Reliability of pleth variability index in predicting preload responsiveness of mechanically ventilated patients under various conditions: a systematic review and meta-analysis

Tianyu Liu, Chao Xu, Min Wang, Zheng Niu, Dunyi Qi, Tianyu Liu, Chao Xu, Min Wang, Zheng Niu, Dunyi Qi

Abstract

Background: Goal-directed volume expansion is increasingly used for fluid management in mechanically ventilated patients. The Pleth Variability Index (PVI) has been shown to reliably predict preload responsiveness; however, a lot of research on PVI has been published recently, and update of the meta-analysis needs to be completed.

Methods: We searched PUBMED, EMBASE, Cochrane Library, Web of Science (updated to November 7, 2018) and the associated references. Relevant authors and researchers had been contacted for complete data.

Results: Twenty-five studies with 975 mechanically ventilated patients were included in this meta-analysis. The area under the curve (AUC) of receiver operating characteristics (ROC) to predict preload responsiveness was 0.82 (95% confidence interval (CI) 0.79-0.85). The pooled sensitivity was 0.77 (95% CI 0.67-0.85) and the pooled specificity was 0.77 (95% CI 0.71-0.82). The results of subgroup of patients without undergoing surgery (AUC =0.86, Youden index =0.65) and the results of subgroup of patients in ICU (AUC =0.89, Youden index =0.67) were reliable.

Conclusion: The reliability of the PVI is limited, but the PVI can play an important role in bedside monitoring for mechanically ventilated patients who are not undergoing surgery. Patients who are expanded with colloid may be more suitable for PVI.

Keywords: Mechanically ventilated patients; Meta-analysis; Pleth variability index; Preload responsiveness.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The search, inclusion and exclusion of the literature
Fig. 2
Fig. 2
The results of quality assessment of the included articles (overview)
Fig. 3
Fig. 3
The results of quality assessment of each articles
Fig. 4
Fig. 4
The summary receiver operating characteristics (SROC) of the included articles

