Do Robotics and Virtual Reality Add Real Progress to Mirror Therapy Rehabilitation? A Scoping Review

Nelly Darbois, Albin Guillaud, Nicolas Pinsault, Nelly Darbois, Albin Guillaud, Nicolas Pinsault

Abstract

Background: Mirror therapy has been used in rehabilitation for multiple indications since the 1990s. Current evidence supports some of these indications, particularly for cerebrovascular accidents in adults and cerebral palsy in children. Since 2000s, computerized or robotic mirror therapy has been developed and marketed.

Objectives: To map the extent, nature, and rationale of research activity in robotic or computerized mirror therapy and the type of evidence available for any indication. To investigate the relevance of conducting a systematic review and meta-analysis on these therapies.

Method: Systematic scoping review. Searches were conducted (up to May 2018) in the Cochrane Library, Google Scholar, IEEE Xplore, Medline, Physiotherapy Evidence Database, and PsycINFO databases. References from identified studies were examined.

Results: In sum, 75 articles met the inclusion criteria. Most studies were publicly funded (57% of studies; n = 43), without disclosure of conflict of interest (59% of studies; n = 44). The main outcomes assessed were pain, satisfaction on the device, and body function and activity, mainly for stroke and amputees patients and healthy participants. Most design studies were case reports (67% of studies; n = 50), with only 12 randomized controlled trials with 5 comparing standard mirror therapy versus virtual mirror therapy, 5 comparing second-generation mirror therapy versus conventional rehabilitation, and 2 comparing other interventions.

Conclusion: Much of the research on second-generation mirror therapy is of very low quality. Evidence-based rationale to conduct such studies is missing. It is not relevant to recommend investment by rehabilitation professionals and institutions in such devices.

Figures

Figure 1
Figure 1
Flow chart of the study selection process.

