Treatment of Classic Mid-Trimester Preterm Premature Rupture of Membranes (PPROM) with Oligo/Anhydramnion between 22 and 26 Weeks of Gestation by Means of Continuous Amnioinfusion: Protocol of a Randomized Multicentric Prospective Controlled TRIAL and Review of the Literature

Michael Tchirikov, Christian Haiduk, Miriam Tchirikov, Marcus Riemer, Michael Bergner, Weijing Li, Stephan Henschen, Michael Entezami, Andreas Wienke, Gregor Seliger, Michael Tchirikov, Christian Haiduk, Miriam Tchirikov, Marcus Riemer, Michael Bergner, Weijing Li, Stephan Henschen, Michael Entezami, Andreas Wienke, Gregor Seliger

Abstract

Background: The classic mid-trimester preterm premature rupture of membranes (PPROM) is defined as a rupture of the fetal membranes prior to 28 weeks of gestation (WG) with oligo/anhydramnion; it complicates approximately 0.4-0.7% of all pregnancies and is associated with very high neonatal mortality and morbidity. Antibiotics have limited success to prevent bacterial growth, chorioamnionitis and fetal inflammation. The repetitive amnioinfusion does not work because fluid is lost immediately after the intervention. The continuous amnioinfusion through the transabdominal port system or catheter in patients with classic PPROM shows promise by flushing out the bacteria and inflammatory components from the amniotic cavity, replacing amniotic fluid and thus prolonging the PPROM-to-delivery interval.

Objective: This multicenter trial aims to test the effect of continuous amnioinfusion on the neonatal survival without the typical major morbidities, such as severe bronchopulmonary dysplasia, intraventricular hemorrhage, cystic periventricular leukomalacia and necrotizing enterocolitis one year after the delivery.

Study design: We plan to conduct a randomized multicenter trial with a two-arm parallel design. Randomization will be between 22/0 and 26/0 SSW. The control group: PPROM patients between 20/0 and 26/0 WG who will be treated with antibiotics and corticosteroids (from 22/0 SSW) in accordance with the guidelines of German Society of Obstetrics and Gynecology (standard PPROM therapy). In the interventional group, the standard PPROM therapy will be complemented with the Amnion Flush Method, with the amnioinfusion of Amnion Flush Solution through the intra-amnial catheter (up to 100 mL/h, 2400 mL/day).

Subjects: The study will include 68 patients with classic PPROM between 20/0 and 26/0 WG.

Trial-registration: ClinicalTrials.gov ID: NCT04696003.

German clinical trials register: DRKS00024503, January 2021.

Keywords: Amnion Flush Method; PPROM; amnioinfusion; anhydramnion; neonatal survival; preterm premature rupture of membranes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
German tertian perinatal centers taking part in the TRIAL.
Figure 2
Figure 2
Flow diagram of the TRIAL.
Figure 3
Figure 3
The schema of Amnion Flush Method.
Figure 4
Figure 4
(A) Amniocentesis with 22G needle and amnioinfusion 300 mL of Amnion Flush Solution (Serumwerk AG, Bernburg, Germany). (B) Amniocentesis with 18G needle under local anesthesia and introduction of the catheter. (C) The intra-amnial catheter (arrow) is covered by Tagaderm film. The rate of intra-amnial infusion is 100 mL/h (Amnion Flush Solution, Serumwerk AG, Bernburg, Germany).
Figure 4
Figure 4
(A) Amniocentesis with 22G needle and amnioinfusion 300 mL of Amnion Flush Solution (Serumwerk AG, Bernburg, Germany). (B) Amniocentesis with 18G needle under local anesthesia and introduction of the catheter. (C) The intra-amnial catheter (arrow) is covered by Tagaderm film. The rate of intra-amnial infusion is 100 mL/h (Amnion Flush Solution, Serumwerk AG, Bernburg, Germany).

