Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research

Nicholas J Snow, Katie P Wadden, Arthur R Chaves, Michelle Ploughman, Nicholas J Snow, Katie P Wadden, Arthur R Chaves, Michelle Ploughman

Abstract

Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2019 Nicholas J. Snow et al.

Figures

Figure 1
Figure 1
Flow chart detailing study screening.
Figure 2
Figure 2
Results of study quality and risk of bias assessment. Risk of bias assessment was conducted using a modified version of the National Institutes of Health (NIH) “Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies” [53]. To guide decisions on overall study quality from the NIH tool [53], the Cochrane Risk of Bias Tool was used [62]. An article was deemed to have a high risk of bias (i.e., low quality) if one or more criteria from the NIH tool was unmet and marked “N,” unclear risk (i.e., moderate quality/risk) if one or more criteria were ambiguous and marked “U” and no criterion was marked “N”, and high quality (i.e., low risk) if all 14 criteria were clearly met and marked “Y.” Key confounding variables can be found in .
Figure 3
Figure 3
Summary of (a) transcranial magnetic stimulation (TMS) and (b) clinical outcome measures from studies reviewed. The horizontal axis indicates the outcome measure of interest, and the vertical axis represents number of studies utilizing each outcome measure. The black vertical bars (a and b) represent studies comparing both participants with multiple sclerosis (MS) and healthy control participants (HC). The white vertical bars (a and b) represent studies with statistically significant differences between MS and HC groups. The grey vertical bars (a and b) represent studies that found statistically significant correlations between TMS and clinical outcome measures in participants with MS. The hatched bar (b only) represents studies examining clinical outcome measures in MS participants alone. AMT: active motor threshold; CSP: cortical silent period; iSP: ipsilateral silent period; MEP: motor-evoked potential; RMT: resting motor threshold; CMCT: central motor conduction time; ICF: intracortical facilitation; IHI: interhemispheric inhibition; LICI: long-interval intracortical inhibition; PMd-M1: dorsal premotor cortex-primary motor cortex interactions; SAI: short-latency afferent inhibition; SICF: short-interval intracortical facilitation; SICI: short-interval intracortical inhibition; TST: triple stimulation technique.

References

    1. Noseworthy J. H., Lucchinetti C., Rodriguez M., Weinshenker B. G. Multiple sclerosis. New England Journal of Medicine. 2000;343(13):938–952. doi: 10.1056/NEJM200009283431307.
    1. Baecher-Allan C., Kaskow B. J., Weiner H. L. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97(4):742–768. doi: 10.1016/j.neuron.2018.01.021.
    1. Lassmann H., Brück W., Lucchinetti C. F. The immunopathology of multiple sclerosis: an overview. Brain Pathology. 2007;17(2):210–218. doi: 10.1111/j.1750-3639.2007.00064.x.
    1. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mork S., Bo L. Axonal transection in the lesions of multiple sclerosis. The New England Journal of Medicine. 1998;338(5):278–285. doi: 10.1056/NEJM199801293380502.
    1. Ayadi N., Dörr J., Motamedi S., et al. Temporal visual resolution and disease severity in MS. Neurology – Neuroimmunology & Neuroinflammation. 2018;5(5):e492–e498. doi: 10.1212/NXI.0000000000000492.
    1. Hosseini B., Flora D. B., Banwell B. L., Till C. Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. Journal of the International Neuropsychological Society. 2014;20(8):796–804. doi: 10.1017/S1355617714000642.
    1. Doble S. E., Fisk J. D., Fisher A. G., Ritvo P. G., Murray T. J. Functional competence of community-dwelling persons with multiple sclerosis using the assessment of motor and process skills. Archives of Physical Medicine and Rehabilitation. 1994;75(8):843–851. doi: 10.1016/0003-9993(94)90107-4.
    1. Conte A., Li Voti P., Pontecorvo S., et al. Attention-related changes in short-term cortical plasticity help to explain fatigue in multiple sclerosis. Multiple Sclerosis Journal. 2016;22(10):1359–1366. doi: 10.1177/1352458515619780.
    1. Ayache S. S., Chalah M. A. Fatigue in multiple sclerosis – insights into evaluation and management. Neurophysiologie Clinique/Clinical Neurophysiology. 2017;47(2):139–171. doi: 10.1016/j.neucli.2017.02.004.
    1. Penner I. K., Paul F. Fatigue as a symptom or comorbidity of neurological diseases. Nature Reviews Neurology. 2017;13(11):662–675. doi: 10.1038/nrneurol.2017.117.
    1. Cottrell D. A., Kremenchutzky M., Rice G. P. A., et al. The natural history of multiple sclerosis: a geographically based study: 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999;122(4):625–639. doi: 10.1093/brain/122.4.625.
    1. Braley T. J., Chervin R. D. Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep. 2010;33(8):1061–1067. doi: 10.1093/sleep/33.8.1061.
    1. von Bismarck O., Dankowski T., Ambrosius B., et al. Treatment choices and neuropsychological symptoms of a large cohort of early MS. Neurology – Neuroimmunology & Neuroinflammation. 2018;5(3, article e446) doi: 10.1212/nxi.0000000000000446.
    1. Cerqueira J. J., Compston D. A. S., Geraldes R., et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(8):844–850. doi: 10.1136/jnnp-2017-317509.
    1. DW E. G. P., Noseworthy J. H. Diagnosis of multiple sclerosis. In: Paty D. W., Ebers G. C., editors. Mult. Scler. (Contemporary Neurol. Ser.) Philadelphia, PA, USA: FA Davis; 1998. pp. 135–191.
    1. Ebers G. C. Natural history of multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry. 2001;71:ii16–ii19.
    1. Krieger S. C., Cook K., de Nino S., Fletcher M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurology – Neuroimmunology & Neuroinflammation. 2016;3(5, article e279) doi: 10.1212/nxi.0000000000000279.