References

    1. Ramachandran V. S., Rodgers-Ramachandran D. Synaesthesia in phantom limbs induced with mirrors. Proceedings of the Royal Society B Biological Science. 1996;263(1369):377–386. doi: 10.1098/rspb.1996.0058.
    1. Deconinck F. J., Smorenburg A. R., Benham A., Ledebt A., Feltham M. G., Savelsbergh G. J. Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabilitation and Neural Repair. 2015;29(4):349–361. doi: 10.1177/1545968314546134.
    1. Broderick P., Horgan F., Blake C., Ehrensberger M., Simpson D., Monaghan K. Mirror therapy for improving lower limb motor function and mobility after stroke: A systematic review and meta-analysis. Gait & Posture. 2018;63:208–220. doi: 10.1016/j.gaitpost.2018.05.017.
    1. Thieme H., Mehrholz J., Pohl M., Behrens J., Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database of Systematic Reviews (Online) 2012;3:p. CD008449.
    1. Park E.-J., Baek S.-H., Park S. Systematic review of the effects of mirror therapy in children with cerebral palsy. Journal of Physical Therapy Science. 2016;28(11):3227–3231. doi: 10.1589/jpts.28.3227.
    1. Mirror Box. EDGE Mobility System, 2018, .
    1. Lum P. S., Burgar C. G., Shor P. C., Majmundar M., Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation. 2002;83(7):952–959. doi: 10.1053/apmr.2001.33101.
    1. Gaggioli A., Morganti F., Meneghini A., et al. The virtual reality mirror: mental practice with augmented reality for post-stroke rehabilitation. Annual Review of CyberTherapy and Telemedicine. 2005;4:199–207.
    1. Krebs H. I., Volpe B. T. Handbook of Clinical Neurology. chapter 23. Vol. 110. Elsevier; 2013. Rehabilitation robotics; pp. 283–294. (Neurological Rehabilitation).
    1. Cano Porras D., Siemonsma P., Inzelberg R., Zeilig G., Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait. Neurology. 2018;90(22):1017–1025. doi: 10.1212/WNL.0000000000005603.
    1. Keller T., Perry J. Rehabilitation Robotics: From Expensive Tools for Specialized Hospitals towards Home and Tele-Rehabilitation Use. 2018.
    1. Morris C., Fu Y., McCormick S., Wachter B., Devasia S. Low-cost assistive robot for mirror therapy rehabilitation. Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO); December 2017; pp. 2057–2062.
    1. Volpini M., Bartenbach V., Pinotti M., Riener R. Clinical evaluation of a low-cost robot for use in physiotherapy and gait training. Journal of Rehabilitation and Assistive Technologies Engineering. 2017;4 doi: 10.1177/2055668316688410.2055668316688410
    1. Dockx K., Bekkers E. M. J., Van den Bergh V., et al. The Cochrane Library. John Wiley & Sons, Ltd; 2016. Virtual reality for rehabilitation in Parkinson disease.
    1. Labruyère R., Van Hedel H. J. A. Strength training versus robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study in patients depending on walking assistance. Journal of NeuroEngineering and Rehabilitation. 2014;11(1, article no. 4) doi: 10.1186/1743-0003-11-4.
    1. Hoermann S., Ferreira dos Santos L., Morkisch N., et al. Computerised mirror therapy with Augmented Reflection Technology for early stroke rehabilitation: clinical feasibility and integration as an adjunct therapy. Disability and Rehabilitation. 2017;39(15):1503–1514. doi: 10.1080/09638288.2017.1291765.
    1. Ortiz-Catalan M., Guðmundsdóttir R. A., Kristoffersen M. B., et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. The Lancet. 2016;388(10062):2885–2894. doi: 10.1016/S0140-6736(16)31598-7.
    1. Peters M. D. J., Godfrey C. M., Khalil H., McInerney P., Parker D., Soares C. B. Guidance for conducting systematic scoping reviews. International Journal of Evidence-Based Healthcare. 2015;13(3):141–146. doi: 10.1097/XEB.0000000000000050.
    1. Tricco A. C., Lillie E., Zarin W., et al. A scoping review on the conduct and reporting of scoping reviews. BMC Medical Research Methodology. 2016;16(1, article no. 15) doi: 10.1186/s12874-016-0116-4.
    1. OCEBM-Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine; 2011.
    1. Kang Y. J., Park H. K., Kim H. J., et al. Upper extremity rehabilitation of stroke: facilitation of corticospinal excitability using virtual mirror paradigm. Journal of NeuroEngineering and Rehabilitation. 2012;9(1) doi: 10.1186/1743-0003-9-71.71