References

    1. Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.
    1. Park G.Y., Park W.S., Sung S.I., Kim M.S., Lee M.H., Jeon G.W., Kim S.S., Chang Y.S. Neonatal outcome comparisons between preterm infants with or without early pulmonary hypertension following prolonged preterm premature rupture of membranes before 25 gestational weeks in Korean Neonatal Network. J. Matern. Fetal Neonatal Med. 2022;35:1286–1294. doi: 10.1080/14767058.2020.1749590.
    1. Pendse A., Panchal H., Athalye-Jape G., Campbell C., Nathan E., Rao S., Dickinson J.E. Neonatal outcomes following previable prelabour rupture of membranes before 23 weeks of gestation—A retrospective cohort study. J. Neonatal-Perinat. Med. 2021;14:9–19. doi: 10.3233/NPM-190366.
    1. Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev Y., Winarno A.S., Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): Etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Perinat. Med. 2018;46:465–488. doi: 10.1515/jpm-2017-0027.
    1. Athayde N., Edwin S.S., Romero R., Gomez R., Maymon E., Pacora P., Menon R. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am. J. Obstet. Gynecol. 1998;179:1248–1253. doi: 10.1016/S0002-9378(98)70141-3.
    1. Wang H., Ogawa M., Wood J.R., Bartolomei M.S., Sammel M.D., Kusanovic J.P., Walsh S.W., Romero R., Strauss J.F., III Genetic and epigenetic mechanisms combine to control MMP1 expression and its association with preterm premature rupture of membranes. Hum. Mol. Genet. 2008;17:1087–1096. doi: 10.1093/hmg/ddm381.
    1. Romero R., Chaiworapongsa T., Espinoza J., Gomez R., Yoon B.H., Edwin S., Mazor M., Maymon E., Berry S. Fetal plasma MMP-9 concentrations are elevated in preterm premature rupture of the membranes. Am. J. Obstet. Gynecol. 2002;187:1125–1130. doi: 10.1067/mob.2002.127312.
    1. Soylu H., Jefferies A., Diambomba Y., Windrim R., Shah P.S. Rupture of membranes before the age of viability and birth after the age of viability: Comparison of outcomes in a matched cohort study. J. Perinatol. 2010;30:645–649. doi: 10.1038/jp.2010.11.
    1. Gomez R., Romero R., Nien J.K., Medina L., Carstens M., Kim Y.M., Espinoza J., Chaiworapongsa T., Gonzalez R., Iams J.D., et al. Antibiotic administration to patients with preterm premature rupture of membranes does not eradicate intra-amniotic infection. J. Matern. Fetal Neonatal Med. 2007;20:167–173. doi: 10.1080/14767050601135485.
    1. Williams O., Michel B., Hutchings G., Debauche C., Hubinont C. Two-year neonatal outcome following PPROM prior to 25 weeks with a prolonged period of oligohydramnios. Early Hum. Dev. 2012;88:657–661. doi: 10.1016/j.earlhumdev.2012.01.012.
    1. Muraskas J., Astrug L., Amin S. FIRS: Neonatal considerations. Semin. Fetal Neonatal Med. 2020;25:101142. doi: 10.1016/j.siny.2020.101142.
    1. Tchirikov M., Zhumadilov Z., Winarno A.S., Haase R., Buchmann J. Treatment of Preterm Premature Rupture of Membranes with Oligo-/Anhydramnion Colonized by Multiresistant Bacteria with Continuous Amnioinfusion and Antibiotic Administrations through a Subcutaneously Implanted Intrauterine Port System: A Case Report. Fetal Diagn. Ther. 2017;42:71–76. doi: 10.1159/000438483.
