The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations

Gabriel Pardo, David E Jones, Gabriel Pardo, David E Jones

Abstract

The treatment landscape for relapsing forms of multiple sclerosis (RMS) has expanded considerably over the last 10 years with the approval of multiple new disease-modifying therapies (DMTs), and others in late-stage clinical development. All DMTs for RMS are believed to reduce central nervous system immune-mediated inflammatory processes, which translate into demonstrable improvement in clinical and radiologic outcomes. However, some DMTs are associated with long-lasting effects on the immune system and/or serious adverse events, both of which may complicate the use of subsequent therapies. When customizing a treatment program, a benefit-risk assessment must consider multiple factors, including the efficacy of the DMT to reduce disease activity, the short- and long-term safety and immunologic profiles of each DMT, the criteria used to define switching treatment, and the risk tolerance of each patient. A comprehensive benefit-risk assessment can only be achieved by evaluating the immunologic, safety, and efficacy data for DMTs in the controlled clinical trial environment and the postmarketing clinical practice setting. This review is intended to help neurologists make informed decisions when treating RMS by summarizing the known data for each DMT and raising awareness of the multiple considerations involved in treating people with RMS throughout the entire course of their disease.

Keywords: Multiple sclerosis; Re-treatment; Selection for treatment; Therapeutic drug monitoring; Treatment effectiveness.

Conflict of interest statement

Ethical standards

The manuscript does not contain clinical studies or patient data.

Conflicts of interest

G. Pardo is an advisor and on the speaker bureau for Biogen, EMD Serono, Genentech, Novartis, Sanofi Genzyme, and Teva. D. E. Jones has consulted for Biogen, Novartis, and Sanofi Genzyme, and received research or salary support from Biogen, the Consortium of Multiple Sclerosis Centers, and the National Multiple Sclerosis Society over the past 2 years.