    1. Okuda D. T., Mowry E. M., Beheshtian A., et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72(9):800–805. doi: 10.1212/01.wnl.0000335764.14513.1a.
    1. Trip S. A., Miller D. H. Imaging in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2005;76(Supplement_3):iii11–iii18. doi: 10.1136/jnnp.2005.073213.
    1. Azevedo C. J., Overton E., Khadka S., et al. Early CNS neurodegeneration in radiologically isolated syndrome. Neurology – Neuroimmunology & Neuroinflammation. 2015;2(3, article e102) doi: 10.1212/NXI.0000000000000102.
    1. Rasche L., Scheel M., Otte K., et al. MRI markers and functional performance in patients with CIS and MS: a cross-sectional study. Frontiers in Neurology. 2018;9:p. 718. doi: 10.3389/fneur.2018.00718.
    1. Pawlitzki M., Neumann J., Kaufmann J., et al. Loss of corticospinal tract integrity in early MS disease stages. Neurology – Neuroimmunology & Neuroinflammation. 2017;4(6, article e399) doi: 10.1212/NXI.0000000000000399.
    1. McDonald W. I., Compston A., Edan G., et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Annals of Neurology. 2001;50(1):121–127. doi: 10.1002/ana.1032.
    1. Ziemann U., Wahl M., Hattingen E., Tumani H. Development of biomarkers for multiple sclerosis as a neurodegenerative disorder. Progress in Neurobiology. 2011;95(4):670–685. doi: 10.1016/j.pneurobio.2011.04.007.
    1. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics. 2001;69(3):89–95. doi: 10.1067/mcp.2001.113989.
    1. Thompson A. J., Banwell B. L., Barkhof F., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–173. doi: 10.1016/s1474-4422(17)30470-2.
    1. Schäffler N., Köpke S., Winkler L., et al. Accuracy of diagnostic tests in multiple sclerosis - a systematic review. Acta Neurologica Scandinavica. 2011;124(3):151–164. doi: 10.1111/j.1600-0404.2010.01454.x.
    1. Alcaide-Leon P., Cybulsky K., Sankar S., et al. Quantitative spinal cord MRI in radiologically isolated syndrome. Neurology - Neuroimmunology & Neuroinflammation. 2018;5(2, article e436) doi: 10.1212/NXI.0000000000000436.
    1. Cortese R., Collorone S., Ciccarelli O., Toosy A. T. Advances in brain imaging in multiple sclerosis. Therapeutic Advances in Neurological Disorders. 2019;12 doi: 10.1177/1756286419859722.
    1. Oberwahrenbrock T., Traber G. L., Lukas S., et al. Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurology - Neuroimmunology & Neuroinflammation. 2018;5(3, article e449) doi: 10.1212/nxi.0000000000000449.
    1. Klein A., Selter R. C., Hapfelmeier A., et al. CSF parameters associated with early MRI activity in patients with MS. Neurology - Neuroimmunology & Neuroinflammation. 2019;6(4, article e573) doi: 10.1212/nxi.0000000000000573.
    1. Akgün K., Kretschmann N., Haase R., et al. Profiling individual clinical responses by high-frequency serum neurofilament assessment in MS. Neurology - Neuroimmunology & Neuroinflammation. 2019;6(3, article e555) doi: 10.1212/NXI.0000000000000555.
    1. Brown K. E., Neva J. L., Ledwell N. M. H., Boyd L. Use of transcranial magnetic stimulation in the treatment of selected movement disorders. Degenerative Neurological and Neuromuscular Disease. 2014;4:133–151. doi: 10.2147/DNND.S70079.
    1. Simpson M., Macdonell R. The use of transcranial magnetic stimulation in diagnosis, prognostication and treatment evaluation in multiple sclerosis. Multiple Sclerosis and Related Disorders. 2015;4(5):430–436. doi: 10.1016/j.msard.2015.06.014.
    1. Chen R., Cros D., Curra A., et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology. 2008;119(3):504–532. doi: 10.1016/j.clinph.2007.10.014.
    1. Wassermann E. M., Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacology & Therapeutics. 2012;133(1):98–107. doi: 10.1016/j.pharmthera.2011.09.003.
    1. Groppa S., Oliviero A., Eisen A., et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clinical Neurophysiology. 2012;123(5):858–882. doi: 10.1016/j.clinph.2012.01.010.
    1. Wassermann E. M. Variation in the response to transcranial magnetic brain stimulation in the general population. Clinical Neurophysiology. 2002;113(7):1165–1171. doi: 10.1016/S1388-2457(02)00144-X.
    1. McDonnell M. N., Ridding M. C., Miles T. S. Do alternate methods of analysing motor evoked potentials give comparable results? Journal of Neuroscience Methods. 2004;136(1):63–67. doi: 10.1016/j.jneumeth.2003.12.020.
    1. Chipchase L., Schabrun S., Cohen L., et al. A checklist for assessing the methodological quality of studies using transcranial magnetic stimulation to study the motor system: an international consensus study. Clinical Neurophysiology. 2012;123(9):1698–1704. doi: 10.1016/j.clinph.2012.05.003.
    1. Zeller D., Dang S. Y., Stefan K., et al. Functional role of ipsilateral motor areas in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2011;82(5):578–583. doi: 10.1136/jnnp.2010.219964.
    1. Nantes J. C., Zhong J., Holmes S. A., et al. Intracortical inhibition abnormality during the remission phase of multiple sclerosis is related to upper limb dexterity and lesions. Clinical Neurophysiology. 2016;127(2):1503–1511. doi: 10.1016/j.clinph.2015.08.011.
    1. Cucurachi L., Immovilli P., Granella F., Pavesi G., Cattaneo L. Short-latency afferent inhibition predicts verbal memory performance in patients with multiple sclerosis. Journal of Neurology. 2008;255(12):1949–1956. doi: 10.1007/s00415-008-0041-5.
