Emerging small-molecule treatments for multiple sclerosis: focus on B cells

Aaron Gregson, Kaitlyn Thompson, Stella E Tsirka, David L Selwood, Aaron Gregson, Kaitlyn Thompson, Stella E Tsirka, David L Selwood

Abstract

Multiple sclerosis (MS) is a major cause of disability in young adults. Following an unknown trigger (or triggers), the immune system attacks the myelin sheath surrounding axons, leading to progressive nerve cell death. Antibodies and small-molecule drugs directed against B cells have demonstrated good efficacy in slowing progression of the disease. This review focusses on small-molecule drugs that can affect B-cell biology and may have utility in disease management. The risk genes for MS are examined from the drug target perspective. Existing small-molecule therapies for MS with B-cell actions together with new drugs in development are described. The potential for experimental molecules with B-cell effects is also considered. Small molecules can have diverse actions on B cells and be cytotoxic, anti-inflammatory and anti-viral. The current B cell-directed therapies often kill B-cell subsets, which can be effective but lead to side effects and toxicity. A deeper understanding of B-cell biology and the effect on MS disease should lead to new drugs with better selectivity, efficacy, and an improved safety profile. Small-molecule drugs, once the patent term has expired, provide a uniquely sustainable form of healthcare.

Keywords: B cells; MS; Multiple sclerosis; small molecule drugs; sustainable healthcare.

Conflict of interest statement

No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.

Figures

Figure 1.. Causes and progression of multiple…
Figure 1.. Causes and progression of multiple sclerosis (MS).
Several studies now indicate that Epstein–Barr virus infection is necessary (but not causal) for MS to develop. Genetic factors may explain 50% of MS susceptibility whereas environmental factors together with unknowns may combine to trigger immune activation and the subsequent destruction of myelin and oligodendrocytes. This eventually leads to axonal damage and nerve cell death resulting in disability. HERV, human endogenous retrovirus.
Figure 2.. Mechanism of action of cladribine.
Figure 2.. Mechanism of action of cladribine.
Cladribine is taken up into cells by nucleoside transporters and then is phosphorylated to the mono-phosphate (the rate-limiting step) by deoxycytidine kinase, highly expressed in lymphocytes. Subsequent phosphorylation steps produce the active species, the triphosphate. The triphosphate cannot be efficiently degraded by adenosine deaminase, and 5′-nucleotidase has low expression in lymphocytes. This leads to high levels of the cladribine triphosphate, which is toxic to cells by a number of mechanisms, including incorporation into DNA leading to single-stranded breaks.

References

    1. Jacques FH: Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2015;84:963 10.1016/S1474-4422(17)30470-2
    1. Thompson AJ, Banwell BL, Barkhof F, et al. : Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. 10.1016/S1474-4422(17)30470-2
    2. F1000 Recommendation

    1. Booth DR, Ding N, Parnell GP, et al. : Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun. 2016;17(4):213–219. 10.1038/gene.2016.12
    1. Parnell GP, Booth DR: The Multiple Sclerosis (MS) Genetic Risk Factors Indicate both Acquired and Innate Immune Cell Subsets Contribute to MS Pathogenesis and Identify Novel Therapeutic Opportunities. Front Immunol. 2017;8:425. 10.3389/fimmu.2017.00425
    1. Hilven K, Patsopoulos NA, Dubois B, et al. : Burden of risk variants correlates with phenotype of multiple sclerosis. Mult Scler. 2015;21(13):1670–1680. 10.1177/1352458514568174
    1. Lehmann-Horn K, Kinzel S, Weber MS: Deciphering the Role of B Cells in Multiple Sclerosis-Towards Specific Targeting of Pathogenic Function. Int J Mol Sci. 2017;18(10): pii: E2048. 10.3390/ijms18102048
    2. F1000 Recommendation

    1. Baker D, Marta M, Pryce G, et al. : Memory B Cells are Major Targets for Effective Immunotherapy in Relapsing Multiple Sclerosis. EBioMedicine. 2017;16:41–50. 10.1016/j.ebiom.2017.01.042
    2. F1000 Recommendation

    1. Rahmanzadeh R, Weber MS, Brück W, et al. : B cells in multiple sclerosis therapy-A comprehensive review. Acta Neurol Scand. 2018;137(6):544–556. 10.1111/ane.12915
    2. F1000 Recommendation

    1. Bose T: Role of Immunological Memory Cells as a Therapeutic Target in Multiple Sclerosis. Brain Sci. 2017;7(11): pii: E148 10.3390/brainsci7110148
    1. Sefia E, Pryce G, Meier UC, et al. : Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis. Mult Scler Relat Disord. 2017;14:46–50. 10.1016/j.msard.2017.03.013
    1. Bjelobaba I, Begovic-Kupresanin V, Pekovic S, et al. : Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res. 2018;96(6):1021–1042. 10.1002/jnr.24224
    2. F1000 Recommendation

