Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health

Zohaib Khurshid, Mustafa Naseem, Faris Yahya I Asiri, Maria Mali, Rabia Sannam Khan, Haafsa Arshad Sahibzada, Muhammad Sohail Zafar, Syed Faraz Moin, Erum Khan, Zohaib Khurshid, Mustafa Naseem, Faris Yahya I Asiri, Maria Mali, Rabia Sannam Khan, Haafsa Arshad Sahibzada, Muhammad Sohail Zafar, Syed Faraz Moin, Erum Khan

Abstract

Cathelicidins are a group of oral antimicrobial peptides that play multiple vital roles in the human body, such as their antimicrobial (broad spectrum) role against oral microbes, wound healing, and angiogenesis, with recent evidences about their role in cancer regulation. Cathelicidins are present in humans and other mammals as well. By complex interactions with the microenvironment, it results in pro-inflammatory effects. Many in vitro and in vivo experiments have been conducted to ultimately conclude that these unique peptides play an essential role in innate immunity. Peptides are released in the precursor form (defensins), which after cleavage results in cathelicidins formation. Living in the era where the major focus is on non-invasive and nanotechnology, this ultimately leads to further advancements in the field of salivaomics. Based on current spotlight innovations, we have highlighted the biochemistry, mode of action, and the importance of cathelicidins in the oral cavity.

Keywords: antimicrobial peptides; cathelicidins; diagnosis; drug; oral health; proteins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Different functions of human cathelicidins (LL-37) peptides in the human body [4]. hCAP18: human cationic antimicrobial peptide 18 precursor protein.
Figure 2
Figure 2
Illustration representing the cathelicidins mechanism of action against microbes specifically for LL-37 and oral cavity.

