
    1. Edgington E.S. Approximate randomization tests. J. Psychol. 1969;72(2):143–149.
    1. Edgington E.S. Marcel Dekker; New York: 1995. Randomization Tests.
    1. Efron B. Computers and the theory of statistics: thinking the unthinkable. SIAM Rev. 1979;21(4):460–480.
    1. Ernst M.D. Permutation methods: a basis for exact inference. Stat. Sci. 2004;19(4):676–685.
    1. Fisher R.A. Oliver and Boyd; Edinburgh: 1935. The Design of Experiments.
    1. Fisher R.A. The fiducial argument in statistical inference. Ann. Eugen. 1935;6(4):391–398.
    1. Freedman D., Lane D. A nonstochastic interpretation of reported significance levels. J. Bus. Econ. Stat. 1983;1(4):292–298.
    1. Gail M.H., Tan W.Y., Piantadosi S. Tests for no treatment effect in randomized clinical trials. Biometrika. 1988;75(1):57–64.
    1. Genovese C.R., Lazar N.A., Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage. 2002;15(4):870–878.
    1. Gonzalez L., Manly B.F.J. Analysis of variance by randomization with small data sets. Environmetrics. 1998;9(1):53–65.
    1. Good P. Extensions of the concept of exchangeability and their applications. J. Mod. Appl. Stat. Methods. 2002;1(2):243–247.
    1. Good P. Springer; New York: 2005. Permutation, Parametric, and Bootstrap Tests of Hypotheses.
    1. Guttman I. Wiley; New York: 1982. Linear Models: An Introduction.
    1. Hall P., Wilson S.R. Two guidelines for bootstrap hypothesis testing. Biometrics. 1991;47(2):757–762.
    1. Hayasaka S., Phan K.L., Liberzon I., Worsley K.J., Nichols T.E. Nonstationary cluster-size inference with random field and permutation methods. NeuroImage. 2004;22(2):676–687.
    1. Holmes A.P., Blair R.C., Watson J.D., Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 1996;16(1):7–22.
    1. Horn S.D., Horn R.A., Duncan D.B. Estimating heteroscedastic variances in linear models. J. Am. Stat. Assoc. 1975;70(350):380–385.
    1. Huh M.H., Jhun M. Random permutation testing in multiple linear regression. Commun. Stat. Theory Methods. 2001;30(10):2023–2032.
    1. James G. The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika. 1951;38(3):324–329.
    1. Jung B.C., Jhun M., Song S.H. A new random permutation test in ANOVA models. Stat. Pap. 2006;48(1):47–62.
    1. Kempthorne O. The randomization theory of experimental inference. J. Am. Stat. Assoc. 1955;50(271):946–967.
    1. Kennedy P.E. Randomization tests in econometrics. J. Bus. Econ. Stat. 1995;13(1):85–94.
    1. Kennedy P.E., Cade B.S. Randomization tests for multiple regression. Commun. Stat. Simul. 1996;25:923–936.
    1. Kherad-Pajouh S., Renaud O. An exact permutation method for testing any effect in balanced and unbalanced fixed effect ANOVA. Comput. Stat. Data Anal. 2010;54(7):1881–1893.
    1. Knuth D.E. vol. 4. Addison-Wesley; 2005. The art of computer programming. (Fascicle 2).
    1. Laird A.R., Rogers B.P., Meyerand M.E. Comparison of Fourier and wavelet resampling methods. Magn. Reson. Med. 2004;51(2):418–422.
    1. Lehmann E., Stein C. On the theory of some non-parametric hypotheses. Ann. Math. Stat. 1949;20(1):28–45.
    1. Levin B., Robbins H. Urn models for regression analysis, with applications to employment discrimination studies. Law Contemp. Probl. 1983;46(4):247–267.
    1. Locascio J.J., Jennings P.J., Moore C.I., Corkin S. Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. Hum. Brain Mapp. 1997;5(3):168–193.
    1. Ludbrook J., Dudley H. Why permutation tests are superior to t and F tests in biomedical research. Am. Stat. 1998;52(2):127–132.
    1. Manly B.F.J. Randomization and regression methods for testing for associations with geographical, environmental and biological distances between populations. Res. Popul. Ecol. 1986;28(2):201–218.
    1. Manly B.F.J. 3rd edition. Chapman & Hall; London: 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology.
    1. Marroquin J.L., Biscay R.J., Ruiz-Correa S., Alba A., Ramirez R., Armony J.L. Morphology-based hypothesis testing in discrete random fields: a non-parametric method to address the multiple-comparison problem in neuroimaging. NeuroImage. 2011;56(4):1954–1967.
    1. Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 2002;15(1):1–25.
    1. Nichols T.E., Ridgway G.R., Webster M.G., Smith S.M. GLM permutation: nonparametric inference for arbitrary general linear models. NeuroImage. 2008;41(S1):S72.