    1. Lassmann H, Niedobitek G, Aloisi F, et al. : Epstein-Barr virus in the multiple sclerosis brain: a controversial issue--report on a focused workshop held in the Centre for Brain Research of the Medical University of Vienna, Austria. Brain. 2011;134(Pt 9):2772–2786. 10.1093/brain/awr197
    1. Pakpoor J, Ramagopalan SV: Epstein-Barr virus is a necessary causative agent in the pathogenesis of multiple sclerosis: yes. Mult Scler J. 2013;19(13):1690–1691. 10.1177/1352458513506505
    1. Hassani A, Corboy JR, Al-Salami S, et al. : Epstein-Barr virus is present in the brain of most cases of multiple sclerosis and may engage more than just B cells. PLoS One. 2018;13(2):e0192109. 10.1371/journal.pone.0192109
    2. F1000 Recommendation

    1. Pender MP: Preventing and curing multiple sclerosis by controlling Epstein-Barr virus infection. Autoimmun Rev. 2009;8(7):563–568. 10.1016/j.autrev.2009.01.017
    2. F1000 Recommendation

    1. Mentis AA, Dardiotis E, Grigoriadis N, et al. : Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand. 2017;136(6):606–616. 10.1111/ane.12775
    1. Kearns PKA, Casey HA, Leach JP: Hypothesis: Multiple sclerosis is caused by three-hits, strictly in order, in genetically susceptible persons. Mult Scler Relat Disord. 2018;24:157–174. 10.1016/j.msard.2018.06.014
    2. F1000 Recommendation

    1. Giovannoni G, Cutter G, Sormani MP, et al. : Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses. Mult Scler Relat Disord. 2017;12:70–78. 10.1016/j.msard.2017.01.007
    1. Faissner S, Gold R: Efficacy and Safety of the Newer Multiple Sclerosis Drugs Approved Since 2010. CNS Drugs. 2018;32(3):269–287. 10.1007/s40263-018-0488-6
    2. F1000 Recommendation

    1. Mulero P, Midaglia L, Montalban X: Ocrelizumab: a new milestone in multiple sclerosis therapy. Ther Adv Neurol Disord. 2018;11:1756286418773025. 10.1177/1756286418773025
    2. F1000 Recommendation

    1. Hauser SL, Bar-Or A, Comi G, et al. : Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N Engl J Med. 2017;376(3):221–234. 10.1056/NEJMoa1601277
    2. F1000 Recommendation

    1. Granqvist M, Boremalm M, Poorghobad A, et al. : Comparative Effectiveness of Rituximab and Other Initial Treatment Choices for Multiple Sclerosis. JAMA Neurol. 2018;75(3):320–327. 10.1001/jamaneurol.2017.4011
    2. F1000 Recommendation

    1. Patsopoulos N, Baranzini SE, Santaniello A, et al. : The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility. bioRxiv. 2017. 10.1101/143933
    2. F1000 Recommendation

    1. International Multiple Sclerosis Genetics Consortium (IMSGC), . Beecham AH, Patsopoulos NA, et al. : Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353–1360. 10.1038/ng.2770
    1. Afrasiabi A, Parnell GP, Fewings N, et al. : Genetic evidence that the latency III stage of Epstein-Barr Virus infection is a therapeutic target for Multiple Sclerosis. bioRxiv. 2018;390609 10.1101/390609
    1. Berge T, Leikfoss IS, Brorson IS, et al. : The multiple sclerosis susceptibility genes TAGAP and IL2RA are regulated by vitamin D in CD4+ T cells. Genes Immun. 2016;17(2):118–127. 10.1038/gene.2015.61
    1. Zhou Y, Zhu G, Charlesworth JC, et al. : Genetic loci for Epstein-Barr virus nuclear antigen-1 are associated with risk of multiple sclerosis. Mult Scler. 2016;22(13):1655–1664. 10.1177/1352458515626598
    1. Parnell GP, Gatt PN, Krupa M, et al. : The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clin Immunol. 2014;151(1):16–24. 10.1016/j.clim.2014.01.003
    1. Khankhanian P, Cozen W, Himmelstein DS, et al. : Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma and multiple sclerosis. Int J Epidemiol. 2016;45(3):728–740. 10.1093/ije/dyv364
    1. Yenamandra SP, Hellman U, Kempkes B, et al. : Epstein-Barr virus encoded EBNA-3 binds to vitamin D receptor and blocks activation of its target genes. Cell Mol Life Sci. 2010;67(24):4249–4256. 10.1007/s00018-010-0441-4
    1. Trier N, Izarzugaza J, Chailyan A, et al. : Human MHC-II with Shared Epitope Motifs Are Optimal Epstein-Barr Virus Glycoprotein 42 Ligands-Relation to Rheumatoid Arthritis. Int J Mol Sci. 2018;19(1): pii: E317. 10.3390/ijms19010317
    2. F1000 Recommendation