References

    1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/S0140-6736(08)61620-7.
    1. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N Engl J Med. 2000;343:938–952. doi: 10.1056/NEJM200009283431307.
    1. Barten LJ, Allington DR, Procacci KA, Rivey MP. New approaches in the management of multiple sclerosis. Drug Des Devel Ther. 2010;4:343–366.
    1. Muñoz-Culla M, Irizar H, Otaegui D. The genetics of multiple sclerosis: review of current and emerging candidates. Appl Clin Genet. 2013;6:63–73.
    1. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2 et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476:214–219. doi: 10.1038/nature10251.
    1. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47:707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>;2-Q.
    1. Dos Passos GR, Sato DK, Becker J, Fujihara K. Th17 cells pathways in multiple sclerosis and neuromyelitis optica spectrum disorders: pathophysiological and therapeutic implications. Mediators Inflamm. 2016;2016:5314541. doi: 10.1155/2016/5314541.
    1. Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta. 2011;1812:246–251. doi: 10.1016/j.bbadis.2010.05.012.
    1. Koch MW, Metz LM, Kovalchuk O. Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol. 2013;9:35–43. doi: 10.1038/nrneurol.2012.226.
    1. Disanto G, Berlanga AJ, Handel AE, Para AE, Burrell AM, Fries A, et al. Heterogeneity in multiple sclerosis: scratching the surface of a complex disease. Autoimmune Dis. 2010;2011:932351.
    1. Lublin FD, Reingold SC, National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis Defining the clinical course of multiple sclerosis: results of an international survey. Neurology. 1996;46:907–911. doi: 10.1212/WNL.46.4.907.
    1. European Medicines Agency (2015) Gilenya 0.5 mg hard capsules [summary of product characteristics]. . Accessed 15 April 2016
    1. Novartis (2016) Gilenya [prescribing information]. Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
    1. Mikol DD, Barkhof F, Chang P, Coyle PK, Jeffery DR, Schwid SR, REGARD study group et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7:903–914. doi: 10.1016/S1474-4422(08)70200-X.
    1. Limmroth V, Malessa R, Zettl UK, Koehler J, Japp G, Haller P, QUASIMS Study Group et al. Quality Assessment in Multiple Sclerosis Therapy (QUASIMS): a comparison of interferon beta therapies for relapsing-remitting multiple sclerosis. J Neurol. 2007;254:67–77. doi: 10.1007/s00415-006-0281-1.
    1. Yadav V, Bourdette D. New disease-modifying therapies and new challenges for MS. Curr Neurol Neurosci Rep. 2012;12:489–491. doi: 10.1007/s11910-012-0295-2.
    1. Goodin DS, Ebers GC, Cutter G, Cook SD, O’Donnell T, Reder AT, et al. Cause of death in MS: long-term follow-up of a randomised cohort, 21 years after the start of the pivotal IFNbeta-1b study. BMJ Open. 2012;30:2.
    1. Du Pasquier RA, Pinschewer DD, Merkler D. Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis. CNS Drugs. 2014;28:535–558. doi: 10.1007/s40263-014-0160-8.
    1. European Medicines Agency (2006) Tysabri 300 mg concentrate for solution for infusion [summary of product characteristics]. . Accessed 15 April 2016
    1. Biogen (2016) Tysabri [prescribing information]. Biogen, Cambridge, MA, USA
    1. Spelman T, Kalincik T, Jokubaitis V, Zhang A, Pellegrini F, Wiendl H, et al. Comparative efficacy of first-line natalizumab vs IFN-β or glatiramer acetate in relapsing MS. Neurol Clin Pract. 2016;6:102–115. doi: 10.1212/CPJ.0000000000000227.
    1. Institute for Clinical and Economic Review (2017) Disease-modifying therapies for relapsing-remitting and primary-progressive multiple sclerosis: effectiveness and value. . Accessed 4 July 2017
    1. European Medicines Agency (2016) Conditions or restrictions with regard to the safe and effective use of the medicinal product to be implemented by the member states. . Accessed 21 Aug 2016
    1. Ziemssen T, De Stefano N, Pia Sormani M, Van Wijmeersch B, Wiendl H, Kieseier BC. Optimizing therapy early in multiple sclerosis: an evidence-based view. Mult Scler Relat Disord. 2015;4:460–469. doi: 10.1016/j.msard.2015.07.007.
    1. Van Schependom J, Gielen J, Laton J, Nagels G. Assessing PML risk under immunotherapy: if all you have is a hammer, everything looks like a nail. Mult Scler. 2016;22:389–392. doi: 10.1177/1352458515596458.
    1. Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63. doi: 10.1016/j.msard.2017.01.006.
    1. Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G, et al. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord. 2016;9(suppl 1):S5–S48. doi: 10.1016/j.msard.2016.07.003.
    1. Rio J, Castillo J, Rovira A, Tintore M, Sastre-Garriga J, Horga A, et al. Measures in the first year of therapy predict the response to interferon beta in MS. Mult Scler. 2009;15:848–853. doi: 10.1177/1352458509104591.