    1. Yang Y.-R., Chen Y.-H., Chang H.-C., Chan R.-C., Wei S.-H., Wang R.-Y. Effects of interactive visual feedback training on post-stroke pusher syndrome: A pilot randomized controlled study. Clinical Rehabilitation. 2015;29(10):987–993. doi: 10.1177/0269215514564898.
    1. In T., Lee K., Song C. Virtual reality reflection therapy improves balance and gait in patients with chronic stroke: Randomized controlled trials. Medical Science Monitor. 2016;22:4046–4053. doi: 10.12659/MSM.898157.
    1. Hoermann S., Franz E. A., Regenbrecht H., Fridman E. A. Referred Sensations Elicited by Video-Mediated Mirroring of Hands. PLoS ONE. 2012;7(12):p. e50942. doi: 10.1371/journal.pone.0050942.
    1. Lum P. S., Burgar C. G., Van Der Loos M., Shor P. C., Majmundar M., Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. Journal of Rehabilitation Research and Development . 2006;43(5):631–642. doi: 10.1682/JRRD.2005.02.0044.
    1. Burgar C. G., Lum P. S., Erika Scremin A. M., et al. Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: department of veterans affairs multisite clinical trial. Journal of Rehabilitation Research and Development . 2011;48(4):445–458. doi: 10.1682/jrrd.2010.04.0062.
    1. Kang J., Chun M. H., Choi S. J., Chang M. C., Yi Y. G. Effects of mirror therapy using a tablet PC on central facial paresis in stroke patients. Annals of Rehabilitation Medicine. 2017;41(3):p. 347. doi: 10.5535/arm.2017.41.3.347.
    1. Merians A. S., Tunik E., Fluet G. G., Qiu Q., Adamovich S. V. Innovative approaches to the rehabilitation of upper extremity hemiparesis using virtual environments. European Journal of Physical and Rehabilitation Medicine. 2009;45(1):p. 123133.
    1. Hoermann S., Hale L., Winser S., Regenbrecht H. Augmented Reflection Technology for Stroke Rehabilitation – A Clinical Feasibility Study. 2012.
    1. Penelle B., Mouraux D., Brassinne E., Tuna T., Nonclercq A., Warzée N. 3D augmented reality applied to the treatment of neuropathic pain. Proceedings of the 9th International Conference on Disability, Virtual Reality and Associated Technologies; 2012; pp. 61–68.
    1. Mehnert J., Brunetti M., Steinbrink J., Niedeggen M., Dohle C. Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy. Journal of Biomedical Optics. 2013;18(6) doi: 10.1117/1.JBO.18.6.066001.66001
    1. Lee H., Li P., Fan S. Delayed mirror visual feedback presented using a novel mirror therapy system enhances cortical activation in healthy adults. Journal of NeuroEngineering and Rehabilitation. 2015;12(1) doi: 10.1186/s12984-015-0053-1.
    1. Peterzell D. H., Kennedy J. F. Psychophysical investigations into Ramachandran’s mirror visual feedback for phantom limb pain: video-based variants for unilateral and bilateral amputees, and temporal dynamics of paresthesias. Electronic Imaging. 2016;2016(16):1–10.
    1. Jaewon Beom. A 2-Axis Robotic Mirror Therapy System to Enhance Proprioception and Functional Recovery of Hemiplegic Arms in Patients with Stroke. 2016.
    1. Emerson I., Potgieter J., Xu W. Evaluation of a prototype integrated robotic and virtual mirror therapy system for stroke rehabilitation. Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP); November 2017; Auckland. pp. 1–6.
    1. Kim W., Beom J., Park C., et al. Reliability and Validity of Attitude and Heading Reference System Motion Estimation in a Novel Mirror Therapy System. Journal of Medical and Biological Engineering. 2018;38(3):370–377. doi: 10.1007/s40846-017-0315-4.
    1. Murray C. D., Pettifer S., Howard T., et al. The treatment of phantom limb pain using immersive virtual reality: three case studies. Disabil Rehabil. 2007;29(18):p. 14651469.
    1. Cole J., Crowle S., Austwick G., Henderson Slater D. Exploratory findings with virtual reality for phantom limb pain; From stump motion to agency and analgesia. Disability and Rehabilitation. 2009;31(10):846–854. doi: 10.1080/09638280802355197.
    1. Mercier C., Sirigu A. Training with virtual visual feedback to alleviate phantom limb pain. Neurorehabilitation and Neural Repair. 2009;23(6):587–594. doi: 10.1177/1545968308328717.