    1. Sheik-Ali S: Infectious mononucleosis and multiple sclerosis - Updated review on associated risk. Mult Scler Relat Disord. 2017;14:56–59. 10.1016/j.msard.2017.02.019
    1. Dolei A: The aliens inside us: HERV-W endogenous retroviruses and multiple sclerosis. Mult Scler. 2018;24(1):42–47. 10.1177/1352458517737370
    2. F1000 Recommendation

    1. 't Hart BA, Jagessar SA, Haanstra K, et al. : The Primate EAE Model Points at EBV-Infected B Cells as a Preferential Therapy Target in Multiple Sclerosis. Front Immunol. 2013;4:145. 10.3389/fimmu.2013.00145
    1. Pakpoor J, Disanto G, Gerber JE, et al. : The risk of developing multiple sclerosis in individuals seronegative for Epstein-Barr virus: a meta-analysis. Mult Scler. 2013;19(2):162–166. 10.1177/1352458512449682
    1. Munger KL, Fitzgerald KC, Freedman MS, et al. : No association of multiple sclerosis activity and progression with EBV or tobacco use in BENEFIT. Neurology. 2015;85(19):1694–1701. 10.1212/WNL.0000000000002099
    1. Salzer J, Myhr KM: Epstein-Barr virus is a necessary causative agent in the pathogenesis of multiple sclerosis: no. Mult Scler. 2013;19(13):1692–1693. 10.1177/1352458513507625
    1. Kudo LC, Parfenova L, Ren G, et al. : Puromycin-sensitive aminopeptidase (PSA/NPEPPS) impedes development of neuropathology in hPSA/TAU P301L double-transgenic mice. Hum Mol Genet. 2011;20(9):1820–1833. 10.1093/hmg/ddr065
    1. Ren G, Ma Z, Hui M, et al. : Cu, Zn-superoxide dismutase 1 (SOD1) is a novel target of Puromycin-sensitive aminopeptidase (PSA/NPEPPS): PSA/NPEPPS is a possible modifier of amyotrophic lateral sclerosis. Mol Neurodegener. 2011;6:29. 10.1186/1750-1326-6-29
    1. Fard MK, van der Meer F, Sánchez P, et al. : BCAS1 expression defines a population of early myelinating oligodendrocytes in multiple sclerosis lesions. Sci Transl Med. 2017;9(419): pii: eaam7816. 10.1126/scitranslmed.aam7816
    2. F1000 Recommendation

    1. Ishimoto T, Ninomiya K, Inoue R, et al. : Mice lacking BCAS1, a novel myelin-associated protein, display hypomyelination, schizophrenia-like abnormal behaviors, and upregulation of inflammatory genes in the brain. Glia. 2017;65(5):727–739. 10.1002/glia.23129
    1. Thangaraj MP, Furber KL, Gan JK, et al. : RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation. J Biol Chem. 2017;292(13):5166–5182. 10.1074/jbc.M117.775544
    1. Fischer MT, Sharma R, Lim JL, et al. : NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain. 2012;135(Pt 3):886–899. 10.1093/brain/aws012
    2. F1000 Recommendation

    1. Olojo RO, Ziman AP, Hernández-Ochoa EO, et al. : Mice null for calsequestrin 1 exhibit deficits in functional performance and sarcoplasmic reticulum calcium handling. PLoS One. 2011;6(12):e27036. 10.1371/journal.pone.0027036
    1. Wang Q, Chuikov S, Taitano S, et al. : Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway. Int J Mol Sci. 2015;16(6):13885–13907. 10.3390/ijms160613885
    2. F1000 Recommendation

    1. Warne J, Pryce G, Hill JM, et al. : Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. J Biol Chem. 2016;291(9):4356–4373. 10.1074/jbc.M115.700385
    1. Cervantes-Gracia K, Husi H: Integrative analysis of Multiple Sclerosis using a systems biology approach. Sci Rep. 2018;8(1):5633. 10.1038/s41598-018-24032-8
    2. F1000 Recommendation

    1. Wager TT, Hou X, Verhoest PR, et al. : Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. Acs Chem Neurosci. 2010;1(6):435–449. 10.1021/cn100008c
    2. F1000 Recommendation