    1. Sormani MP, Rio J, Tintore M, Signori A, Li D, Cornelisse P, et al. Scoring treatment response in patients with relapsing multiple sclerosis. Mult Scler. 2013;19:605–612. doi: 10.1177/1352458512460605.
    1. Freedman MS, Selchen D, Arnold DL, Prat A, Banwell B, Yeung M, Canadian Multiple Sclerosis Working Group et al. Treatment optimization in MS: Canadian MS Working Group updated recommendations. Can J Neurol Sci. 2013;40:307–323. doi: 10.1017/S0317167100014244.
    1. Stangel M, Penner IK, Kallmann BA, Lukas C, Kieseier BC. Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Ther Adv Neurol Disord. 2015;8:3–13. doi: 10.1177/1756285614560733.
    1. Freedman MS, Cohen B, Dhib-Jalbut S, Jeffery D, Reder AT, Sandberg-Wollheim M, Weinstock-Guttman B. Recognizing and treating suboptimally controlled multiple sclerosis: steps toward regaining command. Curr Med Res Opin. 2009;25:2459–2470. doi: 10.1185/03007990903158364.
    1. Gajofatto A, Benedetti MD. Treatment strategies for multiple sclerosis: when to start, when to change, when to stop? World J Clin Cases. 2015;3:545–555. doi: 10.12998/wjcc.v3.i7.545.
    1. Ingwersen J, Aktas O, Hartung HP. Advances in and algorithms for the treatment of relapsing-remitting multiple sclerosis. Neurotherapeutics. 2016;13:47–57. doi: 10.1007/s13311-015-0412-4.
    1. Edan G, Le Page E. Induction therapy for patients with multiple sclerosis: why? When? How? CNS Drugs. 2013;27:403–409. doi: 10.1007/s40263-013-0065-y.
    1. Giovannoni G, Turner B, Gnanapavan S, Offiah C, Schmierer K, Marta M. Is it time to target no evident disease activity (NEDA) in multiple sclerosis? Mult Scler Relat Disord. 2015;4:329–333. doi: 10.1016/j.msard.2015.04.006.
    1. Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, et al. Alemtuzumab more effective than interferon ß-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology. 2012;78:1069–1078. doi: 10.1212/WNL.0b013e31824e8ee7.
    1. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, Ebers GC. The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain. 2010;133(Pt 7):1914–1929. doi: 10.1093/brain/awq118.
    1. Klineova S, Nicholas J, Walker A. Response to disease modifying therapies in African Americans with multiple sclerosis. Ethn Dis. 2012;22:221–225.
    1. Rinaldi L, Perini P, Calabrese M, Gallo P. Cyclophosphamide as second-line therapy in multiple sclerosis: benefits and risks. Neurol Sci. 2009;30(suppl 2):S171–S173. doi: 10.1007/s10072-009-0145-4.
    1. Vollmer T, Panitch H, Bar-Or A, Dunn J, Freedman MS, Gazda SK, et al. Glatiramer acetate after induction therapy with mitoxantrone in relapsing multiple sclerosis. Mult Scler. 2008;14:663–670. doi: 10.1177/1352458507085759.
    1. Arnold DL, Campagnolo D, Panitch H, Bar-Or A, Dunn J, Freedman MS, et al. Glatiramer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J Neurol. 2008;255:1473–1478. doi: 10.1007/s00415-008-0911-x.
    1. Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388:576–585. doi: 10.1016/S0140-6736(16)30169-6.
    1. Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, ASTIMS Haemato-Neurological Collaborative Group on behalf of the Autoimmune Disease Working Party (ADWP) of the European Group for Blood and Marrow Transplantation (EBMT) et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84:981–988. doi: 10.1212/WNL.0000000000001329.
    1. Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Griffith LM, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72:159–169. doi: 10.1001/jamaneurol.2014.3780.
    1. Berger B, Baumgartner A, Rauer S, Mader I, Luetzen N, Farenkopf U, Stich O. Severe disease reactivation in four patients with relapsing-remitting multiple sclerosis after fingolimod cessation. J Neuroimmunol. 2015;282:118–122. doi: 10.1016/j.jneuroim.2015.03.022.
    1. Siva A, Uygunoglu U, Tutunca M, Altintas A, Saip S. Rebound of disease activity after fingolimod discontinuation: report of six cases. Neurology. 2016;86(16 suppl):P2.081.
    1. Hatcher SE, Waubant E, Nourbakhsh B, Crabtree-Hartman E, Graves JS. Rebound syndrome in patients with multiple sclerosis after cessation of fingolimod treatment. JAMA Neurol. 2016;73:790–794. doi: 10.1001/jamaneurol.2016.0826.
    1. Clerico M, Schiavetti I, De Mercanti SF, Piazza F, Gned D, Brescia Morra V, et al. Treatment of relapsing-remitting multiple sclerosis after 24 doses of natalizumab: evidence from an Italian spontaneous, prospective, and observational study (the TY-STOP Study) JAMA Neurol. 2014;71:954–960. doi: 10.1001/jamaneurol.2014.1200.
    1. Fox RJ, Cree BA, De Sèze J, Gold R, Hartung HP, Jeffery D, RESTORE et al. MS disease activity in RESTORE: a randomized 24-week natalizumab treatment interruption study. Neurology. 2014;82:1491–1498. doi: 10.1212/WNL.0000000000000355.