    1. Sato K., Fukumori S., Matsusaki T., et al. Nonimmersive virtual reality mirror visual feedback therapy and its application for the treatment of complex regional pain syndrome: An open-label pilot study. Pain Medicine. 2010;11(4):622–629. doi: 10.1111/j.1526-4637.2010.00819.x.
    1. Alphonso A. L., Monson B. T., Zeher M. J., et al. Use of a virtual integrated environment in prosthetic limb development and phantom limb pain. Studies in Health Technnologies and Informatics. 2012;181:p. 305309.
    1. Shiri S., Feintuch U., Lorber-Haddad A., et al. Novel virtual reality system integrating online self-face viewing and mirror visual feedback for stroke rehabilitation: Rationale and feasibility. Topics in Stroke Rehabilitation. 2012;19(4):277–286. doi: 10.1310/tsr1904-277.
    1. Won A. S., Collins T. A. Non-Immersive, Virtual Reality Mirror Visual Feedback for Treatment of Persistent Idiopathic Facial Pain. Pain Medicine. 2012;13(9):1257–1258. doi: 10.1111/j.1526-4637.2012.01436.x.
    1. González D. S., Castellini C. A realistic implementation of ultrasound imaging as a human-machine interface for upper-limb amputees. Frontiers in Neurorobotics. 2013;7
    1. Barton G. J., De Asha A. R., Van Loon E. C. P., Geijtenbeek T., Robinson M. A. Manipulation of visual biofeedback during gait with a time delayed adaptive Virtual Mirror Box. Journal of NeuroEngineering and Rehabilitation. 2014;11(1, article no. 101) doi: 10.1186/1743-0003-11-101.
    1. Ortiz-Catalan M., Sander N., Kristoffersen M. B., Håkansson B., Brånemark R. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: A case study of a chronic PLP patient. Frontiers in Neuroscience. 2014;8:p. 24.
    1. Schuster-Amft C., Henneke A., Hartog-Keisker B., et al. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disability and Rehabilitation: Assistive Technology. 2015;10(5):385–392. doi: 10.3109/17483107.2014.908963.
    1. Diers M., Kamping S., Kirsch P., et al. Illusion-related brain activations: A new virtual reality mirror box system for use during functional magnetic resonance imaging. Brain Research. 2015;1594:173–182. doi: 10.1016/j.brainres.2014.11.001.
    1. Beom J., Koh S., Nam H. S., et al. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms. Journal of Visualized Experiments. 2016;(114) doi: 10.3791/54521.
    1. Mouraux D., Brassinne E., Sobczak S., et al. 3D augmented reality mirror visual feedback therapy applied to the treatment of persistent, unilateral upper extremity neuropathic pain: a preliminary study. Journal of Manual & Manipulative Therapy. 2016;25(3):137–143. doi: 10.1080/10669817.2016.1176726.
    1. Chau B., Phelan I., Ta P., Humbert S., Hata J., Tran D. Virtual reality therapy with myoelectric control for treatment-resistant phantom limb pain: case report. Innovations in Clinical Neurosciences. 2017;14(78):p. 37.
    1. Dunn J., Yeo E., Moghaddampour P., Chau B., Humbert S. Virtual and augmented reality in the treatment of phantom limb pain: A literature review. NeuroRehabilitation. 2017;40(4):595–601. doi: 10.3233/NRE-171447.
    1. Harvie D. S., Smith R. T., Hunter E. V., Davis M. G., Sterling M., Lorimer Moseley G. Using visuo-kinetic virtual reality to induce illusory spinal movement: The MoOVi illusion. PeerJ. 2017;2017(2):1–16.e3023
    1. Kim J., Kim J. Robot-assisted mirroring exercise as a physical therapy for hemiparesis rehabilitation. Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2017; Jeju Island, South Korea. pp. 4243–4246.
    1. Marghi Y. M., Farjadian A. B., Yen S., Erdogmus D. EEG-guided robotic mirror therapy system for lower limb rehabilitation. Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); July 2017; Jeju Island, South Korea. pp. 1917–1921.
    1. Nam H. S., Koh S., Beom J., et al. Recovery of proprioception in the upper extremity by robotic mirror therapy: A clinical pilot study for proof of concept. Journal of Korean Medical Science. 2017;32(10):1568–1575. doi: 10.3346/jkms.2017.32.10.1568.
    1. Yarossi M., Manuweera T., Adamovich S. V., Tunik E. The effects of mirror feedback during target directed movements on ipsilateral corticospinal excitability. Frontiers in Human Neuroscience. 2017;11
