Neurally adjusted ventilatory assist preserves cerebral blood flow velocity in patients recovering from acute brain injury

Gianmaria Cammarota, Federico Verdina, Gianluigi Lauro, Ester Boniolo, Riccardo Tarquini, Antonio Messina, Nello De Vita, Ilaria Sguazzoti, Raffaella Perucca, Francesco Della Corte, Gian Luca Vignazia, Francesca Grossi, Samuele Crudo, Paolo Navalesi, Erminio Santangelo, Rosanna Vaschetto, Gianmaria Cammarota, Federico Verdina, Gianluigi Lauro, Ester Boniolo, Riccardo Tarquini, Antonio Messina, Nello De Vita, Ilaria Sguazzoti, Raffaella Perucca, Francesco Della Corte, Gian Luca Vignazia, Francesca Grossi, Samuele Crudo, Paolo Navalesi, Erminio Santangelo, Rosanna Vaschetto

Abstract

Neurally adjusted ventilatory assist (NAVA) has never been applied in patients recovering from acute brain injury (ABI) because neural respiratory drive could be affected by intracranial disease with detrimental effects on cerebral blood flow (CBF) velocity. Our primary aim was to assess the impact of NAVA and pressure support ventilation (PSV) on CBF velocity. In fifteen adult patients recovering from ABI and undergoing invasive assisted ventilation, PSV and NAVA were applied over 30-min-lasting trials, in the following sequence: PSV1, NAVA, and PSV2. While PSV was set to deliver a tidal volume ranging between 6 and 8 ml kg-1 of predicted body weight, in NAVA the level of assistance was chosen to achieve the same inspiratory peak airway pressure as PSV. At the end of each trial, a sonographic evaluation of CBF mean velocity was bilaterally obtained on the middle cerebral artery and an arterial blood gas sample was taken for analysis. CBF mean velocity was 51.8 [41.9,75.2] cm s-1 at baseline, 51.9 [43.4,71.0] cm s-1 in PSV1, 53.6 [40.7,67.7] cm s-1 in NAVA, and 49.5 [42.1,70.8] cm s-1 in PSV2 (p = 0.0514) on the left and 50.2 [38.0,77.7] cm s-1 at baseline, 47.8 [41.7,68.2] cm s-1 in PSV1, 53.9 [40.1,78.5] cm s-1 in NAVA, and 55.6 [35.9,74.1] cm s-1 in PSV2 (p = 0.8240) on the right side. No differences were detected for pH (p = 0.0551), arterial carbon dioxide tension (p = 0.8142), and oxygenation (p = 0.0928) over the entire study duration. NAVA and PSV preserved CBF velocity in patients recovering from ABI.Trial registration: The present trial was prospectively registered at www.clinicatrials.gov (NCT03721354) on October 18th, 2018.

Keywords: Acute brain injury; Asynchronies; Cerebral blood flow; Mechanical ventilation.

Conflict of interest statement

Dr. Messina reports personal fees and other from Vygon Italia, outside the submitted work. Dr. Navalesi reports personal fees from Getinge, outside the submitted work.

Figures

Fig. 1
Fig. 1
Asynchrony index. The asynchrony index of each patient during all study trials are depicted. PSV1 pressure support ventilation trial 1, NAVA neurally adjusted ventilatory assist ventilation, PSV2 pressure support ventilation trial 2; p-value is referred to Chi-square test among PSV1, NAVA, and PSV2 for asynchrony index ≥ 10%
Fig. 2
Fig. 2
Macroasynchrony events. The total number of macroasynchrony events and the percentages of the specific types of asynchronies are depicted. Light grey, IE ineffective efforts; middle grey, DT double triggers; dark grey, AT auto-triggers. a Pressure support ventilation trial 1; b neurally adjusted ventilatory assist; c pressure support ventilation trial 2