References

    1. Bundgaard-Nielsen M, Holte K, Secher NH, Kehlet H. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51(3):331–340. doi: 10.1111/j.1399-6576.2006.01221.x.
    1. Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100(4):1093–1106. doi: 10.1213/.
    1. Mayer J, Boldt J, Mengistu AM, Rohm KD, Suttner S. Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit care. 2010;14(1):R18. doi: 10.1186/cc8875.
    1. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, Pradl R, Stepan M. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit care. 2010;14(3):R118. doi: 10.1186/cc9070.
    1. Giglio MT, Marucci M, Testini M, Brienza N. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth. 2009;103(5):637–646. doi: 10.1093/bja/aep279.
    1. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO, Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit care. 2007;11(5):R100. doi: 10.1186/cc6117.
    1. Haynes AB, Weiser TG, Berry WR, Lipsitz SR, Breizat AH, Dellinger EP, Herbosa T, Joseph S, Kibatala PL, Lapitan MC, et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N Engl J Med. 2009;360(5):491–499. doi: 10.1056/NEJMsa0810119.
    1. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, Lehot JJ. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106(4):1189–1194. doi: 10.1213/ane.0b013e318167ab1f.
    1. Broch O, Bein B, Gruenewald M, Hocker J, Schottler J, Meybohm P, Steinfath M, Renner J. Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand. 2011;55(6):686–693. doi: 10.1111/j.1399-6576.2011.02435.x.
    1. Byon HJ, Lim CW, Lee JH, Park YH, Kim HS, Kim CS, Kim JT. Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Br J Anaesth. 2013;110(4):586–591. doi: 10.1093/bja/aes467.
    1. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, Lehot JJ. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101(2):200–206. doi: 10.1093/bja/aen133.
    1. Desgranges FP, Desebbe O, Ghazouani A, Gilbert K, Keller G, Chiari P, Robin J, Bastien O, Lehot JJ, Cannesson M. Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. Br J Anaesth. 2011;107(3):329–335. doi: 10.1093/bja/aer165.
    1. Feissel M, Kalakhy R, Banwarth P, Badie J, Pavon A, Faller JP, Quenot JP. Plethysmographic variation index predicts fluid responsiveness in ventilated patients in the early phase of septic shock in the emergency department: a pilot study. J Crit Care. 2013;28(5):634–639. doi: 10.1016/j.jcrc.2013.03.011.
    1. Fischer MO, Pelissier A, Bohadana D, Gerard JL, Hanouz JL, Fellahi JL. Prediction of responsiveness to an intravenous fluid challenge in patients after cardiac surgery with cardiopulmonary bypass: a comparison between arterial pulse pressure variation and digital plethysmographic variability index. J Cardiothorac Vasc Anesth. 2013;27(6):1087–1093. doi: 10.1053/j.jvca.2013.02.024.
    1. Fischer MO, Pellissier A, Saplacan V, Gerard JL, Hanouz JL, Fellahi JL. Cephalic versus digital plethysmographic variability index measurement: a comparative pilot study in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2014;28(6):1510–1515. doi: 10.1053/j.jvca.2014.05.003.
    1. Fu Q, Mi WD, Zhang H. Stroke volume variation and pleth variability index to predict fluid responsiveness during resection of primary retroperitoneal tumors in Hans Chinese. Bioscience trends. 2012;6(1):38–43.
    1. Haas S, Trepte C, Hinteregger M, Fahje R, Sill B, Herich L, Reuter DA. Prediction of volume responsiveness using pleth variability index in patients undergoing cardiac surgery after cardiopulmonary bypass. J Anesth. 2012;26(5):696–701. doi: 10.1007/s00540-012-1410-x.
    1. Hoiseth LO, Hoff IE, Hagen OA, Landsverk SA, Kirkeboen KA. Dynamic variables and fluid responsiveness in patients for aortic stenosis surgery. Acta Anaesthesiol Scand. 2014;58(7):826–834. doi: 10.1111/aas.12328.
    1. Hood JA, Wilson RJ. Pleth variability index to predict fluid responsiveness in colorectal surgery. Anesth Analg. 2011;113(5):1058–1063. doi: 10.1213/ANE.0b013e31822c10cd.
    1. Julien F, Hilly J, Sallah TB, Skhiri A, Michelet D, Brasher C, Varin L, Nivoche Y, Dahmani S. Plethysmographic variability index (PVI) accuracy in predicting fluid responsiveness in anesthetized children. Paediatr Anaesth. 2013;23(6):536–546. doi: 10.1111/pan.12139.
    1. Konur H, Erdogan Kayhan G, Toprak HI, Bucak N, Aydogan MS, Yologlu S, Durmus M, Yilmaz S. Evaluation of pleth variability index as a predictor of fluid responsiveness during orthotopic liver transplantation. Kaohsiung J Med Sci. 2016;32(7):373–380. doi: 10.1016/j.kjms.2016.05.014.
    1. Le Guen M, Follin A, Gayat E, Fischler M. The plethysmographic variability index does not predict fluid responsiveness estimated by esophageal Doppler during kidney transplantation: a controlled study. Medicine. 2018;97(20):e10723. doi: 10.1097/MD.0000000000010723.