    1. Rossini P. M., Burke D., Chen R., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clinical Neurophysiology. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Kim B., Winstein C. Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review. Neurorehabilitation and Neural Repair. 2017;31(1):3–24. doi: 10.1177/1545968316662708.
    1. Rodríguez-Labrada R., Velázquez-Pérez L., Ziemann U. Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clinical Neurophysiology. 2018;129(8):1688–1698. doi: 10.1016/j.clinph.2018.06.003.
    1. Barker A. T., Jalinous R., Freeston I. L. Non-invasive magnetic stimulation of human motor cortex. The Lancet. 1985;325(8437):1106–1107. doi: 10.1016/S0140-6736(85)92413-4.
    1. Poser C. M., Paty D. W., Scheinberg L., et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Annals of Neurology. 1983;13(3):227–231. doi: 10.1002/ana.410130302.
    1. Polman C. H., Reingold S. C., Edan G., et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Annals of Neurology. 2005;58(6):840–846. doi: 10.1002/ana.20703.
    1. Polman C. H., Reingold S. C., Banwell B., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology. 2011;69(2):292–302. doi: 10.1002/ana.22366.
    1. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS) Neurology. 1983;33(11):p. 1444. doi: 10.1212/WNL.33.11.1444.
    1. McHugh M. L. Interrater reliability: the kappa statistic. Biochemia Medica. 2012;22:276–282. doi: 10.11613/BM.2012.031.
    1. National Institutes of Health [NIH] Quality assessment tool for observational cohort and cross-sectional studies. NIH Natl. Hear. Lung, Blood Inst; 2014. September 2017, .
    1. Llufriu S., Blanco Y., Martinez-Heras E., et al. Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study. PLoS One. 2012;7(5, article e37167) doi: 10.1371/journal.pone.0037167.
    1. Bolbocean O., Bohotin V., Popescu C. D. Motor pathway abnormalities in multiple sclerosis. Romanian Journal of Neurology. 2009;8:115–118.
    1. Caramia M. D., Palmieri M. G., Desiato M. T., et al. Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clinical Neurophysiology. 2004;115(4):956–965. doi: 10.1016/j.clinph.2003.11.024.
    1. Schlaeger R., D’Souza M., Schindler C., Grize L., Kappos L., Fuhr P. Prediction of MS disability by multimodal evoked potentials: investigation during relapse or in the relapse-free interval? Clinical Neurophysiology. 2014;125(9):1889–1892. doi: 10.1016/j.clinph.2013.12.117.
    1. Kandler R. H., Jarratt J. A., Davies-Jones G. A. B., et al. The role of magnetic stimulation as a quantifier of motor disability in patients with multiple sclerosis. Journal of the Neurological Sciences. 1991;106(1):31–34. doi: 10.1016/0022-510X(91)90190-I.
    1. Iglesias-Bregna D., Hanak S., Ji Z., et al. Effects of prophylactic and therapeutic teriflunomide in transcranial magnetic stimulation-induced motor-evoked potentials in the dark agouti rat model of experimental autoimmune encephalomyelitis. Journal of Pharmacology and Experimental Therapeutics. 2013;347(1):203–211. doi: 10.1124/jpet.113.205146.
    1. Thirugnanasambandam N., Grundey J., Adam K., et al. Nicotinergic impact on focal and non-focal neuroplasticity induced by non-invasive brain stimulation in non-smoking humans. Neuropsychopharmacology. 2011;36(4):879–886. doi: 10.1038/npp.2010.227.
    1. Bolton C. F., Sawa G. M., Carter K. The effects of temperature on human compound action potentials. Journal of Neurology, Neurosurgery, and Psychiatry. 1981;44(5):407–413. doi: 10.1136/jnnp.44.5.407.
    1. Higgins J. P. T., Altman D. G., Gotzsche P. C., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343, article d5928 doi: 10.1136/bmj.d5928.
    1. Zeller D., Aufm Kampe K., Biller A., et al. Rapid-onset central motor plasticity in multiple sclerosis. Neurology. 2010;74(9):728–735. doi: 10.1212/WNL.0b013e3181d31dcf.
    1. Zipser C. M., Premoli I., Belardinelli P., et al. Cortical excitability and interhemispheric connectivity in early relapsing–remitting multiple sclerosis studied with TMS-EEG. Frontiers in Neuroscience. 2018;12:p. 393. doi: 10.3389/fnins.2018.00393.
    1. Schmierer K., Irlbacher K., Grosse P., Röricht S., Meyer B. U. Correlates of disability in multiple sclerosis detected by transcranial magnetic stimulation. Neurology. 2002;59(8):1218–1224. doi: 10.1212/WNL.59.8.1218.
    1. Bridoux A., Creange A., Sangare A., et al. Impaired sleep-associated modulation of post-exercise corticomotor depression in multiple sclerosis. Journal of the Neurological Sciences. 2015;354(1-2):91–96. doi: 10.1016/j.jns.2015.05.006.
    1. Codecà C., Mori F., Kusayanagi H., et al. Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis. Multiple Sclerosis Journal. 2010;16(11):1308–1316. doi: 10.1177/1352458510376957.
    1. Facchetti D., Mai R., Micheli A., et al. Motor evoked potentials and disability in secondary progressive multiple sclerosis. Canadian Journal of Neurological Sciences. 1997;24(4):332–337. doi: 10.1017/S0317167100033011.
    1. Kale N., Agaoglu J., Tanik O. Electrophysiological and clinical correlates of corpus callosum atrophy in patients with multiple sclerosis. Neurological Research. 2010;32(8):886–890. doi: 10.1179/016164109X12445616596526.