    1. Christensen LF, Broom AD, Robins MJ, et al. : Synthesis and biological activity of selected 2,6-disubstituted-(2-deoxy- -and- -D-erythro-pentofuranosyl)purines. J Med Chem. 1972;15(7):735–9.
    1. Bradford KL, Moretti FA, Carbonaro-Sarracino DA, et al. : Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J Clin Immunol. 2017;37(7):626–637. 10.1007/s10875-017-0433-3
    1. Carson DA, Kaye J, Matsumoto S, et al. : Biochemical basis for the enhanced toxicity of deoxyribonucleosides toward malignant human T cell lines. Proc Natl Acad Sci U S A. 1979;76(5):2430–2433.
    1. Giovannoni G: Cladribine to Treat Relapsing Forms of Multiple Sclerosis. Neurotherapeutics. 2017;14(4):874–887. 10.1007/s13311-017-0573-4
    1. Kawasaki H, Carrera CJ, Piro LD, et al. : Relationship of deoxycytidine kinase and cytoplasmic 5'-nucleotidase to the chemotherapeutic efficacy of 2-chlorodeoxyadenosine. Blood. 1993;81(3):597–601.
    1. Liliemark J: The clinical pharmacokinetics of cladribine. Clin Pharmacokinet. 1997;32(2):120–131. 10.2165/00003088-199732020-00003
    1. Scheible H, Laisney M, Wimmer E, et al. : Comparison of the in vitro and in vivo metabolism of Cladribine (Leustatin, Movectro) in animals and human. Xenobiotica. 2013;43(12):1084–1094. 10.3109/00498254.2013.791762
    1. Leist TP, Weissert R: Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol. 2011;34(1):28–35. 10.1097/WNF.0b013e318204cd90
    1. Giovannoni G, Comi G, Cook S, et al. : A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–426. 10.1056/NEJMoa0902533
    1. Merck: Cladribine Tablets Receives Positive CHMP Opinion for Treatment of Relapsing Forms of Multiple Sclerosis. In Mavenclad (Cladribine tablets) has received a positive opinion by the Committee for Medicinal Products for Human Use (CHMP) of the European Medicines Agency (EMA).2017.
    1. Braun-Sand SB, Peetz M: Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med Chem. 2010;2(1):81–92. 10.4155/fmc.09.147
    1. Xiao Y, Huang J, Luo H, et al. : Mycophenolate mofetil for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2014; (2):CD010242. 10.1002/14651858.CD010242.pub2
    1. Michel L, Vukusic S, De Seze J, et al. : Mycophenolate mofetil in multiple sclerosis: a multicentre retrospective study on 344 patients. J Neurol Neurosurg Psychiatry. 2014;85(3):279–283. 10.1136/jnnp-2013-305298
    2. F1000 Recommendation

    1. Chen L, Wilson D, Jayaram HN, et al. : Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J Med Chem. 2007;50(26):6685–6691. 10.1021/jm070864w
    1. Eickenberg S, Mickholz E, Jung E, et al. : Mycophenolic acid counteracts B cell proliferation and plasmablast formation in patients with systemic lupus erythematosus. Arthritis Res Ther. 2012;14(3):R110. 10.1186/ar3835
    1. Pua KH, Stiles DT, Sowa ME, et al. : IMPDH2 Is an Intracellular Target of the Cyclophilin A and Sanglifehrin A Complex. Cell Rep. 2017;18(2):432–442. 10.1016/j.celrep.2016.12.030
    1. Liao LX, Song XM, Wang LC, et al. : Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci U S A. 2017;114(29):E5986–E5994. 10.1073/pnas.1706778114
    1. Bar-Or A: Teriflunomide (Aubagio®) for the treatment of multiple sclerosis. Exp Neurol. 2014;262(Pt A):57–65. 10.1016/j.expneurol.2014.06.005
    1. Li L, Liu JC, Delohery T, et al. : The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2013;265(1–2):82–90. 10.1016/j.jneuroim.2013.10.003
    1. Schwartz R, Davidson T: Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park). 2004;18(14 Suppl 11):14–21.
    1. Demo SD, Kirk CJ, Aujay MA, et al. : Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res. 2007;67(13):6383–6391. 10.1158/0008-5472.CAN-06-4086
    1. Goldwirt L, Beccaria K, Ple A, et al. : Ibrutinib brain distribution: a preclinical study. Cancer Chemother Pharmacol. 2018;81(4):783–789. 10.1007/s00280-018-3546-3
    1. Relations SM: Sanofi, Principia agree to develop multiple sclerosis drug candidate.2017.
    1. Melao A: Potential B-cell targeting oral MS treatment, PRN2246, shows ability to reach brain in phase 1 study. In Multiple Sclerosis News Today2018.
    1. Janssens A: Ibrutinib and idelalisib, the B-cell receptor antagonists available for use in daily clinical practice. Belg J Hematol. 2015;6:216–224.
    1. Zhao M, Zhou P, Yu J, et al. : The tissue distribution and excretion study of paeoniflorin-6'-O-benzene sulfonate (CP-25) in rats. Inflammopharmacology. 2018. 10.1007/s10787-018-0463-3
    1. Terranova N, Hicking C, Dangond F, et al. : Effects of Postponing Treatment in the Second Year of Cladribine Administration: Clinical Trial Simulation Analysis of Absolute Lymphocyte Counts and Relapse Rate in Patients with Relapsing-Remitting Multiple Sclerosis. Clin Pharmacokinet. 2018. 10.1007/s40262-018-0693-y
    2. F1000 Recommendation

    1. De Stefano N, Giorgio A, Battaglini M, et al. : Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler. 2018;24(2):222–226. 10.1177/1352458517690269
    2. F1000 Recommendation