    1. Ambron E., Miller A., Kuchenbecker K. J., Buxbaum L. J., Coslett H. B. Immersive low-cost virtual reality treatment for phantom limb pain: Evidence from two cases. Frontiers in Neurology. 2018;9
    1. Fuentes M. A., Borrego A., Latorre J., et al. Combined Transcranial Direct Current Stimulation and Virtual Reality-Based Paradigm for Upper Limb Rehabilitation in Individuals with Restricted Movements. A Feasibility Study with a Chronic Stroke Survivor with Severe Hemiparesis. Journal of Medical Systems. 2018;42(5):p. 87. doi: 10.1007/s10916-018-0949-y.
    1. Bae J.-H., Kim Y.-M., Moon I. Wearable hand rehabilitation robot capable of hand function assistance in stroke survivors. Proceedings of the 2012 4th IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2012; June 2012; Italy. pp. 1482–1487.
    1. Oouchida Y., Izumi S.-I. Imitation movement reduces the phantom limb pain caused by the abnormality of body schema. Proceedings of the 6th International Conference on Complex Medical Engineering, CME 2012; July 2012; Japan. pp. 53–55.
    1. Rinderknecht M. D., Kim Y., Santos-Carreras L., Bleuler H., Gassert R. Combined tendon vibration and virtual reality for post-stroke hand rehabilitation. Proceedings of the 2013 IEEE World Haptics Conference, WHC 2013; April 2013; Republic of Korea. pp. 277–282.
    1. Saleh S., Adamovich S. V., Tunik E. Visual feedback discordance mediates changes in brain activity and effective connectivity: A stroke fMRI dynamic causal modeling study. Proceedings of the 2013 2nd International Conference on Advances in Biomedical Engineering, ICABME 2013; September 2013; Lebanon. pp. 85–88.
    1. Fukumori S., Gofuku A., Isatake K., Sato K. Mirror thrapy system based virtual reality for chronic pain in home use. Proceedings of the IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society; 2014; pp. 4034–4039.
    1. Hoermann S., Santos L. F., Morkisch N., et al. Computerized mirror therapy with augmented reflection technology for stroke rehabilitation: A feasibility study in a rehabilitation center. Proceedings of the 2015 International Conference on Virtual Rehabilitation (ICVR); June 2015; Valencia, Spain. pp. 199–206.
    1. Shahbazi M., Atashzar S. F., Tavakoli M., Patel R. V. Robotics-assisted mirror rehabilitation therapy: A therapist-in-the-loop assist-as-needed architecture. IEEE/ASME Transactions on Mechatronics. 2016;21(4):1954–1965. doi: 10.1109/TMECH.2016.2551725.
    1. Llorens R., Borrego A., Latorre J., Alcaniz M., Colomer C., Noe E. A combined transcranial direct current stimulation and virtual reality-based intervention on upper limb function in chronic stroke survivors with severe hemiparesis. Proceedings of the 2017 International Conference on Virtual Rehabilitation, ICVR 2017; June 2017; Canada.
    1. Su Y., Wu Y., Gao Y., Dong W., Sun Y., Du Z. A upper limb rehabilitation system with motion intention detection. Proceedings of the 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM); August 2017; Hefei. pp. 510–516.
    1. Swee S. K., You L. Z., Hang B. W., Kiang D. K. Development of rehabilitation system using virtual reality. Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS); November 2017; Melaka. pp. 1–6.
    1. Hesse S., Schulte-Tigges G., Konrad M., Bardeleben A., Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Archives of Physical Medicine and Rehabilitation. 2003;84(6):915–920. doi: 10.1016/S0003-9993(02)04954-7.
    1. Lum P. S., Burgar C. G., Shor P. C. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2004;12(2):186–194. doi: 10.1109/TNSRE.2004.827225.
    1. Lozano J. A., Montesa J., Juan M. C., et al. International Symposium on Smart Graphics. Vol. 3638. Berlin, Heidelberg: Springer Berlin Heidelberg; 2005. VR-Mirror: A Virtual Reality System for Mental Practice in Post-Stroke Rehabilitation; pp. 241–251. (Lecture Notes in Computer Science).
    1. Desmond D. M., Og'Neill K., De Paor A., McDarby G., MacLachlan M. Augmenting the reality of phantom limbs: Three case studies using an augmented mirror box procedure. Journal of Prosthetics and Orthotics. 2006;18(3):74–79. doi: 10.1097/00008526-200607000-00005.