    1. Tchirikov M., Bapayeva G., Zhumadilov Z.S., Dridi Y., Harnisch R., Herrmann A. Treatment of PPROM with anhydramnion in humans: First experience with different amniotic fluid substitutes for continuous amnioinfusion through a subcutaneously implanted port system. J. Perinat. Med. 2013;41:657–663. doi: 10.1515/jpm-2012-0296.
    1. Ono T., Tsumura K., Kawasaki I., Ikeda M., Hideshima M., Tsuda S., So K., Kawaguchi A., Nomiyama M., Yokoyama M. Continuous amnioinfusion for treatment of mid-trimester preterm premature rupture of membranes with oligoamnios. J. Obstet. Gynaecol. Res. 2020;46:79–86. doi: 10.1111/jog.14151.
    1. Esaki M., Maseki Y., Tezuka A., Furuhashi M. Continuous amnioinfusion in women with PPROM at periviable gestational ages. J. Matern. Fetal Neonatal Med. 2020;33:1151–1156. doi: 10.1080/14767058.2018.1517307.
    1. Locatelli A., Andreani M., Ghidini A., Verderio M., Pizzardi A., Vergani P., Salafia C.M. Amnioinfusion in preterm PROM: Effects on amnion and cord histology. J. Perinatol. 2008;28:97–101. doi: 10.1038/sj.jp.7211876.
    1. Roberts D., Vause S., Martin W., Green P., Walkinshaw S., Bricker L., Beardsmore C., Shaw N., McKay A., Skotny G., et al. Amnioinfusion in very early preterm prelabor rupture of membranes (AMIPROM): Pregnancy, neonatal and maternal outcomes in a randomized controlled pilot study. Ultrasound Obstet. Gynecol. 2014;43:490–499. doi: 10.1002/uog.13258.
    1. Roberts D., Vause S., Martin W., Green P., Walkinshaw S., Bricker L., Beardsmore C., Shaw B.N.J., McKay A., Skotny G., et al. Amnioinfusion in preterm premature rupture of membranes (AMIPROM): A randomised controlled trial of amnioinfusion versus expectant management in very early preterm premature rupture of membranes—A pilot study. Health Technol. Assess. 2014;18:1–135. doi: 10.3310/hta18210.
    1. De Santis M., Scavo M., Noia G., Masini L., Piersigilli F., Romagnoli C., Caruso A. Transabdominal amnioinfusion treatment of severe oligohydramnios in preterm premature rupture of membranes at less than 26 gestational weeks. Fetal Diagn. Ther. 2003;18:412–417. doi: 10.1159/000073134.
    1. Tchirikov M., Oshovskyy V., Steetskamp J., Falkert A., Huber G., Entezami M. Neonatal outcome using ultrathin fetoscope for laser coagulation in twin-to-twin-transfusion syndrome. J. Perinat. Med. 2011;39:725–730. doi: 10.1515/jpm.2011.091.
    1. Tchirikov M., Steetskamp J., Hohmann M., Koelbl H. Long-term amnioinfusion through a subcutaneously implanted amniotic fluid replacement port system for treatment of PPROM in humans. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010;152:30–33. doi: 10.1016/j.ejogrb.2010.04.023.
    1. Berger R., Abele H., Bahlmann F., Bedei I., Doubek K., Felderhoff-Müser U., Fluhr H., Garnier Y., Grylka S., Helmer H., et al. Prävention und Therapie der Frühgeburt. Leitlinie der DGGG, OEGGG und SGGG (S2k-Niveau, AWMF-Registernummer 015/025, Februar 2019)—Teil 2 mit Empfehlungen zur tertiären Prävention der Frühgeburt und zum Management des frühen vorzeitigen Blasensprungs [Prevention and Therapy of Preterm Birth. Guideline of the DGGG, OEGGG and SGGG (S2k Level, AWMF Registry Number 015/025, February 2019)—Part 2 with Recommendations on the Tertiary Prevention of Preterm Birth and the Management of Preterm Premature Rupture of Membranes] Z. Geburtshilfe Neonatol. 2019;223:373–394. (In Germany)