    1. Ali S, Paracha N, Cook S, et al. : Reduction in healthcare and societal resource utilization associated with cladribine tablets in patients with relapsing-remitting multiple sclerosis: analysis of economic data from the CLARITY Study. Clin Drug Investig. 2012;32(1):15–27. 10.2165/11593310-000000000-00000
    1. Freedman MS, Leist TP, Comi G, et al. : The efficacy of cladribine tablets in CIS patients retrospectively assigned the diagnosis of MS using modern criteria: Results from the ORACLE-MS study. Mult Scler J Exp Transl Clin. 2017;3(4): 2055217317732802. 10.1177/2055217317732802
    1. Leist TP, Comi G, Cree BA, et al. : Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–267. 10.1016/S1474-4422(14)70005-5
    1. Montalban X, Leist TP, Cohen BA, et al. : Cladribine tablets added to IFN-β in active relapsing MS: The ONWARD study. Neurol Neuroimmunol Neuroinflamm. 2018;5:e477 10.1212/NXI.0000000000000477
    1. Steininger C: Novel therapies for cytomegalovirus disease. Recent Pat Antiinfect Drug Discov. 2007;2(1):53–72. 10.2174/157489107779561634
    1. Ziemssen T, Neuhaus O, Hohlfeld R: Risk-benefit assessment of glatiramer acetate in multiple sclerosis. Drug Saf. 2001;24(13):979–990. 10.2165/00002018-200124130-00005
    1. Brennan MS, Matos MF, Li B, et al. : Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro. PLoS One. 2015;10(3):e0120254. 10.1371/journal.pone.0120254
    2. F1000 Recommendation

    1. Kappos L, Arnold DL, Bar-Or A, et al. : Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2016;15(11):1148–1159. 10.1016/S1474-4422(16)30192-2
    2. F1000 Recommendation

    1. Tavares A, Barret O, Alagille D, et al. : Brain distribution of MS565, an imaging analogue of siponimod (BAF312), in non-human primates. Eur J Neurol. 2014;21:504
    1. Cohen JA, Arnold DL, Comi G, et al. : Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):373–381. 10.1016/S1474-4422(16)00018-1
    1. Comi G, Arnold D, Cree B, et al. : Ozanimod Demonstrates Efficacy and Safety in a Multicenter, Randomized, Double-Blind, Double-Dummy, Active-Controlled Phase 3 Trial of Relapsing Multiple Sclerosis (SUNBEAM). Neurology. 2018;90(15 Supplement).
    1. Scott FL, Clemons B, Brooks J, et al. : Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P 1) and receptor-5 (S1P 5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173(11):1778–1792. 10.1111/bph.13476
    2. F1000 Recommendation

    1. Bar-Or A, Zipp F, Scaramozza M, et al. : Effect of Ceralifimod (ONO-4641), a Sphingosine-1-Phosphate Receptor-1 and -5 Agonist, on Magnetic Resonance Imaging Outcomes in Patients with Multiple Sclerosis: Interim Results from the Extension of the DreaMS Study (P3.161). Neurology. 2014;82: P3.161.
    1. Olsson T, Boster A, Fernández Ó, et al. : Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85(11):1198–1208. 10.1136/jnnp-2013-307282
    1. Brueck W, Wegner C: Insight into the mechanism of laquinimod action. J Neurol Sci. 2011;306(1–2):173–179. 10.1016/j.jns.2011.02.019
    1. He D, Zhang C, Zhao X, et al. : Teriflunomide for multiple sclerosis. Cochrane Database Syst Rev. 2016;3:CD009882. 10.1002/14651858.CD009882.pub3
    1. Confavreux C, O'Connor P, Comi G, et al. : Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–256. 10.1016/S1474-4422(13)70308-9
    1. Green RM, Stewart DJ, Hugenholtz H, et al. : Human central nervous system and plasma pharmacology of mitoxantrone. J Neurooncol. 1988;6(1):75–83. 10.1007/BF00163544
    1. CHMP: Assessment report EMA/CHMP/425279/2013. Xeljanz,2013.
    1. Miller AE, Wolinsky JS, Kappos L, et al. : Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(10):977–986. 10.1016/S1474-4422(14)70191-7
    2. F1000 Recommendation

    1. Gandoglia I, Ivaldi F, Laroni A, et al. : Teriflunomide treatment reduces B cells in patients with MS. Neurol Neuroimmunol Neuroinflamm. 2017;4(6):e403. 10.1212/NXI.0000000000000403
    1. Ontaneda D, Nicholas J, Carraro M, et al. : Comparative effectiveness of dimethyl fumarate versus fingolimod and teriflunomide among MS patients switching from first-generation platform therapies in the US. Mult Scler Relat Disord. 2018;27:101–111. 10.1016/j.msard.2018.09.038
    2. F1000 Recommendation