References

    1. Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, et al. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. J Am Med Assoc. 2002;287:345–355.
    1. Nyquist P, Stevens RD, Mirski MA. Neurologic injury and mechanical ventilation. Neurocrit Care. 2008;9:400–408.
    1. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow. Anesthesiology. 2015;123:1198–1208.
    1. Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, et al. Optimizing sedation in patients with acute brain injury. Crit Care. 2016;20:128.
    1. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188:220–230.
    1. Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–1522.
    1. Giannouli E, Webster K, Roberts D, Younes M. Response of ventilator-dependent patients to different levels of pressure support and proportional assist. Am J Respir Crit Care Med. 1999;159:1716–1725.
    1. De Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009;24:74–80.
    1. De Wit M, Miller KB, Green DA, Ostman HE, Gennings C, Epstein SK. Ineffective triggering predicts increased duration of mechanical ventilation. Crit Care Med. 2009;37:2740–2745.
    1. Bosma K, Ferreyra G, Ambrogio C, Pasero D, Mirabella L, Braghiroli A, et al. Patient-ventilator interaction and sleep in mechanically ventilated patients: Pressure support versus proportional assist ventilation. Crit Care Med. 2007;35:1048–1054.
    1. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–641.
    1. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–1436.
    1. Spahija J, De Marchie M, Albert M, Bellemare P, Delisle S, Beck J, et al. Patient-ventilator interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2010;38:518–526.
    1. Colombo D, Cammarota G, Bergamaschi V, De Lucia M, Della CF, Navalesi P. Physiologic response to varying levels of pressure support and neurally adjusted ventilatory assist in patients with acute respiratory failure. Intensive Care Med. 2008;34:2010–2018.
    1. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–271.
    1. Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, et al. Patient-ventilator synchrony in neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV): A prospective observational study. BMC Anesthesiol. 2015;15:1–9.
    1. Cammarota G, Olivieri C, Costa R, Vaschetto R, Colombo D, Turucz E, et al. Noninvasive ventilation through a helmet in postextubation hypoxemic patients: Physiologic comparison between neurally adjusted ventilatory assist and pressure support ventilation. Intensive Care Med. 2011;37:1943–1950.
    1. Cammarota G, Longhini F, Perucca R, Ronco C, Colombo D, Messina A, et al. New setting of neurally adjusted ventilatory assist during noninvasive ventilation through a helmet. Anesthesiology. 2016;125:1181–1189.
    1. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol. 1988;65:309–317.
    1. Vora YY, Suarez-Almazor M, Steinke DE, Martin ML, Findlay JM. Role of transcranial Doppler monitoring in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1999;44:1237–1248.
    1. Rutgers DR, Blankensteijn JD, Van Der Grond J. Preoperative MRA flow quantification in CEA patients: flow differences between patients who develop cerebral ischemia and patients who do not develop cerebral ischemia during cross-clamping of the carotid artery. Stroke. 2000;31:3021–3028.
    1. Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93:710–724.
    1. Sushmita Purkayastha PhD, Farzaneh MDP. Transcranial Doppler ultrasound: technique and application. Semin Neurol. 2014;32:411–420.
    1. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 1988;42:81–84.
    1. Lamouret O, Crognier L, Bounes FV, Conil JM, Dilasser C, Raimondi T, et al. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care. 2019;23:1–9.
    1. Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: Optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care. 2013;3:1–9.
    1. Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30:739–745.
    1. Frost EAM. Effects of positive end expiratory pressure on intracranial pressure and compliance in brain injured patients. J Neurosurg. 1977;47:195–200.
    1. Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, et al. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35:568–578.
    1. Coles JP, Minhas PS, Fryer TD, Smielewski P, Aigbirihio F, Donovan T, et al. Effect of hyperventilation on cerebral blood flow in traumatic head injury: clinical relevance and monitoring correlates. Crit Care Med. 2002;30:1950–1959.
    1. Oddo M, Nduom E, Frangos S, MacKenzie L, Chen I, Maloney-Wilensky E, et al. Acute lung injury is an independent risk factor for brain hypoxia after severe traumatic brain injury. Neurosurgery. 2010;67:338–344.
    1. Asehnoune K, Roquilly A, Cinotti R. Respiratory management in patients with severe brain injury. Crit Care. 2018;22:1–6.
    1. Boone MD, Jinadasa SP, Mueller A, Sheafi S, Kasper EM, Hanafy KA, et al. The effect of positive end-expiratory pressure on intracranial pressure and cerebral hemodynamics. Neurocrit Care. 2017;26:174–181.
    1. McCredie VA, Ferguson ND, Pinto RL, Adhikari NKJ, Fowler RA, Chapman MG, et al. Airway management strategies for brain-injured patients meeting standard criteria to consider extubation: a prospective cohort study. Ann Am Thorac Soc. 2017;14:85–93.
    1. De Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, et al. Transcranial doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.
    1. Mascia L, Zavala E, Bosma K, Pasero D, Decaroli D, Andrews P, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35:1815–1820.
    1. Longhini F, Pan C, Xie J, Cammarota G, Bruni A, Garofalo E, et al. New setting of neurally adjusted ventilatory assist for noninvasive ventilation by facial mask: a physiologic study. Crit Care. 2017;21:170.
    1. Longhini F, Liu L, Pan C, Xie J, Cammarota G, Bruni A, et al. Neurally-adjusted ventilatory assist for noninvasive ventilation via a helmet in subjects with copd exacerbation: a physiologic study. Respir Care. 2019;64:582–589.
    1. Ferreira JC, Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR. Neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) during spontaneous breathing trials in critically ill patients: a crossover trial. BMC Pulm Med. 2017;17:1–9.
    1. Froman C. Alterations of respiratory function in patients with severe head injuries. Br J Anaesth. 1968;40:354–360.
    1. Vaschetto R, Cammarota G, Colombo D, Longhini F, Grossi F, Giovanniello A, et al. Effects of propofol on patient-ventilator synchrony and interaction during pressure support ventilation and neurally adjusted ventilatory assist. Crit Care Med. 2014;42:74–82.
    1. Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, et al. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol. 2017;244:10–16.
    1. Barr J, Fraser GL, Puntillo K, Ely EW, Gélinas C, Dasta JF, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit: executive summary. Am J Heal Pharm. 2013;70:53–58.
    1. Jackson DL, Proudfoot CW, Cann KF, Walsh T. A systematic review of the impact of sedation practice in the ICU on resource use, costs and patient safety. Crit Care. 2010;14:R59.
    1. Berger KI, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Mechanism of relief of tachypnea during pressure support ventilation. Chest. Am Coll Chest Physicians. 1996;109:1320–1327.
    1. Cammarota G, Sguazzotti I, Della Corte F, Cheyne VR. Stokes breathing pattern and neurally adjusted ventilatory assist in a neuro - critical patient. Intensive Care Med. 2020;46:540–541.
    1. Grüne F, Kazmaier S, Stolker RJ, Visser GH, Weyland A. Carbon dioxide induced changes in cerebral blood flow and flow velocity: role of cerebrovascular resistance and effective cerebral perfusion pressure. J Cereb Blood Flow Metab. 2015;35:1470–1477.
    1. Longhini F, Ferrero F, De Luca D, Cosi G, Alemani M, Colombo D, et al. Neurally adjusted ventilatory assist in preterm neonates with acute respiratory failure. Neonatology. 2015;107:60–67.

Source: PubMed

3
Suscribir