    1. Morgante F., Dattola V., Crupi D., et al. Is central fatigue in multiple sclerosis a disorder of movement preparation? Journal of Neurology. 2011;258(2):263–272. doi: 10.1007/s00415-010-5742-x.
    1. Nantes J. C., Zhong J., Holmes S. A., Narayanan S., Lapierre Y., Koski L. Cortical damage and disability in multiple sclerosis: relation to intracortical inhibition and facilitation. Brain Stimulation. 2016;9(4):566–573. doi: 10.1016/j.brs.2016.01.003.
    1. Ho K. H., Lee M., Nithi K., Palace J., Mills K. Changes in motor evoked potentials to short-interval paired transcranial magnetic stimuli in multiple sclerosis. Clinical Neurophysiology. 1999;110(4):712–719. doi: 10.1016/S1388-2457(98)00048-0.
    1. Lenzi D., Conte A., Mainero C., et al. Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Human Brain Mapping. 2007;28(7):636–644. doi: 10.1002/hbm.20305.
    1. Neva J. L., Lakhani B., Brown K. E., et al. Multiple measures of corticospinal excitability are associated with clinical features of multiple sclerosis. Behavioural Brain Research. 2016;297:187–195. doi: 10.1016/j.bbr.2015.10.015.
    1. Perretti A., Balbi P., Orefice G., et al. Post-exercise facilitation and depression of motor evoked potentials to transcranial magnetic stimulation: a study in multiple sclerosis. Clinical Neurophysiology. 2004;115(9):2128–2133. doi: 10.1016/j.clinph.2004.03.028.
    1. Santarnecchi E., Rossi S., Bartalini S., et al. Neurophysiological correlates of central fatigue in healthy subjects and multiple sclerosis patients before and after treatment with amantadine. Neural Plasticity. 2015;2015:9. doi: 10.1155/2015/616242.616242
    1. Wahl M., Hübers A., Lauterbach-Soon B., et al. Motor callosal disconnection in early relapsing-remitting multiple sclerosis. Human Brain Mapping. 2011;32(6):846–855. doi: 10.1002/hbm.21071.
    1. White A. T., VanHaitsma T. A., Vener J., Davis S. L. Effect of passive whole body heating on central conduction and cortical excitability in multiple sclerosis patients and healthy controls. Journal of Applied Physiology. 2013;114(12):1697–1704. doi: 10.1152/japplphysiol.01119.2012.
    1. Zeller D., Dang S. Y., Weise D., Rieckmann P., Toyka K. V., Classen J. Excitability decreasing central motor plasticity is retained in multiple sclerosis patients. BMC Neurology. 2012;12(1):p. 92. doi: 10.1186/1471-2377-12-92.
    1. Hulst H. E., Goldschmidt T., Nitsche M. A., et al. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry. 2017;88(5):386–394. doi: 10.1136/jnnp-2016-314224.
    1. Liepert J., Mingers D., Heesen C., Bäumer T., Weiller C. Motor cortex excitability and fatigue in multiple sclerosis: a transcranial magnetic stimulation study. Multiple Sclerosis Journal. 2005;11(3):316–321. doi: 10.1191/1352458505ms1163oa.
    1. Ingram D. A., Thompson A. J., Swash M. Central motor conduction in multiple sclerosis: evaluation of abnormalities revealed by transcutaneous magnetic stimulation of the brain. Journal of Neurology, Neurosurgery & Psychiatry. 1988;51(4):487–494. doi: 10.1136/jnnp.51.4.487.
    1. Sandroni P., Walker C., Tech R. E. E. G., Starr A. ‘Fatigue’ in patients with multiple sclerosis: motor pathway conduction and event-related potentials. Archives of Neurology. 1992;49(5):517–524. doi: 10.1001/archneur.1992.00530290105019.
    1. Scheidegger O., Kamm C. P., Humpert S. J., Rösler K. M. Corticospinal output during muscular fatigue differs in multiple sclerosis patients compared to healthy controls. Multiple Sclerosis Journal. 2012;18(10):1500–1506. doi: 10.1177/1352458512438722.
    1. Tataroglu C., Genc A., Idiman E., Cakmur R., Idiman F. Cortical silent period and motor evoked potentials in patients with multiple sclerosis. Clinical Neurology and Neurosurgery. 2003;105(2):105–110. doi: 10.1016/S0303-8467(02)00127-0.
    1. Tataroglu C., Genc A., Idiman E., Cakmur R., Idiman F. Cortical relay time for long latency reflexes in patients with definite multiple sclerosis. Canadian Journal of Neurological Sciences. 2004;31(2):229–234. doi: 10.1017/S0317167100120578.
    1. Vucic S., Burke T., Lenton K., et al. Cortical dysfunction underlies disability in multiple sclerosis. Multiple Sclerosis Journal. 2012;18(4):425–432. doi: 10.1177/1352458511424308.
    1. Firmin L., Müller S., Rösler K. M. The latency distribution of motor evoked potentials in patients with multiple sclerosis. Clinical Neurophysiology. 2012;123(12):2414–2421. doi: 10.1016/j.clinph.2012.05.008.
    1. Gamst G., Meyers L. S., Guarino A. J. Analysis of variance designs: a conceptual and computational approach with SPSS and SAS. New York, NY, USA: Cambridge University Press; 2008.
    1. Biau D. J., Kernéis S., Porcher R. Statistics in brief: the importance of sample size in the planning and interpretation of medical research. Clinical Orthopaedics and Related Research. 2008;466(9):2282–2288. doi: 10.1007/s11999-008-0346-9.
    1. Thiese M. S. Observational and interventional study design types; an overview. Biochemia Medica. 2014;24(2):199–210. doi: 10.11613/BM.2014.022.
    1. Mann C. J. Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emergency Medicine Journal. 2003;20(1):54–60. doi: 10.1136/emj.20.1.54.