    1. Limsakun T, Menguy-Vacheron F: Pharmacokinetics of Oral Teriflunomide, a Novel Oral Disease-Modifying Agent under Investigation for the Treatment of Multiple Sclerosis. Neurology. 2010;74:A415–A415.
    1. Bartlett RR: Immunopharmacological profile of HWA 486, a novel isoxazol derivative--II. In vivo immunomodulating effects differ from those of cyclophosphamide, prednisolone, or cyclosporin A. Int J Immunopharmacol. 1986;8(2):199–204. 10.1016/0192-0561(86)90059-7
    1. Aly L, Hemmer B, Korn T: From Leflunomide to Teriflunomide: Drug Development and Immunosuppressive Oral Drugs in the Treatment of Multiple Sclerosis. Curr Neuropharmacol. 2017;15(6):874–891. 10.2174/1570159X14666161208151525
    1. Eschborni M, Klotz L, Lindner M, et al. : Teriflunomide modulates antigen-specific immune responses in an affinity-dependent fashion by inhibiting T cell metabolism. Mult Scler J. 2018;24:675–676.
    1. Pender MP, Csurhes PA, Smith C, et al. : Safety and clinical improvement in a phase I trial of autologous Epstein-Barr virus-specific T-cell therapy in patients with progressive multiple sclerosis. Mult Scler J. 2017;23:401
    1. Pagano JS, Whitehurst CB, Andrei G: Antiviral Drugs for EBV. Cancers (Basel). 2018;10(6): pii: E197. 10.3390/cancers10060197
    2. F1000 Recommendation

    1. Whitehurst CB, Sanders MK, Law M, et al. : Maribavir inhibits Epstein-Barr virus transcription through the EBV protein kinase. J Virol. 2013;87(9):5311–5315. 10.1128/JVI.03505-12
    1. Papanicolaou G, Silveira FP, Langston A, et al. : Maribavir for Treatment of Cytomegalovirus (CMV) Infections Resistant or Refractory to Ganciclovir or Foscarnet in Hematopoietic Stem Cell Transplant (SCT) or Solid Organ Transplant (SOT) Recipients: A Randomized, Dose-Ranging, Double-Blind, Phase 2 Study. Open Forum Infect Dis. 2016;3(suppl_1):78 10.1093/ofid/ofw194.13
    1. Winston DJ, Saliba F, Blumberg E, et al. : Efficacy and Safety of Maribavir Dosed at 100 mg Orally Twice Daily for the Prevention of Cytomegalovirus Disease in Liver Transplant Recipients: A Randomized, Double-Blind, Multicenter Controlled Trial (vol 12, pg 3021, 2012). Am J Transplant. 2013;13:529.
    1. Coen N, Duraffour S, Naesens L, et al. : Evaluation of novel acyclic nucleoside phosphonates against human and animal gammaherpesviruses revealed an altered metabolism of cyclic prodrugs upon Epstein-Barr virus reactivation in P3HR-1 cells. J Virol. 2013;87(22):12422–12432. 10.1128/JVI.02231-13
    1. Coen N, Duraffour S, Topalis D, et al. : Spectrum of activity and mechanisms of resistance of various nucleoside derivatives against gammaherpesviruses. Antimicrob Agents Chemother. 2014;58(12):7312–7323. 10.1128/AAC.03957-14
    1. Coen N, Duraffour S, Haraguchi K, et al. : Antiherpesvirus activities of two novel 4'-thiothymidine derivatives, KAY-2-41 and KAH-39-149, are dependent on viral and cellular thymidine kinases. Antimicrob Agents Chemother. 2014;58(8):4328–4340. 10.1128/AAC.02825-14
    1. Cohen JI: Epstein-barr virus vaccines. Clin Transl Immunology. 2015;4(1): e32. 10.1038/cti.2015.4
    1. Zhao BC, Zhang X, Krummenacher C, et al. : Immunization With Fc-Based Recombinant Epstein-Barr Virus gp350 Elicits Potent Neutralizing Humoral Immune Response in a BALB/c Mice Model. Front Immunol. 2018;9:932. 10.3389/fimmu.2018.00932
    2. F1000 Recommendation

    1. Mc Guire C, Prinz M, Beyaert R, et al. : Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med. 2013;19(10):604–613. 10.1016/j.molmed.2013.08.001
    1. Kloetzel PM: The proteasome and MHC class I antigen processing. Biochim Biophys Acta. 2004;1695(1–3):225–233. 10.1016/j.bbamcr.2004.10.004
    1. Cascio P, Oliva L, Cerruti F, et al. : Dampening Ab responses using proteasome inhibitors following in vivo B cell activation. Eur J Immunol. 2008;38(3):658–667. 10.1002/eji.200737743
    1. Zhang C, Tian DC, Yang CS, et al. : Safety and Efficacy of Bortezomib in Patients With Highly Relapsing Neuromyelitis Optica Spectrum Disorder. JAMA Neurol. 2017;74(8):1010–1012. 10.1001/jamaneurol.2017.1336
    1. Alexander T, Sarfert R, Klotsche J, et al. : The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74(7):1474–1478. 10.1136/annrheumdis-2014-206016
    1. Stockstill K, Doyle TM, Yan X, et al. : Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. J Exp Med. 2018;215(5):1301–1313. 10.1084/jem.20170584
    2. F1000 Recommendation