References

    1. Dürr U.H.N., Sudheendra U.S., Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 2006;1758:1408–1425. doi: 10.1016/j.bbamem.2006.03.030.
    1. Seo M.D., Won H.S., Kim J.H., Mishig-Ochir T., Lee B.J. Antimicrobial peptides for therapeutic applications: A review. Molecules. 2012;17:12276–12286. doi: 10.3390/molecules171012276.
    1. Bandurska K., Berdowska A., Barczyńska-Felusiak R., Krupa P. Unique features of human cathelicidin LL-37. BioFactors. 2015;41:289–300. doi: 10.1002/biof.1225.
    1. Hilchie A.L., Wuerth K., Hancock R.E.W. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat. Chem. Biol. 2013;9:761–768. doi: 10.1038/nchembio.1393.
    1. Lehrer R.I., Ganz T. Cathelicidins: A family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 2002;9:18–22. doi: 10.1097/00062752-200201000-00004.
    1. Uzzell T., Stolzenberg E.D., Shinnar A.E., Zasloff M. Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides. 2003;24:1655–1667. doi: 10.1016/j.peptides.2003.08.024.
    1. Gennaro R., Skerlavaj B., Romeo D. Purification, composition, and activity of two bactenecins, antibacterial peptides of bovine neutrophils. Infect. Immun. 1989;57:3142–3146.
    1. Tomasinsig L., Zanetti M. The cathelicidins—Structure, function and evolution. Curr. Protein Pept. Sci. 2005;6:23–34. doi: 10.2174/1389203053027520.
    1. Cowland J.B., Johnsen A.H., Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett. 1995;368:173–176. doi: 10.1016/0014-5793(95)00634-L.
    1. Sørensen O., Arnljots K., Cowland J.B., Bainton D.F., Borregaard N. The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood. 1997;90:2796–2803.
    1. Agerberth B., Gunne H., Odeberg J., Kogner P., Boman H.G., Gudmundsson G.H. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl. Acad. Sci. USA. 1995;92:195–199. doi: 10.1073/pnas.92.1.195.
    1. Frohm M., Gunne H., Bergman A.C., Agerberth B., Bergman T., Boman A., Lidén S., Jörnvall H., Boman H.G. Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem. 1996;237:86–92. doi: 10.1111/j.1432-1033.1996.0086n.x.
    1. Andersson E., Sørensen O.E., Frohm B., Borregaard N., Egesten A., Malm J. Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes. Hum. Reprod. 2002;17:2529–2534. doi: 10.1093/humrep/17.10.2529.
    1. Murakami M., Ohtake T., Dorschner R.A., Gallo R.L. Cathelicidin Antimicrobial Peptides are Expressed in Salivary Glands and Saliva. J. Dent. Res. 2002;81:845–850. doi: 10.1177/154405910208101210.
    1. Türkoğlu O., Emingil G., Kütükçüler N., Atilla G. Gingival Crevicular Fluid Levels of Cathelicidin LL-37 and Interleukin-18 in Patients With Chronic Periodontitis. J. Periodontol. 2009;80:969–976. doi: 10.1902/jop.2009.080532.
    1. Gallo R.L., Kim K.J., Bernfield M., Kozak C.A., Zanetti M., Merluzzi L., Gennaro R. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 1997;272:13088–13093. doi: 10.1074/jbc.272.20.13088.
    1. Agier J., Efenberger M., Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol. 2015;40:225–235. doi: 10.5114/ceji.2015.51359.
    1. Cheng Y., Prickett M.D., Gutowska W., Kuo R., Belov K., Burt D.W. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol. Biol. 2015;15:188. doi: 10.1186/s12862-015-0465-3.
    1. Johansson J., Gudmundsson G.H., Rottenberg M.E., Berndt K.D., Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J. Biol. Chem. 1998;273:3718–3724. doi: 10.1074/jbc.273.6.3718.
    1. Zhang G., Sunkara L.T. Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals. 2014;7:220–247. doi: 10.3390/ph7030220.
    1. Chang C.-I., Zhang Y.-A., Zou J., Nie P., Secombes C.J. Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and atlantic salmon (Salmo salar) Antimicrob. Agents Chemother. 2006;50:185–195. doi: 10.1128/AAC.50.1.185-195.2006.
    1. Chen C., Brock R., Luh F., Chou P.J., Larrick J.W., Huang R.F., Huang T.H. The solution structure of the active domain of CAP18—A lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 1995;370:46–52. doi: 10.1016/0014-5793(95)00792-8.
    1. Bals R., Lang C., Weiner D.J., Vogelmeier C., Welsch U., Wilson J.M. Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. Clin. Diagn. Lab. Immunol. 2001;8:370–375. doi: 10.1128/CDLI.8.2.370-375.2001.
    1. Mansour S.C., Pena O.M., Hancock R.E.W. Host defense peptides: Front-line immunomodulators. Trends Immunol. 2014;35:443–450. doi: 10.1016/j.it.2014.07.004.