    1. Giovannoni G, Naismith RT. Natalizumab to fingolimod washout in patients at risk of PML: when good intentions yield bad outcomes. Neurology. 2014;82:1196–1197. doi: 10.1212/WNL.0000000000000296.
    1. Kaufman M, Cree BA, De Sèze J, Fox RJ, Gold R, Hartung HP, et al. Radiologic MS disease activity during natalizumab treatment interruption: findings from RESTORE. J Neurol. 2015;262:326–336. doi: 10.1007/s00415-014-7558-6.
    1. Kerbrat A, Le Page E, Leray E, Anani T, Coustans M, Desormeaux C, et al. Natalizumab and drug holiday in clinical practice: an observational study in very active relapsing remitting multiple sclerosis patients. J Neurol Sci. 2011;308:98–102. doi: 10.1016/j.jns.2011.05.043.
    1. Giovannoni G, Radue EW, Havrdova E, Riester K, Greenberg S, Mehta L, Elkins J. Effect of daclizumab high-yield process in patients with highly active relapsing-remitting multiple sclerosis. J Neurol. 2014;261:316–323. doi: 10.1007/s00415-013-7196-4.
    1. Giovannoni G, Gold R, Selmaj K, Havrdova E, Montalban X, Radue EW, SELECTION Study Investigators et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECTION): a multicentre, randomised, double-blind extension trial. Lancet Neurol. 2014;13:472–481. doi: 10.1016/S1474-4422(14)70039-0.
    1. Lebrun C, Debouverie M, Vermersch P, Clavelou P, Rumbach L, de Seze J, et al. Cancer risk and impact of disease-modifying treatments in patients with multiple sclerosis. Mult Scler. 2008;14:399–405. doi: 10.1177/1352458507083625.
    1. Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S, et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52:798–808. doi: 10.1177/0091270011407068.
    1. Damal K, Stoker E, Foley JF. Optimizing therapeutics in the management of patients with multiple sclerosis: a review of drug efficacy, dosing, and mechanisms of action. Biologics. 2013;7:247–258.
    1. Toker A, Slaney CY, Backstrom BT, Harper JL. Glatiramer acetate treatment directly targets CD11b+Ly6G− monocytes and enhances the suppression of autoreactive T cells in experimental autoimmune encephalomyelitis. Scand J Immunol. 2011;74:235–243. doi: 10.1111/j.1365-3083.2011.02575.x.
    1. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–692. doi: 10.1093/brain/awq386.
    1. Scannevin RH, Chollate S, Jung MY, Shackett M, Patel H, Bista P, et al. Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. J Pharmacol Exp Ther. 2012;341:274–284. doi: 10.1124/jpet.111.190132.
    1. Bomprezzi R. Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord. 2015;8:20–30. doi: 10.1177/1756285614564152.
    1. Fox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, et al. Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract. 2016;6:220–229. doi: 10.1212/CPJ.0000000000000238.
    1. Buckle G, Bandari D, Greenstein J, Gudesblatt M, Khatri B, Kita M, et al. Effect of delayed-release dimethyl fumarate on lymphocyte subsets in patients with relapsing multiple sclerosis: a retrospective, multicentre, observational study (REALIZE) Mult Scler. 2016;22(3 suppl):EP1495.
    1. Spencer CM, Crabtree-Hartman EC, Lehmann-Horn K, Cree BA, Zamvil SS. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol Neuroimmunol Neuroinflamm. 2015;2:e76. doi: 10.1212/NXI.0000000000000076.
    1. Longbrake EE, Naismith RT, Parks BJ, Wu GF, Cross AH. Dimethyl fumarate-associated lymphopenia: risk factors and clinical significance [published online 31 July 2015] Mult Scler J Exp Transl Clin. 2015
    1. Biogen (2017) Tecfidera [prescribing information]. Biogen, Cambridge, MA, USA
    1. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med. 2015;372:1476–1478. doi: 10.1056/NEJMc1415408.
    1. European Medicines Agency (2015) Updated recommendations to minimise the risk of the rare brain infection PML with Tecfidera. . Accessed 7 April 2016
    1. Zeyda M, Poglitsch M, Geyeregger R, Smolen JS, Zlabinger GJ, Hörl WH, et al. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum. 2005;52:2730–2739. doi: 10.1002/art.21255.
    1. Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104. doi: 10.1016/j.msard.2015.11.006.
    1. Genzyme (2016) Aubagio [prescribing information]. Genzyme Corporation, Cambridge, MA, USA
    1. European Medicines Agency (2013) Aubagio 14 mg film-coated tablets [summary of product characteristics]. . Accessed 18 July 2016
    1. FDA Center for Drug Evaluation and Research (2016) Teriflunomide (Aubagio). Safety labelling changes. . Accessed 22 Aug 2016
    1. Gerschenfeld G, Servy A, Valeyrie-Allanore L, de Prost N, Cecchini J. Fatal toxic epidermal necrolysis in a patient on teriflunomide treatment for relapsing multiple sclerosis. Mult Scler. 2015;21:1476–1477. doi: 10.1177/1352458515596601.