    1. Mulder A, Heidt S, Vergunst M, et al. : Proteasome inhibition profoundly affects activated human B cells. Transplantation. 2013;95(11):1331–1337. 10.1097/TP.0b013e3182911739
    1. Puri KD, Di Paolo JA, Gold MR: B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol. 2013;32(4):397–427. 10.3109/08830185.2013.818140
    1. Burger JA, Tedeschi A, Barr PM, et al. : Investigators R-. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–2437. 10.1056/NEJMoa1509388
    2. F1000 Recommendation

    1. Treon S, Tripsas C, Meid K, et al. : Ibrutinib in Previously Treated Patients with Waldenstrom's Macroglobulinemia Is Highly Active, Produces Durable Responses, and Is Impacted by Myd88 and Cxcr4 Mutation Status. Haematologica. 2015;100:311–311.
    1. Merck AG: Merck Announces Positive Phase IIB Results for Evobrutinib in Relapsing Multiple Sclerosis. Merck AG;2018.
    1. Montalban X, Arnold DL, Weber MS, et al. : Primary analysis of a randomised, placebo-controlled, phase 2 study of the Bruton’s tyrosine kinase inhibitor evobrutinib (M2951) in patients with relapsing multiple sclerosis. In 34th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) Berlin, Germany, SAGE;2018.
    1. Conley ME, Dobbs AK, Quintana AM, et al. : Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med. 2012;209(3):463–470. 10.1084/jem.20112533
    2. F1000 Recommendation

    1. Coutré SE, Barrientos JC, Brown JR, et al. : Management of adverse events associated with idelalisib treatment: expert panel opinion. Leukemia Lymphoma. 2015;56(10):2779–2786. 10.3109/10428194.2015.1022770
    1. Rickert RC, Jellusova J, Miletic AV: Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev. 2011;244(1):115–133. 10.1111/j.1600-065X.2011.01067.x
    1. Krumbholz M, Theil D, Derfuss T, et al. : BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. Journal of Experimental Medicine. 2005;201(2):195–200. 10.1084/jem.20041674
    1. Steri M, Orru V, Idda ML, et al. : Overexpression of the Cytokine BAFF and Autoimmunity Risk. N Engl J Med. 2017;376(17):1615–1626. 10.1056/NEJMoa1610528
    2. F1000 Recommendation

    1. Yan D, Saito K, Ohmi Y, et al. : Paeoniflorin, a novel heat shock protein-inducing compound. Cell Stress Chaperones. 2004;9(4):378–389.
    1. Zhang F, Shu JL, Li Y, et al. : CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents. Front Pharmacol. 2017;8:933. 10.3389/fphar.2017.00933
    1. Blewett MM, Xie JJ, Zaro BW, et al. : Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal. 2016;9(445):rs10. 10.1126/scisignal.aaf7694
    2. F1000 Recommendation

    1. Mills EA, Ogrodnik MA, Plave A, et al. : Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Front Neurol. 2018;9:5. 10.3389/fneur.2018.00005
    2. F1000 Recommendation

    1. Montes Diaz G, Fraussen J, Van Wijmeersch B, et al. : Dimethyl fumarate induces a persistent change in the composition of the innate and adaptive immune system in multiple sclerosis patients. Sci Rep. 2018;8(1): 8194. 10.1038/s41598-018-26519-w
    2. F1000 Recommendation

    1. Schwartz DM, Kanno Y, Villarino A, et al. : JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017;16(12):843–862. 10.1038/nrd.2017.201
    1. Park SJ, Im DS: Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery. Biomol Ther (Seoul). 2017;25(1):80–90. 10.4062/biomolther.2016.160
    1. Brinkmann V: FTY720 (fingolimod) in Multiple Sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol. 2009;158(5):1173–1182. 10.1111/j.1476-5381.2009.00451.x
    1. Dong YF, Guo RB, Ji J, et al. : S1PR3 is essential for phosphorylated fingolimod to protect astrocytes against oxygen-glucose deprivation-induced neuroinflammation via inhibiting TLR2/4-NFκB signalling. J Cell Mol Med. 2018;22(6):3159–3166. 10.1111/jcmm.13596
    2. F1000 Recommendation

    1. Miyazaki Y, Niino M, Takahashi E, et al. : Fingolimod induces BAFF and expands circulating transitional B cells without activating memory B cells and plasma cells in multiple sclerosis. Clin Immunol. 2018;187:95–101. 10.1016/j.clim.2017.10.009
    2. F1000 Recommendation