    1. Murray C. D., Patchick E., Pettifer S., et al. Investigating the efficacy of a virtual mirror box in treating phantom limb pain in a sample of chronic sufferers. International Journal on Disability and Human Development. 2006;5(3) doi: 10.1515/IJDHD.2006.5.3.227.
    1. Lewis G. N., Perreault E. J. An assessment of robot-assisted bimanual movements on upper limb motor coordination following stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009;17(6):595–604. doi: 10.1109/TNSRE.2009.2029315.
    1. Kadivar Z., Sung C., Thompson Z., O'Malley M., Liebschner M., Deng Z. Comparison of reaching kinematics during mirror and parallel robot assisted movements. Studies in Health Technology and Informatics. 2011;163:247–253.
    1. Regenbrecht H., McGregor G., Ott C., et al. Out of reach? A novel AR interface approach for motor rehabilitation. Proceedings of the in 2011 10th IEEE International Symposium on Mixed and Augmented Reality; 2011; p. p. 219228.
    1. Regenbrecht H. T., Franz E. A., McGregor G., Dixon B. G., Hoermann S. Beyond the looking glass: Fooling the brain with the augmented mirror box. Presence: Teleoperators and Virtual Environments. 2011;20(6):559–576. doi: 10.1162/PRES_a_00082.
    1. Barton G. J., Asha A. R. D., Geijtenbeek T., Robinson M. A. Development of a virtual mirror box for spatial and temporal manipulation of visual feedback on body movement during gait: A technical evaluation. Gait & Posture. 2012;36:p. S76.
    1. Casas X., Herrera G., Coma I., Fernández M. A Kinect-based Augmented Reality system for individuals with autism spectrum disorders. Proceedings of the International Conference on Computer Graphics Theory and Applications, GRAPP 2012 and International Conference on Information Visualization Theory and Applications, IVAPP 2012; February 2012; Italy. pp. 440–446.
    1. Liao W.-W., Wu C.-Y., Hsieh Y.-W., Lin K.-C., Chang W.-Y. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation. 2012;26(2):111–120. doi: 10.1177/0269215511416383.
    1. Regenbrecht H., Hoermann S., McGregor G., et al. Visual manipulations for motor rehabilitation. Computers & Graphics. 2012;36(7)819834
    1. Ueki S., Kawasaki H., Ito S., et al. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Transactions on Mechatronics. 2012;17(1):136–146. doi: 10.1109/TMECH.2010.2090353.
    1. Perry B. N., Alphonso A. L., Tsao J. W., Pasquina P. F., Armiger R. S., Moran C. W. A Virtual Integrated Environment for phantom limb pain treatment and Modular Prosthetic Limb training. Proceedings of the 2013 10th International Conference on Virtual Rehabilitation, ICVR 2013; August 2013; USA. pp. 153–157.
    1. Trojan J., Diers M., Fuchs X., et al. An augmented reality home-training system based on the mirror training and imagery approach. Behavior Research Methods. 2013;46(3):634–640. doi: 10.3758/s13428-013-0412-4.
    1. Wake N., Sano Y., Oya R., Sumitani M., Kumagaya S.-I., Kuniyoshi Y. Multimodal virtual reality platform for the rehabilitation of phantom limb pain. Proceedings of the 7th International IEEE/EMBS Conference on Neural Engineering, NER 2015; April 2015; France. pp. 787–790.
    1. Sano Y., Wake N., Ichinose A., et al. Tactile feedback for relief of deafferentation pain using virtual reality system: A pilot study. Journal of NeuroEngineering and Rehabilitation. 2016;13(1, article no. 61) doi: 10.1186/s12984-016-0161-6.
    1. Ichinose A., Sano Y., Osumi M., Sumitani M., Kumagaya S.-I., Kuniyoshi Y. Somatosensory feedback to the cheek during virtual visual feedback therapy enhances pain alleviation for phantom arms. Neurorehabilitation and Neural Repair. 2017;31(8):717–725. doi: 10.1177/1545968317718268.
    1. Osumi M., Ichinose A., Sumitani M., et al. Restoring movement representation and alleviating phantom limb pain through short-term neurorehabilitation with a virtual reality system. European Journal of Pain. 2017;21(1):p. 140147.
    1. Pozeg P., Palluel E., Ronchi R., et al. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology. 2017;89(18):1894–1903. doi: 10.1212/WNL.0000000000004585.