    1. Hess C. W., Mills K. R., Murray N. M. F. Measurement of central motor conduction in multiple sclerosis by magnetic brain stimulation. The Lancet. 1986;328(8503):355–358. doi: 10.1016/S0140-6736(86)90050-4.
    1. Ravnborg M., Liguori R., Christiansen P., Larsson H., Sørensen P. S. The diagnostic reliability of magnetically evoked motor potentials in multiple sclerosis. Neurology. 1992;42(7):1296–1301. doi: 10.1212/WNL.42.7.1296.
    1. Gonsette R. E. Neurodegeneration in multiple sclerosis: the role of oxidative stress and excitotoxicity. Journal of the Neurological Sciences. 2008;274(1-2):48–53. doi: 10.1016/j.jns.2008.06.029.
    1. Whetsell W. O., Jr. Current concepts of excitotoxicity. Journal of Neuropathology and Experimental Neurology. 1996;55(1):1–13. doi: 10.1097/00005072-199601000-00001.
    1. Trepel C., Racine R. J. Long-term potentiation in the neocortex of the adult, freely moving rat. Cerebral Cortex. 1998;8(8):719–729. doi: 10.1093/cercor/8.8.719.
    1. Ziemann U., Reis J., Schwenkreis P., et al. TMS and drugs revisited 2014. Clinical Neurophysiology. 2015;126(10):1847–1868. doi: 10.1016/j.clinph.2014.08.028.
    1. Chaves A. R., Wallack E. M., Kelly L. P., et al. Asymmetry of brain excitability: a new biomarker that predicts objective and subjective symptoms in multiple sclerosis. Behavioural Brain Research. 2019;359:281–291. doi: 10.1016/j.bbr.2018.11.005.
    1. Fields R. D., Dutta D. J., Belgrad J., Robnett M. Cholinergic signaling in myelination. Glia. 2017;65(5):687–698. doi: 10.1002/glia.23101.
    1. Gilani A. A., Dash R. P., Jivrajani M. N., Thakur S. K., Nivsarkar M. Evaluation of GABAergic transmission modulation as a novel functional target for management of multiple sclerosis: exploring inhibitory effect of GABA on glutamate-mediated excitotoxicity. Advances in Pharmacological Sciences. 2014;2014:6. doi: 10.1155/2014/632376.632376
    1. Lazo-Gómez R., Tapia R. Motor alterations induced by chronic 4-aminopyridine infusion in the spinal cord in vivo: role of glutamate and GABA receptors. Front. Neurosci. 2016;10:p. 200. doi: 10.3389/fnins.2016.00200.
    1. Stetkarova I., Kofler M. Differential effect of baclofen on cortical and spinal inhibitory circuits. Clinical Neurophysiology. 2013;124(2):339–345. doi: 10.1016/j.clinph.2012.07.005.
    1. Bröcher S., Artola A., Singer W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Research. 1992;573(1):27–36. doi: 10.1016/0006-8993(92)90110-U.
    1. Gomes J. P., Watad A., Shoenfeld Y. Nicotine and autoimmunity: the lotus’ flower in tobacco. Pharmacological Research. 2018;128:101–109. doi: 10.1016/j.phrs.2017.10.005.
    1. Polachini C. R. N., Spanevello R. M., Schetinger M. R. C., Morsch V. M. Cholinergic and purinergic systems: a key to multiple sclerosis? Journal of the Neurological Sciences. 2018;392:8–21. doi: 10.1016/j.jns.2018.06.020.
    1. Di Lazzaro V., Profice P., Ranieri F., et al. I-wave origin and modulation. Brain Stimulation. 2012;5(4):512–525. doi: 10.1016/j.brs.2011.07.008.
    1. Chen R., Lozano A. M., Ashby P. Mechanism of the silent period following transcranial magnetic stimulation: evidence from epidural recordings. Experimental Brain Research. 1999;128(4):539–542. doi: 10.1007/s002210050878.
    1. Yacyshyn A. F., Woo E. J., Price M. C., McNeil C. J. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation. Experimental Brain Research. 2016;234(12):3457–3463. doi: 10.1007/s00221-016-4742-1.
    1. Parikh R., Mathai A., Parikh S., Chandra Sekhar G., Thomas R. Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology. 2008;56(1):45–50. doi: 10.4103/0301-4738.37595.
    1. Gaede G., Tiede M., Lorenz I., et al. Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology – Neuroimmunology & Neuroinflammation. 2018;5(1, article e423) doi: 10.1212/NXI.0000000000000423.
    1. León Ruiz M., Sospedra M., Arce Arce S., Tejeiro-Martínez J., Benito-León J. Current evidence on the potential therapeutic applications of transcranial magnetic stimulation in multiple sclerosis: a systematic review of the literature. Neurologia. 2018 doi: 10.1016/j.nrl.2018.03.023.
    1. Kalmar J. M., Cafarelli E. Central fatigue and transcranial magnetic stimulation: effect of caffeine and the confound of peripheral transmission failure. Journal of Neuroscience Methods. 2004;138(1-2):15–26. doi: 10.1016/j.jneumeth.2004.03.006.
    1. Rossini P. M., Barker A. T., Berardelli A., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology. 1994;91(2):79–92. doi: 10.1016/0013-4694(94)90029-9.
    1. Capaday C. Neurophysiological methods for studies of the motor system in freely moving human subjects. Journal of Neuroscience Methods. 1997;74(2):201–218. doi: 10.1016/S0165-0270(97)02250-4.
    1. Merton P. A., Morton H. B. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):p. 227. doi: 10.1038/285227a0.
    1. Cantello R., Gianelli M., Civardi C., Mutani R. Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology. 1992;42(10):1951–1959. doi: 10.1212/WNL.42.10.1951.