    1. O'Gorman T.W. The performance of randomization tests that use permutations of independent variables. Commun. Stat. Simul. Comput. 2005;34(4):895–908.
    1. Oja H. On permutation tests in multiple regression and analysis of covariance problems. Aust. J. Stat. 1987;29(1):91–100.
    1. Pantazis D., Nichols T.E., Baillet S., Leahy R.M. A comparison of random field theory and permutation methods for the statistical analysis of MEG data. NeuroImage. 2005;25(2):383–394.
    1. Pearson E.S. Some aspects of the problem of randomization. Biometrika. 1937;29(1/2):53–64.
    1. Peirce C.S., Jastrow J. On small differences of sensation. Mem. Natl. Acad. Sci. 1884;3:75–83.
    1. Pesarin F. A new solution for the generalized Behrens–Fisher problem. Statistica. 1995;55(2):131–146.
    1. Pesarin F. John Wiley and Sons; West Sussex, England, UK: 2001. Multivariate Permutation Tests: With Applications in Biostatistics.
    1. Pesarin F., Salmaso L. John Wiley and Sons; West Sussex, England, UK: 2010. Permutation Tests for Complex Data: Theory, Applications and Software.
    1. Phipson B., Smyth G.K. Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 2010;9(1) (Article39)
    1. Pitman E.J.G. Significance tests which may be applied to samples from any populations. Suppl. J. R. Stat. Soc. 1937;4(1):119–130.
    1. Pitman E.J.G. Significance tests which may be applied to samples from any populations. II. The correlation coefficient test. Suppl. J. R. Stat. Soc. 1937;4(2):225–232.
    1. Pitman E.J.G. Significance tests which may be applied to samples from any populations: III. The analysis of variance test. Biometrika. 1938;29(3/4):322–335.
    1. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Cambridge University Press; Cambridge, UK: 1992. Numerical Recipes in C.
    1. Ridgway G.R. University College London; 2009. Statistical Analysis for Longitudinal MR Imaging of Dementia. (Ph.D. thesis)
    1. Rorden C., Bonilha L., Nichols T.E. Rank-order versus mean based statistics for neuroimaging. NeuroImage. 2007;35(4):1531–1537.
    1. Salimi-Khorshidi G., Smith S.M., Nichols T.E. Adjusting the effect of nonstationarity in cluster-based and TFCE inference. NeuroImage. 2011;54(3):2006–2019.
    1. Scheffé H. Statistical inference in the non-parametric case. Ann. Math. Stat. 1943;14(4):305–332.
    1. Scheffé H. John Wiley and Sons; New York: 1959. The Analysis of Variance.
    1. Searle S.R. John Wiley and Sons; New York: 1971. Linear Models.
    1. Sen P.K. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968;63(324):1379–1389.
    1. Smith S.M., Nichols T.E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98.
    1. Smith S., Jenkinson M., Beckmann C., Miller K., Woolrich M. Meaningful design and contrast estimability in FMRI. NeuroImage. 2007;34(1):127–136.
    1. Still A.W., White A.P. The approximate randomization test as an alternative to the F test in analysis of variance. Br. J. Math. Stat. Psychol. 1981;34(2):243–252.
    1. Suckling J., Bullmore E. Permutation tests for factorially designed neuroimaging experiments. Hum. Brain Mapp. 2004;22(3):193–205.
    1. ter Braak C.J.F. Permutation versus bootstrap significance tests in multiple regression and ANOVA. In: Jöckel K.-H., Rothe G., Sendler W., editors. Bootstrapping and Related Techniques. No. 1989. Springer-Verlag; Berlin: 1992. pp. 79–86.
    1. Theil H. I. II. III. Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam. Vol. 53. 1950. A rank-invariant method for linear and polynomial regression; pp. 386–392. (521–525, 1397–1412)
    1. Trotter H.F., Tukey J.W. Conditional Monte Carlo techniques in a complex problem about normal samples. In: Meyer H.A., editor. Symposium on Monte Carlo Methods. Wiley; New York: 1956. pp. 64–79.
    1. Welch B.L. On the comparison of several mean values: an alternative approach. Biometrika. 1951;38(3):330–336.
    1. Welch W.J. Construction of permutation tests. J. Am. Stat. Assoc. 1990;85(411):693–698.
    1. Westfall P.H., Troendle J.F. Multiple testing with minimal assumptions. Biom. J. 2008;50(5):745–755.
    1. Westfall P.H., Young S.S. John Wiley and Sons; New York: 1993. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment.
    1. Wilson E.B. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 1927;22(158):209–212.
    1. Winkler A.M., Sabuncu M.R., Yeo B.T.T., Fischl B., Greve D.N., Kochunov P., Nichols T.E., Blangero J., Glahn D.C. Measuring and comparing brain cortical surface area and other areal quantities. NeuroImage. 2012;61(4):1428–1443.
    1. Yekutieli D., Benjamini Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plann. Infer. 1999;82(1–2):171–196.

Source: PubMed

3
Suscribir