    1. O'Neill K., Maclachlan M., Mcdarby G. An Investigation into the performance of a Virtual Mirror Box for the treatment of Phantom Limb Pain in Amputees using Augmented Reality Technology. Mai 2018.
    1. Amano T., González-Varo J. P., Sutherland W. J. Languages are still a major barrier to global science. PLoS Biology. 2016;14(12):p. e2000933. doi: 10.1371/journal.pbio.2000933.
    1. Sayre J. W., Toklu H. Z., Ye F., Mazza J., Yale S. Case reports, case series – from clinical practice to evidence-based medicine in graduate medical education. Cureus. 2017;9(8) doi: 10.7759/cureus.1546.
    1. McCambridge J., Witton J., Elbourne D. R. Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. Journal of Clinical Epidemiology. 2014;67(3):267–277. doi: 10.1016/j.jclinepi.2013.08.015.
    1. Bouchet C., Guillemin F., Briançon S. Nonspecific effects in longitudinal studies: Impact on quality of life measures. Journal of Clinical Epidemiology. 1996;49(1):15–20. doi: 10.1016/0895-4356(95)00540-4.
    1. Iles R. L. Guidebook to Better Medical Writing. Olathe, Kansas, USA: Island Press; 1997.
    1. Pälmke M., Von Piekartz H., Zalpour C., Schüler T., Morisse K. A new perspective for Virtual Mirror Therapy: Developing a low-cost-high-convenient environment utilising the Wiimote. Proceedings of the 2009 Virtual Rehabilitation International Conference, VR 2009; July 2009; p. p. 197197.
    1. Sanson-Fisher R. W., Bonevski B., Green L. W., D'Este C. Limitations of the randomized controlled trial in evaluating population-based health interventions. American Journal of Preventive Medicine. 2007;33(2):155–161. doi: 10.1016/j.amepre.2007.04.007.
    1. Borenstein M., Hedges L. V., Higgins J. P. T., Rothstein H. R. Introduction to Meta-Analysis. Wiley-Blackwell: 2009. Criticisms of meta-analysis; p. p. 377387.
    1. Batson S., Webb N., Greenall G. Meta-analysis to support technology submissions to health technology assessment authorities: criticisms by nice and evidence review groups in the Uk. Value in Health. 2015;18(7):p. A720. doi: 10.1016/j.jval.2015.09.2729.
    1. Laver K. E., Lange B., George S., Deutsch J. E., Saposnik G., Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. 2017;11:p. CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Mehrholz J., Pohl M., Platz T., Kugler J., Elsner B. The Cochrane Library. John Wiley & Sons, Ltd; 2015. Electromechanical and robot‐assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.
    1. Mehrholz J., Thomas S., Werner C., Kugler J., Pohl M., Elsner B. The Cochrane Library. John Wiley & Sons, Ltd; 2017. Electromechanical‐assisted training for walking after stroke.
    1. Mehrholz J., Hädrich A., Platz T., Kugler J., Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database of Systematic Reviews. 2012;6CD006876
    1. Kwakkel G., Kollen B. J., Krebs H. I. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and Neural Repair. 2008;22(2):111–121. doi: 10.1177/1545968307305457.
    1. Mehrholz J., Kugler J., Pohl M. The Cochrane Library. John Wiley & Sons, Ltd: 2012. Locomotor training for walking after spinal cord injury.
    1. Bujar M., Donelan R., McAuslane N., Walker S., Salek S. Assessing the quality of decision making in the development and regulatory review of medicines: Identifying biases and best practices. Therapeutic Innovation and Regulatory Science. 2017;51(2):250–256. doi: 10.1177/2168479016662681.
    1. Bujar M., McAuslane N., Walker S. R., Salek S. Evaluating quality of decision-making processes in medicines’ development, regulatory review, and health technology assessment: a systematic review of the literature. Frontiers in Pharmacology. 2017;8
    1. Gøtzsche P. C. Why we need easy access to all data from all clinical trials and how to accomplish it. Trials. 2011;12:p. 249.
    1. Lundh A., Lexchin J., Mintzes B., Schroll J. B., Bero L. The Cochrane Collaboration. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2017. Industry sponsorship and research outcome.
    1. Patel S. V., Yu D., Elsolh B., Goldacre B. M., Nash G. M. Assessment of conflicts of interest in robotic surgical studies: validating authorʼs declarations with the open payments database. Annals of Surgery. 2017

Source: PubMed

3
Suscribir