    1. Sun Y., Ledwell N. M. H., Boyd L. A., Zehr E. P. Unilateral wrist extension training after stroke improves strength and neural plasticity in both arms. Experimental Brain Research. 2018;236(7):2009–2021. doi: 10.1007/s00221-018-5275-6.
    1. Inghilleri M., Berardelli A., Cruccu G., Manfredi M. Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. The Journal of Physiology. 1993;466:521–534.
    1. Mang C. S., Borich M. R., Brodie S. M., et al. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke. Clinical Neurophysiology. 2015;126(10):1959–1971. doi: 10.1016/j.clinph.2014.12.018.
    1. Neva J. L., Brown K. E., Mang C. S., Francisco B. A., Boyd L. A. An acute bout of exercise modulates both intracortical and interhemispheric excitability. European Journal of Neuroscience. 2017;45(10):1343–1355. doi: 10.1111/ejn.13569.
    1. Ferbert A., Priori A., Rothwell J. C., Day B. L., Colebatch J. G., Marsden C. D. Interhemispheric inhibition of the human motor cortex. The Journal of Physiology. 1992;453(1):525–546. doi: 10.1113/jphysiol.1992.sp019243.
    1. Meyer B. U., Röricht S., von Einsiedel H. G., Kruggel F., Weindl A. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain. 1995;118(2):429–440. doi: 10.1093/brain/118.2.429.
    1. Boroojerdi B., Hungs M., Mull M., Töpper R., Noth J. Interhemispheric inhibition in patients with multiple sclerosis. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 1998;109(3):230–237. doi: 10.1016/S0924-980X(98)00013-7.
    1. Compta Y., Valls-Solé J., Valldeoriola F., Kumru H., Rumià J. The silent period of the thenar muscles to contralateral and ipsilateral deep brain stimulation. Clinical Neurophysiology. 2006;117(11):2512–2520. doi: 10.1016/j.clinph.2006.08.005.
    1. Ridding M. C., Rothwell J. C. Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 1997;105(5):340–344. doi: 10.1016/S0924-980X(97)00041-6.
    1. Devanne H., Lavoie B. A., Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research. 1997;114(2):329–338. doi: 10.1007/PL00005641.
    1. Brum M., Cabib C., Valls-Solé J. Clinical value of the assessment of changes in MEP duration with voluntary contraction. Front. Neurosci. 2016;9:p. 505. doi: 10.3389/fnins.2015.00505.
    1. Thickbroom G. W., Sacco P., Faulkner D. L., Kermode A. G., Mastaglia F. L. Enhanced corticomotor excitability with dynamic fatiguing exercise of the lower limb in multiple sclerosis. Journal of Neurology. 2008;255(7):1001–1005. doi: 10.1007/s00415-008-0818-6.
    1. Claus D., Weis M., Jahnke U., Plewe A., Brunhölzl C. Corticospinal conduction studied with magnetic double stimulation in the intact human. Journal of the Neurological Sciences. 1992;111(2):180–188. doi: 10.1016/0022-510X(92)90066-T.
    1. Ugawa Y., Uesaka Y., Terao Y., Hanajima R., Kanazawa I. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Annals of Neurology. 1994;36(4):618–624. doi: 10.1002/ana.410360410.
    1. Aminoff M. J. Aminoff’s Electrodiagnosis in Clinical Neurology. Amsterdam, The Netherlands: Elsevier B.V.; 2012. (Sixth).
    1. Katirji B. Electromyography in Clinical Practice. Amsterdam, The Netherlands: Elsevier B.V.; 2007. (Second).
    1. Koch G., Franca M., Mochizuki H., Marconi B., Caltagirone C., Rothwell J. C. Interactions between pairs of transcranial magnetic stimuli over the human left dorsal premotor cortex differ from those seen in primary motor cortex. The Journal of Physiology. 2007;578(2):551–562. doi: 10.1113/jphysiol.2006.123562.
    1. Bäumer T., Bock F., Koch G., et al. Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. The Journal of Physiology. 2006;572(3):857–868. doi: 10.1113/jphysiol.2006.104901.
    1. Ni Z., Gunraj C., Nelson A. J., et al. Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cerebral Cortex. 2009;19(7):1654–1665. doi: 10.1093/cercor/bhn201.
    1. Chen R., Yung D., Li J.-Y. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. Journal of Neurophysiology. 2003;89(3):1256–1264. doi: 10.1152/jn.00950.2002.
    1. Irlbacher K., Brocke J., Mechow J., Brandt S. A. Effects of GABAA and GABAB agonists on interhemispheric inhibition in man. Clinical Neurophysiology. 2007;118(2):308–316. doi: 10.1016/j.clinph.2006.09.023.
    1. Kujirai T., Caramia M. D., Rothwell J. C., et al. Corticocortical inhibition in human motor cortex. The Journal of Physiology. 1993;471(1):501–519. doi: 10.1113/jphysiol.1993.sp019912.
    1. Ziemann U., Rothwell J. C., Ridding M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. The Journal of Physiology. 1996;496(3):873–881. doi: 10.1113/jphysiol.1996.sp021734.
    1. Valls-Solé J., Pascual-Leone A., Wassermann E. M., Hallett M. Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1992;85(6):355–364. doi: 10.1016/0168-5597(92)90048-G.
    1. Wassermann E. M., Samii A., Mercuri B., et al. Responses to paired transcranial magnetic stimuli in resting, active, and recently activated muscles. Experimental Brain Research. 1996;109(1) doi: 10.1007/BF00228638.
    1. Sanger T. D., Garg R. R., Chen R. Interactions between two different inhibitory systems in the human motor cortex. The Journal of Physiology. 2001;530(2):307–317. doi: 10.1111/j.1469-7793.2001.0307l.x.
    1. Nakamura H., Kitagawa H., Kawaguchi Y., Tsuji H. Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. The Journal of Physiology. 1997;498(3):817–823. doi: 10.1113/jphysiol.1997.sp021905.