    1. Chen F., Bajwa N.M., Rimensberger P.C., Posfay-Barbe K.M., Pfister R.E. Thirteen-year mortality and morbidity in preterm infants in Switzerland. Archives of disease in childhood. Fetal Neonatal Ed. 2016;101:F377–F383. doi: 10.1136/archdischild-2015-308579.
    1. Crane J.M., Magee L.A., Lee T., Synnes A., von Dadelszen P., Dahlgren L., De Silva D.A., Liston R. Maternal and perinatal outcomes of pregnancies delivered at 23 weeks’ gestation. J. Obstet. Gynaecol. Can. 2015;37:214–224. doi: 10.1016/S1701-2163(15)30307-8.
    1. Burri P.H. Fetal and postnatal development of the lung. Annu. Rev. Physiol. 1984;46:617–628. doi: 10.1146/annurev.ph.46.030184.003153.
    1. Manuck T.A., Varner M.W. Neonatal and early childhood outcomes following early vs later preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 2014;211:308.e1–308.e6. doi: 10.1016/j.ajog.2014.05.030.
    1. The Royal Womens Hospital The Royal Womens Hospital. Rupture of the Membranes—Preterm Premature (PPROM): Policy, Guideline and Procedure Manual. Victoria. [(accessed on 11 December 2016)]. Available online: .
    1. Romero R., Miranda J., Chaemsaithong P., Chaiworapongsa T., Kusanovic J.P., Dong Z., Ahmed A.I., Shaman M., Lannaman K., Yoon B.H., et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2015;28:1394–1409. doi: 10.3109/14767058.2014.958463.
    1. Romero R., Friel L.A., Edwards D.R.V., Kusanovic J.P., Hassan S.S., Mazaki-Tovi S., Vaisbuch E., Kim C.J., Erez O., Chaiworapongsa T., et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM) Am. J. Obstet. Gynecol. 2010;203:361.e1–361.e30. doi: 10.1016/j.ajog.2010.05.026.
    1. Joyce E.M., Moore J.J., Sacks M.S. Biomechanics of the fetal membrane prior to mechanical failure: Review and implications. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009;144((Suppl. 1)):S121–S127. doi: 10.1016/j.ejogrb.2009.02.014.
    1. Helmig B.R., Romero R., Espinoza J., Chaiworapongsa T., Bujold E., Gomez R., Ohlsson K., Uldbjerg N. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. J. Matern. Fetal Neonatal Med. 2002;12:237–246. doi: 10.1080/jmf.12.4.237.246.
    1. George R.B., Kalich J., Yonish B., Murtha A.P. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. Am. J. Perinatol. 2008;25:29–32. doi: 10.1055/s-2007-1004828.
    1. Dutta E.H., Behnia F., Boldogh I., Saade G.R., Taylor B.D., Kacerovský M., Menon R. Oxidative stress damage-associated molecular signaling pathways differentiate spontaneous preterm birth and preterm premature rupture of the membranes. Mol. Hum. Reprod. 2016;22:143–157. doi: 10.1093/molehr/gav074.
    1. Beckmann M.W., Wiegratz I., Dereser M.M., Baier P., Born H.J. Diagnostik des Blasensprungs: Vergleich des vaginalen Nachweises von fetalem Fibronectin und der intraamnialen Injektion von Indigo Carmine [Diagnosis of rupture of fetal membranes: Comparison of vaginal detection of fetal fibronectin and intra-amnion injection of indigo carmine] Geburtshilfe Frauenheilk. 1993;53:86–91. (In Germany)
    1. Sosa C.G., Herrera E., Restrepo J.C., Strauss A., Alonso J. Comparison of placental alpha microglobulin-1 in vaginal fluid with intra-amniotic injection of indigo carmine for the diagnosis of rupture of membranes. J. Perinat. Med. 2014;42:611–616. doi: 10.1515/jpm-2013-0245.