    1. Yoshii F, Moriya Y, Ohnuki T, et al. : Neurological safety of fingolimod: An updated review. Clin Exp Neuroimmunol. 2017;8(3):233–243. 10.1111/cen3.12397
    1. Brunmark C, Runström A, Ohlsson L, et al. : The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol. 2002;130(1–2):163–172. 10.1016/S0165-5728(02)00225-4
    1. Wegner C, Stadelmann C, Pförtner R, et al. : Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;227(1–2):133–143. 10.1016/j.jneuroim.2010.07.009
    1. Varrin-Doyer M, Pekarek KL, Spencer CM, et al. : Treatment of spontaneous EAE by laquinimod reduces Tfh, B cell aggregates, and disease progression. Neurol Neuroimmunol Neuroinflamm. 2016;3(5);e272. 10.1212/NXI.0000000000000272
    1. Comi G, Jeffrey D, Kappos L, et al. : Oral Laquinimod Reduced Relapse Rate and Delayed Progression of Disability in Allegro, a Placebo-Controlled Phase III Trial for Relapsing-Remitting Multiple Sclerosis. Neurology. 2011;77:200–201.
    1. Vollmer TL, Sorensen PS, Arnold DL, et al. : A placebo-controlled and active comparator phase III trial (BRAVO) for relapsing-remitting multiple sclerosis. Mult Scler J. 2011;17(10):S507–S508.
    1. Comi G, Vollmer TL, Boyko A, et al. : CONCERTO: a placebo-controlled trial of oral laquinimod in patients with relapsing-remitting multiple sclerosis. Mult Scler J. 2017;23:74–75.
    1. Kaye J, Piryatinsky V, Birnberg T, et al. : Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. 2016;113(41):E6145–E6152. 10.1073/pnas.1607843113
    1. Toubi E, Nussbaum S, Staun-Ram E, et al. : Laquinimod modulates B cells and their regulatory effects on T cells in multiple sclerosis. J Neuroimmunol. 2012;251(1–2):45–54. 10.1016/j.jneuroim.2012.07.003
    1. Liu LF: DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. 10.1146/annurev.bi.58.070189.002031
    1. Fisher GR, Patterson LH: DNA strand breakage by peroxidase-activated mitoxantrone. J Pharm Pharmacol. 1991;43(1):65–68. 10.1111/j.2042-7158.1991.tb05455.x
    1. De Isabella P, Palumbo M, Sissi C, et al. : Topoisomerase II DNA cleavage stimulation, DNA binding activity, cytotoxicity, and physico-chemical properties of 2-aza- and 2-aza-oxide-anthracenedione derivatives. Mol Pharmacol. 1995;48(1):30–38.
    1. Errington F, Willmore E, Tilby MJ, et al. : Murine transgenic cells lacking DNA topoisomerase IIbeta are resistant to acridines and mitoxantrone: analysis of cytotoxicity and cleavable complex formation. Mol Pharmacol. 1999;56(6):1309–1316. 10.1124/mol.56.6.1309
    1. Fox EJ: Mechanism of action of mitoxantrone. Neurology. 2004;63(12 Suppl 6):S15–18. 10.1212/WNL.63.12_suppl_6.S15
    1. Ridge SC, Sloboda AE, McReynolds RA, et al. : Suppression of experimental allergic encephalomyelitis by mitoxantrone. Clin Immunol Immunopathol. 1985;35(1):35–42. 10.1016/0090-1229(85)90075-3
    1. Edan G, Miller D, Clanet M, et al. : Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multicentre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry. 1997;62(2):112–118. 10.1136/jnnp.62.2.112
    1. Millefiorini E, Gasperini C, Pozzilli C, et al. : Randomized placebo-controlled trial of mitoxantrone in relapsing-remitting multiple sclerosis: 24-month clinical and MRI outcome. J Neurol. 1997;244(3):153–159. 10.1007/s004150050066
    1. Hartung HP, Gonsette R, König N, et al. : Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–2025. 10.1016/S0140-6736(02)12023-X
    1. Hande KR: Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta. 1998;1400(1–3):173–184. 10.1016/S0167-4781(98)00134-1
    1. Teitelbaum D, Arnon R, Sela M: Copolymer 1: from basic research to clinical application. Cell Mol Life Sci. 1997;53(1):24–28.
    1. La Mantia L, Munari LM, Lovati R: Glatiramer acetate for multiple sclerosis. Cochrane Database Syst Rev. 2010; (5):CD004678. 10.1002/14651858.CD004678.pub2
    1. Rovituso DM, Duffy CE, Schroeter M, et al. : The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients. Sci Rep. 2015;5; 14265. 10.1038/srep14265
    1. Pharmaceuticals I: New Data from IONIS-HTT Rx Phase 1/2 Study Demonstrates Correlation Between Reduction of Disease-causing Protein and Improvement in Clinical Measures of Huntington's Disease. In First drug to demonstrate lowering of mutant huntingtin, the disease-causing protein, in people with Huntington's disease. Carlsbad, CA.2018.
    1. Sevastou I, Pryce G, Baker D, et al. : Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS One. 2016;11(6): e0157754. 10.1371/journal.pone.0157754

Source: PubMed

3
Suscribir