    1. Davidopoulou S., Diza E., Sakellari D., Menexes G., Kalfas S. Salivary concentration of free LL-37 in edentulism, chronic periodontitis and healthy periodontium. Arch. Oral Biol. 2013;58:930–934. doi: 10.1016/j.archoralbio.2013.01.003.
    1. Vandamme D., Landuyt B., Luyten W., Schoofs L. A comprehensive summary of LL-37, the factoctum human cathelicidin peptide. Cell. Immunol. 2012;280:22–35. doi: 10.1016/j.cellimm.2012.11.009.
    1. Dale B.A., Tao R., Kimball J.R., Jurevic R.J. Oral Antimicrobial Peptides and Biological Control of Caries. BMC Oral Health. 2006;6:S13. doi: 10.1186/1472-6831-6-S1-S13.
    1. Khurshid Z., Naseem M., Sheikh Z., Najeeb S., Shahab S., Zafar M.S. Oral antimicrobial peptides: Types and role in the oral cavity. Saudi Pharm. J. 2015 doi: 10.1016/j.jsps.2015.02.015.
    1. Wang G., Mishra B., Epand R.F., Epand R.M. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Biochim. Biophys. Acta Biomembr. 2014;1838:2160–2172. doi: 10.1016/j.bbamem.2014.01.016.
    1. Park S.-C., Park Y., Hahm K.-S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. Int. J. Mol. Sci. 2011;12:5971–5992. doi: 10.3390/ijms12095971.
    1. Khurshid Z., Najeeb S., Mali M., Moin S.F., Raza S.Q., Zohaib S., Sefat F., Zafar M.S. Histatin peptides: Pharmacological functions and its applications in dentistry. Saudi Pharm. J. 2016 doi: 10.1016/j.jsps.2016.04.027.
    1. Ramamoorthy A., Lee D.-K., Narasimhaswamy T., Nanga R.P.R. Cholesterol reduces pardaxin’s dynamics-a barrel-stave mechanism of membrane disruption investigated by solid-state NMR. Biochim. Biophys. Acta. 2010;1798:223–227. doi: 10.1016/j.bbamem.2009.08.012.
    1. Park S.-C., Kim J.-Y., Shin S.-O., Jeong C.-Y., Kim M.-H., Shin S.Y., Cheong G.-W., Park Y., Hahm K.-S. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy. Biochem. Biophys. Res. Commun. 2006;343:222–228. doi: 10.1016/j.bbrc.2006.02.090.
    1. Zaiou M., Nizet V., Gallo R.L. Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J. Investig. Dermatol. 2003;120:810–816. doi: 10.1046/j.1523-1747.2003.12132.x.
    1. Ståhle-bäckdahl M., Heilborn J., Carlsson A., Bogentoft C. Use of the Catelicidin LL-37 and Derivatives Thereof for Wound Healing. 7,452,864 B2. U.S. Patent. 2008 Nov 18;
    1. Haisma E.M., de Breij A., Chan H., van Dissel J.T., Drijfhout J.W., Hiemstra P.S., El Ghalbzouri A., Nibbering P.H. LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob. Agents Chemother. 2014;58:4411–4419. doi: 10.1128/AAC.02554-14.
    1. Gallo R., Murakami M. Human Cathelicidin Antimicrobial Peptides. WO 2005040192 A3. 2005
    1. Nagaoka I., Yomogida S., Tamura H., Hirata M. Antibacterial cathelicidin peptide CAP11 inhibits the lipopolysaccharide (LPS)-induced suppression of neutrophil apoptosis by blocking the binding of LPS to target cells. Inflamm. Res. 2004;53:609–622. doi: 10.1007/s00011-004-1300-2.
    1. Neumann A., Berends E.T., Nerlich A., Molhoek E.M., Gallo R.L., Meerloo T., Nizet V., Naim H.Y., von Kockritz-Blickwede M. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem. J. 2014;464:3–11. doi: 10.1042/BJ20140778.
    1. Cakir E., Torun E., Gedik A.H., Umutoglu T., Aktas E.C., Topuz U., Deniz G. Cathelicidin and human β-defensin 2 in bronchoalveolar lavage fluid of children with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2014;18:671–675. doi: 10.5588/ijtld.13.0831.
    1. Yoo M.-W., Park J., Han H.-S., Yun Y.-M., Kang J.W., Choi D.-Y., won Lee J., Jung J.H., Lee K.-Y., Kim K.P. Discovery of gastric cancer-specific biomarkers by the application of serum proteomics. Proteomics. 2017;17:1600332. doi: 10.1002/pmic.201600332.
    1. Morales J.O., Fathe K.R., Brunaugh A., Ferrati S., Li S., Montenegro-Nicolini M., Mousavikhamene Z., McConville J.T., Prausnitz M.R., Smyth H.D.C. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS J. 2017 doi: 10.1208/s12248-017-0054-z.
    1. Potturu M., Prabhakaran P.A., Oommen N., Sarojini D.M., Sunil S.N. Cathelicidin expression and role in oral health and diseases: A short review. Trop. J. Med. Res. 2014;17:69–75. doi: 10.4103/1119-0388.140414.
    1. Mishra A., Apeksha B., Koppolu P., Lingam S. Role of antimicrobial peptides in periodontal innate defense mechanism. J. Oral Res. Rev. 2015;7:74. doi: 10.4103/2249-4987.172500.
    1. Barlow P.G., Svoboda P., Mackellar A., Nash A.A., York I.A., Pohl J., Davidson D.J., Donis R.O. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLoS ONE. 2011;6:e25333. doi: 10.1371/journal.pone.0025333.