    1. Pristauz G., Bauer M., Maurer-Fellbaum U., Rotky-Fast C., Bader A.A., Haas J., Lang U. Neonatal outcome and two-year follow-up after expectant management of second trimester rupture of membranes. Int. J. Gynaecol. Obstet. 2008;101:264–268. doi: 10.1016/j.ijgo.2007.12.007.
    1. Benirschke K., Burton G.J., Baergen R.N. Pathology of the Human Placenta. 6th ed. Springer; Berlin/Heidelberg, Germany: 2012.
    1. Polachek H., Holcberg G., Sapir G., Tsadkin-Tamir M., Polachek J., Katz M., Ben-Zvi Z. Transfer of ciprofloxacin, ofloxacin and levofloxacin across the perfused human placenta in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005;122:61–65. doi: 10.1016/j.ejogrb.2004.11.031.
    1. Park H.S., Ahn B.-J., Jun J.K. Placental transfer of clarithromycin in human pregnancies with preterm premature rupture of membranes. J. Perinat. Med. 2012;40:641–646. doi: 10.1515/jpm-2012-0038.
    1. Onwuchuruba C.N., Towers C.V., Howard B.C., Hennessy M.D., Wolfe L., Brown M.S. Transplacental passage of vancomycin from mother to neonate. Am. J. Obstet. Gynecol. 2014;210:352.e1–352.e4. doi: 10.1016/j.ajog.2014.01.019.
    1. Muller A.E., Oostvogel P.M., DeJongh J., Mouton J.W., Steegers E.A.P., Dörr P.J., Danhof M., Voskuyl R.A. Pharmacokinetics of amoxicillin in maternal, umbilical cord, and neonatal sera. Antimicrob. Agents Chemother. 2009;53:1574–1580. doi: 10.1128/AAC.00119-08.
    1. Hnat M., Bawdon R.E. Transfer of meropenem in the ex vivo human placenta perfusion model. Infect. Dis. Obstet. Gynecol. 2005;13:223–227. doi: 10.1155/2005/961356.
    1. Heikkinen T., Laine K., Neuvonen P.J., Ekblad U. The transplacental transfer of the macrolide antibiotics erythromycin, roxithromycin and azithromycin. BJOG. 2000;107:770–775. doi: 10.1111/j.1471-0528.2000.tb13339.x.
    1. Meeraus W.H., Petersen I., Gilbert R. Association between antibiotic prescribing in pregnancy and cerebral palsy or epilepsy in children born at term: A cohort study using the health improvement network. PLoS ONE. 2015;10:e0122034.
    1. Hofmeyr G.J., Eke A.C., Lawrie T.A. Amnioinfusion for third trimester preterm premature rupture of membranes. Cochrane Database Syst. Rev. 2014;2014:CD000942. doi: 10.1002/14651858.CD000942.pub3.
    1. Tranquilli A.L., Giannubilo S.R., Bezzeccheri V., Scagnoli C. Transabdominal amnioinfusion in preterm premature rupture of membranes: A randomised controlled trial. BJOG. 2005;112:759–763. doi: 10.1111/j.1471-0528.2005.00544.x.
    1. Locatelli A., Ghidini A., Verderio M., Andreani M., Strobelt N., Pezzullo J., Vergani P. Predictors of perinatal survival in a cohort of pregnancies with severe oligohydramnios due to premature rupture of membranes at <26 weeks managed with serial amnioinfusions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2006;128:97–102. doi: 10.1016/j.ejogrb.2006.02.003.
    1. Van Kempen L.E.M., van Teeffelen A.S., de Ruigh A.A., Oepkes D., Haak M.C., van Leeuwen E., Woiski M., Porath M.M., Bax C.J., van Wassenaer-Leemhuis A.G., et al. Amnioinfusion Compared with No Intervention in Women with Second-Trimester Rupture of Membranes: A Randomized Controlled Trial. Obstet. Gynecol. 2019;133:129–136. doi: 10.1097/AOG.0000000000003003.