    1. McDonnell M. N., Orekhov Y., Ziemann U. The role of GABAB receptors in intracortical inhibition in the human motor cortex. Experimental Brain Research. 2006;173(1):86–93. doi: 10.1007/s00221-006-0365-2.
    1. Ziemann U., Tergau F., Wassermann E. M., Wischer S., Hildebrandt J., Paulus W. Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. The Journal of Physiology. 1998;511(1):181–190. doi: 10.1111/j.1469-7793.1998.181bi.x.
    1. Hanajima R., Ugawa Y., Terao Y., et al. Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic stimulation in humans. The Journal of Physiology. 2002;538(1):253–261. doi: 10.1113/jphysiol.2001.013094.
    1. Chen R., Garg R. Facilitatory I wave interaction in proximal arm and lower limb muscle representations of the human motor cortex. Journal of Neurophysiology. 2000;83(3):1426–1434. doi: 10.1152/jn.2000.83.3.1426.
    1. Tokimura H., Ridding M. C., Tokimura Y., Amassian V. E., Rothwell J. C. Short latency facilitation between pairs of threshold magnetic stimuli applied to human motor cortex. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 1996;101(4):263–272. doi: 10.1016/0924-980X(96)95664-7.
    1. Di Lazzaro V., Restuccia D., Oliviero A., et al. Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Experimental Brain Research. 1998;119(2):265–268. doi: 10.1007/s002210050341.
    1. Stagg C. J. Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage. 2014;86:19–27. doi: 10.1016/j.neuroimage.2013.01.009.
    1. Hanajima R., Furubayashi T., Iwata N. K., et al. Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Experimental Brain Research. 2003;151(4):427–434. doi: 10.1007/s00221-003-1455-z.
    1. Tokimura H., Di Lazzaro V., Tokimura Y., et al. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. The Journal of Physiology. 2000;523(2):503–513. doi: 10.1111/j.1469-7793.2000.t01-1-00503.x.
    1. Mariorenzi R., Zarola F., Caramia M. D., Paradiso C., Rossini P. M. Non-invasive evaluation of central motor tract excitability changes following peripheral nerve stimulation in healthy humans. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1991;81(2):90–101. doi: 10.1016/0168-5597(91)90002-F.
    1. Delwaide P. J., Olivier E. Conditioning transcranial cortical stimulation (TCCS) by exteroceptive stimulation in parkinsonian patients. Advances in Neurology. 1990;53:175–181.
    1. Magistris M. R., Rösler K. M., Truffert A., Myers J. P. Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain. 1998;121(3):437–450. doi: 10.1093/brain/121.3.437.
    1. Magistris M. R., Rösler K. M., Truffert A., Landis T., Hess C. W. A clinical study of motor evoked potentials using a triple stimulation technique. Brain. 1999;122(2):265–279. doi: 10.1093/brain/122.2.265.
    1. Magistris M. R., Rösler K. M. Chapter 3 The triple stimulation technique to study corticospinal conduction. Supplements to Clinical Neurophysiology. 2003;56:24–32. doi: 10.1016/S1567-424X(09)70206-5.
    1. Kurtzke J. F. A proposal for a uniform minimal record of disability in multiple sclerosis. Acta Neurologica Scandinavica. 1981;64(Supplement 87):110–129. doi: 10.1111/j.1600-0404.1981.tb05548.x.
    1. Fischer J. S., Rudick R. A., Cutter G. R., Reingold S. C., National MS Society Clinical Outcomes Assessment Task Force The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. Multiple Sclerosis Journal. 1999;5(4):244–250. doi: 10.1177/135245859900500409.
    1. Rao S. M. A Manual for the Brief Repeatable Battery of Neuropsychological Tests in Multiple Sclerosis. Milwaukee, WI, USA: Medical College of Wisconsin; 1990.
    1. Delis D. C., Kramer J. H., Kaplan E., Ober B. A. California Verbal Learning Test: Adult Version. Manual. San Antonio, TX, USA: Psychological Corporation; 1987.
    1. Woods S. P., Delis D. C., Scott J. C., Kramer J. H., Holdnack J. A. The California Verbal Learning Test - second edition: test-retest reliability, practice effects, and reliable change indices for the standard and alternate forms. Archives of Clinical Neuropsychology. 2006;21(5):413–420. doi: 10.1016/j.acn.2006.06.002.
    1. Benedict R. H. B. Effects of using same- versus alternate-form memory tests during short-interval repeated assessments in multiple sclerosis. Journal of the International Neuropsychological Society. 2005;11(6):727–736. doi: 10.1017/S1355617705050782.
    1. Wechsler D. Wechsler Adult Intelligence Scale-Fourth Edition: Administration and Scoring Manual. San Antonio, TX, USA: Psychological Corporation; 2008.
    1. Woods D. L., Kishiyama M. M., Yund E. W., et al. Improving digit span assessment of short-term verbal memory. Journal of Clinical and Experimental Neuropsychology. 2011;33(1):101–111. doi: 10.1080/13803395.2010.493149.
    1. Ryan J. J., Gontkovsky S. T., Kreiner D. S., Tree H. A. Wechsler adult intelligence scale-fourth edition performance in relapsing-remitting multiple sclerosis. Journal of Clinical and Experimental Neuropsychology. 2012;34(6):571–579. doi: 10.1080/13803395.2012.666229.
    1. Dubois B., Slachevsky A., Litvan I., Pillon B. The FAB: a frontal assessment battery at bedside. Neurology. 2000;55(11):1621–1626. doi: 10.1212/WNL.55.11.1621.
    1. Jolles J., Houx P. J., Van Boxtel M. P. J., Ponds R. W. H. M. Maastricht Aging Study: Determinants of Cognitive Aging. Maastricht, The Netherlands: Neuropsych Publishers; 1995.