    1. Gordon Y.J., Huang L.C., Romanowski E.G., Yates K.A., Proske R.J., McDermott A.M. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr. Eye Res. 2005;30:385–394. doi: 10.1080/02713680590934111.
    1. Wong J.H., Legowska A., Rolka K., Ng T.B., Hui M., Cho C.H., Lam W.W.L., Au S.W.N., Gu O.W., Wan D.C.C. Effects of cathelicidin and its fragments on three key enzymes of HIV-1. Peptides. 2011;32:1117–1122. doi: 10.1016/j.peptides.2011.04.017.
    1. Khurshid Z., Najeeb S., Khan R.S., Zafar M.S. Salivaomics: An Emerging Approach in Dentistry. JPDA. 2016;25:41–43.
    1. Khurshid Z., Zohaib S., Najeeb S., Zafar M.S., Slowey P.D., Almas K. Human Saliva Collection Devices for Proteomics: An Update. Int. J. Mol. Sci. 2016;17:846. doi: 10.3390/ijms17060846.
    1. Khurshid Z., Zohaib S., Najeeb S., Zafar M., Rehman R., Rehman I. Advances of Proteomic Sciences in Dentistry. Int. J. Mol. Sci. 2016;17:728. doi: 10.3390/ijms17050728.
    1. Khurshid Z., Sohail Zafar M., Najeeb S., Zohaib S. Human Saliva: A Future Diagnostic Tool. Dent. Sci. 2015;2:260–265. doi: 10.1016/.
    1. Sannam Khan R., Khurshid Z., Akhbar S., Faraz Moin S. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC) Detection: An Update. Proteomes. 2016;4:41. doi: 10.3390/proteomes4040041.
    1. Sahibzada H.A., Khurshid Z., Khan R.S., Naseem M., Siddique K.M., Mali M., Zafar M.S. Salivary IL-8, IL-6 and TNF-α as Potential Diagnostic Biomarkers for Oral Cancer. Diagnostics. 2017;7:21. doi: 10.3390/diagnostics7020021.
    1. Khurshid Z., Mali M., Naseem M., Najeeb S., Zafar M. Human Gingival Crevicular Fluids (GCF) Proteomics: An Overview. Dent. J. 2017;5:12. doi: 10.3390/dj5010012.
    1. Hans M., Hans V.M. Epithelial Antimicrobial Peptides: Guardian of the Oral Cavity. Int. J. Pept. 2014;2014:370297. doi: 10.1155/2014/370297.
    1. Guo Y., Zhang B., Feng X., Ren H., Xu J. Human cathelicidin LL-37 enhance the antibiofilm effect of EGCG on Streptococcus mutans. BMC Oral Health. 2016;16:101. doi: 10.1186/s12903-016-0292-y.
    1. Wiesner J., Vilcinskas A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence. 2010;1:440–464. doi: 10.4161/viru.1.5.12983.
    1. Kajiya M., Shiba H., Komatsuzawa H., Ouhara K., Fujita T., Takeda K., Uchida Y., Mizuno N., Kawaguchi H., Kurihara H. The antimicrobial peptide LL37 induces the migration of human pulp cells: A possible adjunct for regenerative endodontics. J. Endod. 2010;36:1009–1013. doi: 10.1016/j.joen.2010.02.028.
    1. Tsai P.W., Yang C.Y., Chang H.T., Lan C.Y. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS ONE. 2011;6:e17755. doi: 10.1371/journal.pone.0017755.
    1. Eick S., Puklo M., Adamowicz K., Kantyka T., Hiemstra P., Stennicke H., Guentsch A., Schacher B., Eickholz P., Potempa J. Lack of cathelicidin processing in Papillon-Lefèvre syndrome patients reveals essential role of LL-37 in periodontal homeostasis. Orphanet J. Rare Dis. 2014;9:148. doi: 10.1186/s13023-014-0148-y.
    1. Montreekachon P., Nongparn S., Sastraruji T., Khongkhunthian S., Chruewkamlow N., Kasinrerk W., Krisanaprakornkit S. Favorable interleukin-8 induction in human gingival epithelial cells by the antimicrobial peptide LL-37. Asian Pac. J. Allergy Immunol. 2014;32:251–260. doi: 10.12932/AP0404.32.3.2014.
    1. Davidopoulou S., Diza E., Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in children. Arch. Oral Biol. 2012;57:865–869. doi: 10.1016/j.archoralbio.2012.01.008.
    1. Takeuchi Y., Nagasawa T., Katagiri S., Kitagawara S., Kobayashi H., Koyanagi T., Izumi Y. Salivary Levels of Antibacterial Peptide (LL-37/hCAP-18) and Cotinine in Patients With Chronic Periodontitis. J. Periodontol. 2012;83:766–772. doi: 10.1902/jop.2011.100767.
    1. Davidopoulou S., Theodoridis H., Nazer K., Kessopoulou E., Menexes G., Kalfas S. Salivary concentration of the antimicrobial peptide LL-37 in patients with oral lichen planus. J. Oral Microbiol. 2014;6:26156. doi: 10.3402/jom.v6.26156.
    1. Gutner M., Chaushu S., Balter D., Bachrach G. Saliva Enables the Antimicrobial Activity of LL-37 in the Presence of Proteases of Porphyromonas gingivalis. Infect. Immun. 2009;77:5558–5563. doi: 10.1128/IAI.00648-09.
    1. Blodkamp S., Kadlec K., Gutsmann T., Naim H.Y., von Köckritz-Blickwede M., Schwarz S. In vitro activity of human and animal cathelicidins against livestock-associated methicillin-resistant Staphylococcus aureus. Vet. Microbiol. 2015 doi: 10.1016/j.vetmic.2015.09.018.

Source: PubMed

3
Suscribir