    1. Van Teeffelen A.S.P., Van Der Ham D.P., Willekes C., Al Nasiry S., Nijhuis J.G., Van Kuijk S., Schuyt E., Mulder T.L.M., Franssen M.T.M., Oepkes D., et al. Midtrimester preterm prelabour rupture of membranes (PPROM): Expectant management or amnioinfusion for improving perinatal outcomes (PPROMEXIL—III trial) BMC Pregnancy Childbirth. 2014;14:128. doi: 10.1186/1471-2393-14-128.
    1. Van Teeffelen A.S., Van Der Heijden J., Oei S.G., Porath M.M., Willekes C., Opmeer B., Mol B.W. Accuracy of imaging parameters in the prediction of lethal pulmonary hypoplasia secondary to mid-trimester prelabor rupture of fetal membranes: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2012;39:495–499. doi: 10.1002/uog.10047.
    1. Tchirikov M., Ocker R., Seliger G., Chaoui K., Moritz S., Haase R. Treatment of mid-trimester preterm premature rupture of membranes (PPROM) with multi-resistant bacteria-colonized anhydramnion with continuous amnioinfusion and meropenem: A case report and literature review. Arch. Gynecol. Obstet. 2021:1–8. doi: 10.1007/s00404-021-06319-w.
    1. Porat S., Amsalem H., Shah P.S., Murphy K.E. Transabdominal amnioinfusion for preterm premature rupture of membranes: A systematic review and metaanalysis of randomized and observational studies. Am. J. Obstet. Gynecol. 2012;207:393.e1–393.e11. doi: 10.1016/j.ajog.2012.08.003.
    1. Kozinszky Z., Sikovanyecz J., Pasztor N. Severe midtrimester oligohydramnios: Treatment strategies. Curr. Opin. Obstet. Gynecol. 2014;26:67–76.
    1. Gilbert W.M., Brace R.A. Amniotic fluid volume and normal flows to and from the amniotic cavity. Semin. Perinatol. 1993;17:150–157.
    1. Shields L.E., Moore T.R., Brace R.A. Fetal electrolyte and acid-base responses to amnioinfusion: Lactated Ringer’s versus normal saline in the ovine fetus. J. Soc. Gynecol. Investig. 1995;2:602–608.
    1. Fitzsimmons E.D., Bajaj T. StatPearls: Embryology, Amniotic Fluid. StatPearls Publishing; Treasure Island, FL, USA: 2020.
    1. Zadrozna M., Gawlik M., Nowak B., Marcinek A., Mrowiec H., Walas S., Wietecha-Posłuszny R., Zagrodzki P. Antioxidants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2009;23:144–148.
    1. Terrin G., Canani R.B., Di Chiara M., Pietravalle A., Aleandri V., Conte F., De Curtis M. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients. 2015;7:10427–10446.
    1. Durá Travé T., da Cunha Ferreira R.M., Monreal I., Ezcurdia Gurpegui M., Villa-Elizaga I. Zinc concentration of amniotic fluid in the course of pregnancy and its relationship to fetal weight and length. Gynecol. Obstet. Investig. 1984;18:152–155.
    1. Kingsley P.D., Whitin J.C., Cohen H.J., Palis J. Developmental expression of extracellular glutathione peroxidase suggests antioxidant roles in deciduum, visceral yolk sac, and skin. Mol. Reprod. Dev. 1998;49:343–355.
    1. Karunanithy R., Roy A.C., Ratnam S.S. Selenium status in pregnancy: Studies in amniotic fluid from normal pregnant women. Gynecol. Obstet. Investig. 1989;27:148–1150.
    1. Fukada T., Yamasaki S., Nishida K., Murakami M., Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J. Biol. Inorg. Chem. 2011;16:1123–1134.
    1. Brown W.D. Osmotic demyelination disorders: Central pontine and extrapontine myelinolysis. Curr. Opin. Neurol. 2000;13:691–697.
    1. Chhabra A., Kaushik R., Kaushik R.M., Goel D. Extra-pontine myelinolysis secondary to hypernatremia induced by postpartum water restriction. Neuroradiol. J. 2017;30:84–87.

Source: PubMed

3
Suscribir