    1. van der Elst W., van Boxtel M. P. J., van Breukelen G. J. P., Jolles J. The Letter Digit Substitution Test: Normative data for 1,858 healthy participants aged 24-81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. Journal of Clinical and Experimental Neuropsychology. 2007;28(6):998–1009. doi: 10.1080/13803390591004428.
    1. Bucks R. S., Willison J. R. Development and validation of the Location Learning Test (LLT): a test of visuo-spatial learning designed for use with older adults and in dementia. The Clinical Neuropsychologist. 1997;11(3):273–286. doi: 10.1080/13854049708400456.
    1. Bucks R. S., Willson J. R., Byrne L. M. T. Location Learning Test: Manual. St. Edmunds, UK: Thames Valley Test Company; 2000.
    1. Crowe S. F. Does the letter number sequencing task measure anything more than digit span? Assessment. 2016;7(2):113–117. doi: 10.1177/107319110000700202.
    1. Mielicki M. K., Koppel R. H., Valencia G., Wiley J. Measuring working memory capacity with the letter–number sequencing task: advantages of visual administration. Applied Cognitive Psychology. 2018;32(6):805–814. doi: 10.1002/acp.3468.
    1. Crum R. M., Anthony J. C., Bassett S. S., Folstein M. F. Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA. 1993;269(18):2386–2391.
    1. Folstein M. F., Folstein S. E., McHugh P. R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research. 1975;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Miller K. M., Price C. C., Okun M. S., Montijo H., Bowers D. Is the N-back task a valid neuropsychological measure for assessing working memory? Archives of Clinical Neuropsychology. 2009;24(7):711–717. doi: 10.1093/arclin/acp063.
    1. Perlstein W. M., Dixit N. K., Carter C. S., Noll D. C., Cohen J. D. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry. 2003;53(1):25–38. doi: 10.1016/S0006-3223(02)01675-X.
    1. Tombaugh T. N. A comprehensive review of the Paced Auditory Serial Addition Test (PASAT) Archives of Clinical Neuropsychology. 2006;21(1):53–76. doi: 10.1016/j.acn.2005.07.006.
    1. Posner M. I. Orienting of attention. Quarterly Journal of Experimental Psychology. 1980;32(1):3–25. doi: 10.1080/00335558008248231.
    1. Utz K. S., Hankeln T. M. A., Jung L., et al. Visual search as a tool for a quick and reliable assessment of cognitive functions in patients with multiple sclerosis. PLoS One. 2013;8(11, article e81531) doi: 10.1371/journal.pone.0081531.
    1. MacLeod C. M. Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin. 1991;109(2):163–203. doi: 10.1037/0033-2909.109.2.163.
    1. Smith A. Symbol Digit Modalities Test (SDMT) Manual. Los Angeles, CA, USA: Western Psychological Services; 1982.
    1. Benedict R. H. B., DeLuca J., Phillips G., et al. Validity of the symbol digit modalities test as a cognition performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal. 2017;23(5):721–733. doi: 10.1177/1352458517690821.
    1. Spreen O., Benton A. L. Neurosensory center comprehensive examination for aphasia: manual of directions. Victoria, BC, Canada: University of Victoria Neuropsychology Laboratory; 1969.
    1. Brandt J., Manning K. J. Patterns of word-list generation in mild cognitive impairment and Alzheimer’s disease. The Clinical Neuropsychologist. 2009;23(5):870–879. doi: 10.1080/13854040802585063.
    1. Barr A., Brandt J. Word-list generation deficits in dementia. Journal of Clinical and Experimental Neuropsychology. 1996;18(6):810–822. doi: 10.1080/01688639608408304.
    1. Chen C. C., Kasven N., Karpatkin H. I., Sylvester A. Hand strength and perceived manual ability among patients with multiple sclerosis. Archives of Physical Medicine and Rehabilitation. 2007;88(6):794–797. doi: 10.1016/j.apmr.2007.03.010.
    1. Leonard C. T. Examination and management of spasticity and weakness. Neurology Report. 2001;25(3):91–97. doi: 10.1097/01253086-200125030-00003.
    1. Riddoch G., Rowley Bristow W., Cairns H. W. B., et al. Aids to the Examination of the Peripheral Nervous System. London, UK: Her Majesty’s Stationery Office; 1976.
    1. Bohannon R. W., Smith M. B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Physical Therapy. 1987;67(2):206–207. doi: 10.1093/ptj/67.2.206.
    1. Walker H. K. Deep tendon reflexes. In: Walker H. K., Hall W. D., Hurst J. W., editors. Clin. Methods Hist. Phys. Lab. Exam. Third. Boston, MA, USA: Butterworths; 1990. pp. 365–368.
    1. Motl R. W., Cohen J. A., Benedict R., et al. Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal. 2017;23(5):704–710. doi: 10.1177/1352458517690823.
    1. Hauser S. L., Dawson D. M., Lehrich J. R., et al. Intensive immunosuppression in progressive multiple sclerosis. A randomized, three-arm study of high-dose intravenous cyclophosphamide, plasma exchange, and ACTH. New England Journal of Medicine. 1983;308(4):173–180. doi: 10.1056/NEJM198301273080401.
    1. Frith J., Newton J. Fatigue impact scale. Occupational Medicine. 2010;60(2):p. 159. doi: 10.1093/occmed/kqp180.
    1. Krupp L. B., LaRocca N. G., Muir-Nash J., Steinberg A. D. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology. 1989;46(10):1121–1123. doi: 10.1001/archneur.1989.00520460115022.
    1. Ritvo P. G., Fischer J. S., Miller D. M., Andrews H., Paty D. W., LaRocca N. G. Multiple Sclerosis Quality of Life Inventory: A User’s Manual. New York, NY, USA: National Multiple Sclerosis Society; 1997.

Source: PubMed

3
Suscribir