    1. Lee SH, Chun YM, Oh YJ, Shin S, Park SJ, Kim SY, Choi YS. Prediction of fluid responsiveness in the beach chair position using dynamic preload indices. J Clin Monit Comput. 2016;30(6):995–1002. doi: 10.1007/s10877-015-9821-5.
    1. Loupec T, Nanadoumgar H, Frasca D, Petitpas F, Laksiri L, Baudouin D, Debaene B, Dahyot-Fizelier C, Mimoz O. Pleth variability index predicts fluid responsiveness in critically ill patients. Crit Care Med. 2011;39(2):294–299. doi: 10.1097/CCM.0b013e3181ffde1c.
    1. Lu NF, Xi XM, Jiang L, Yang DG, Yin K. Exploring the best predictors of fluid responsiveness in patients with septic shock. Am J Emerg Med. 2017;35(9):1258–1261. doi: 10.1016/j.ajem.2017.03.052.
    1. Maughan BC, Seigel TA, Napoli AM. Pleth variability index and fluid responsiveness of hemodynamically stable patients after cardiothoracic surgery. Am J Crit Care. 2015;24(2):172–175. doi: 10.4037/ajcc2015864.
    1. Pei S, Yuan W, Mai H, Wang M, Hao C, Mi W, Fu Q. Efficacy of dynamic indices in predicting fluid responsiveness in patients with obstructive jaundice. Physiol Meas. 2014;35(3):369–382. doi: 10.1088/0967-3334/35/3/369.
    1. Piskin O, Oz II. Accuracy of pleth variability index compared with inferior vena cava diameter to predict fluid responsiveness in mechanically ventilated patients. Medicine. 2017;96(47):e8889. doi: 10.1097/MD.0000000000008889.
    1. Renner J, Broch O, Gruenewald M, Scheewe J, Francksen H, Jung O, Steinfath M, Bein B. Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia. 2011;66(7):582–589. doi: 10.1111/j.1365-2044.2011.06715.x.
    1. Siswojo AS, Wong DM, Phan TD, Kluger R. Pleth variability index predicts fluid responsiveness in mechanically ventilated adults during general anesthesia for noncardiac surgery. J Cardiothorac Vasc Anesth. 2014;28(6):1505–1509. doi: 10.1053/j.jvca.2014.04.010.
    1. Vos JJ, Kalmar AF, Struys M, Wietasch JKG, Hendriks HGD, Scheeren TWL. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110(6):940–946. doi: 10.1093/bja/aes508.
    1. Wu CY, Cheng YJ, Liu YJ, Wu TT, Chien CT, Chan KC, Med NCM Predicting stroke volume and arterial pressure fluid responsiveness in liver cirrhosis patients using dynamic preload variables a prospective study of diagnostic accuracy. Eur J Anaesthesiol. 2016;33(9):645–652. doi: 10.1097/EJA.0000000000000479.
    1. Zimmermann M, Feibicke T, Keyl C, Prasser C, Moritz S, Graf BM, Wiesenack C. Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol. 2010;27(6):555–561.
    1. Chu HT, Wang Y, Sun YF, Wang G. Accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients: a systematic review and meta-analysis. J Clin Monit Comput. 2016;30(3):265–274. doi: 10.1007/s10877-015-9742-3.
    1. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38(9):1429–1437. doi: 10.1007/s00134-012-2621-1.
    1. Yin JY, Ho KM. Use of plethysmographic variability index derived from the Massimo((R)) pulse oximeter to predict fluid or preload responsiveness: a systematic review and meta-analysis. Anaesthesia. 2012;67(7):777–783. doi: 10.1111/j.1365-2044.2012.07117.x.
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM, Group Q QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ. 1998;316(7129):469. doi: 10.1136/bmj.316.7129.469.
    1. Cannesson M, de Backer D, Hofer CK. Using arterial pressure waveform analysis for the assessment of fluid responsiveness. Expert rev med devices. 2011;8(5):635–646. doi: 10.1586/erd.11.30.
    1. Yin JY, Li YS, Li JS. A review of plethysmographic variability index as a novel fluid responsiveness indicator. Zhonghua wei zhong bing ji jiu yi xue. 2013;25(5):314–318.
    1. He H, Liu D, Ince C. Colloids and the microcirculation. Anesth Analg. 2018;126(5):1747–1754. doi: 10.1213/ANE.0000000000002620.
    1. Awad AA, Ghobashy MA, Ouda W, Stout RG, Silverman DG, Shelley KH. Different responses of ear and finger pulse oximeter wave form to cold pressor test. Anesth Analg. 2001;92(6):1483–1486. doi: 10.1097/00000539-200106000-00026.
    1. Awad AA, Stout RG, Ghobashy MA, Rezkanna HA, Silverman DG, Shelley KH. Analysis of the ear pulse oximeter waveform. J Clin Monit Comput. 2006;20(3):175–184. doi: 10.1007/s10877-006-9018-z.
    1. Shelley KH. Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate. Anesth Analg. 2007;105(6 Suppl):S31–S36. doi: 10.1213/01.ane.0000269512.82836.c9.
    1. Shelley KH, Jablonka DH, Awad AA, Stout RG, Rezkanna H, Silverman DG. What is the best site for measuring the effect of ventilation on the pulse oximeter waveform? Anesth Analg. 2006;103(2):372–377. doi: 10.1213/01.ane.0000222477.67637.17.

Source: PubMed

3
Suscribir