    1. Gajofatto A, Turatti M, Monaco S, Benedetti MD. Clinical efficacy, safety, and tolerability of fingolimod for the treatment of relapsing-remitting multiple sclerosis. Drug Healthc Patient Saf. 2015;7:157–167. doi: 10.2147/DHPS.S69640.
    1. Johnson TA, Evans BL, Durafourt BA, Blain M, Lapierre Y, Bar-Or A, Antel JP. Reduction of the peripheral blood CD56bright NK lymphocyte subset in FTY720-treated multiple sclerosis patients. J Immunol. 2011;187:570–579. doi: 10.4049/jimmunol.1003823.
    1. Johnson TA, Shames I, Keezer M, Lapierre Y, Haegert DG, Bar-Or A, Antel J. Reconstitution of circulating lymphocyte counts in FTY720-treated MS patients. Clin Immunol. 2010;137:15–20. doi: 10.1016/j.clim.2010.06.005.
    1. Alroughani R, Almulla A, Lamdhade S, Thussu A. Multiple sclerosis reactivation postfingolimod cessation: is it IRIS? BMJ Case Rep. 2014
    1. FDA Center for Drug Evaluation and Research (2016) Gilenya (fingolimod) capsules 0.5 mg. Safety labeling changes. . Accessed 20 April 2016
    1. European Medicines Agency (2016) Zinbryta 150 mg solution for injection in pre-filled syringe, Zinbryta 150 mg solution for injection in pre-filled pen [summary of product characteristics]. . Accessed 20 July 2017
    1. Biogen (2017) Zinbryta [prescribing information]. Biogen, Cambridge, MA, USA
    1. Therapeutic Goods Administration (2017) Prescription medicines: registration of new chemical entities in Australia, 2016. . Accessed 21 April 2017
    1. Bielekova B. Daclizumab therapy for multiple sclerosis. Neurotherapeutics. 2013;10:55–67. doi: 10.1007/s13311-012-0147-4.
    1. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–479. doi: 10.1146/annurev.immunol.26.021607.090357.
    1. Milo R. The efficacy and safety of daclizumab and its potential role in the treatment of multiple sclerosis. Ther Adv Neurol Disord. 2014;7:7–21. doi: 10.1177/1756285613504021.
    1. Wiendl H, Gross CC. Modulation of IL-2Rα with daclizumab for treatment of multiple sclerosis. Nat Rev Neurol. 2013;9:394–404. doi: 10.1038/nrneurol.2013.95.
    1. Martin JF, Perry JS, Jakhete NR, Wang X, Bielekova B. An IL-2 paradox: blocking CD25 on T cells induces IL-2–driven activation of CD56bright NK cells. J Immunol. 2010;185:1311–1320. doi: 10.4049/jimmunol.0902238.
    1. Perry JS, Han S, Xu Q, Herman ML, Kennedy LB, Csako G, Bielekova B. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med. 2012;4:145ra106. doi: 10.1126/scitranslmed.3004140.
    1. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103:5941–5946. doi: 10.1073/pnas.0601335103.
    1. Bielekova B, Howard T, Packer AN, Richert N, Blevins G, Ohayon J, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol. 2009;66:483–489. doi: 10.1001/archneurol.2009.50.
    1. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, SELECT study Investigators et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;381:2167–2175. doi: 10.1016/S0140-6736(12)62190-4.
    1. Amaravadi L, Mokliatchouk O, Mehta D, Riester K, Sheridan J, Elkins J. Early, sustained, and reversible pharmacodynamic effects of daclizumab HYP in MS support mechanism of action via modulation of the IL-2 pathway. Neurology. 2015;84(14 suppl):P1.149.
    1. Huss DJ, Mehta DS, Sharma A, You X, Riester KA, Sheridan JP, et al. In vivo maintenance of human regulatory T cells during CD25 blockade. J Immunol. 2015;194:84–92. doi: 10.4049/jimmunol.1402140.
    1. Fam S, Mokliatchouk O, Mehta D, Riester K, Sheridan S, McCroskery P, Elkins J. Reversible effects of daclizumab HYP on lymphocyte counts in RRMS patients: data from the SELECT trilogy studies. Neurology. 2016;86(16 suppl):P5.281.
    1. Diao L, Hang Y, Othman AA, Nestorov I, Tran JQ. Population pharmacokinetics of daclizumab high-yield process in healthy volunteers and subjects with multiple sclerosis: analysis of phase I-III clinical trials. Clin Pharmacokinet. 2016;55:943–955. doi: 10.1007/s40262-016-0366-7.
    1. Kappos L, Cohan S, Arnold DL, Mokliatchouk O, Greenberg SJ, McCroskery P, Lima G. Interim report on the safety and efficacy of long-term daclizumab HYP treatment for up to 5 years in EXTEND. Mult Scler. 2016;22(3 suppl):P653.
    1. Giovannoni G, Kappos L, Gold R, Khatri BO, Selmaj K, Umans K, et al. Safety and tolerability profile of daclizumab in patients with relapsing-remitting multiple sclerosis: an integrated analysis of clinical studies. Mult Scler Relat Disord. 2016;9:36–46. doi: 10.1016/j.msard.2016.05.010.
    1. Babij R, Perumal JS. Comparative efficacy of alemtuzumab and established treatment in the management of multiple sclerosis. Neuropsychiatr Dis Treat. 2015;11:1221–1229.
    1. Genzyme (2016) Lemtrada [prescribing information]. Genzyme Corporation, Cambridge, MA, USA
    1. Hill-Cawthorne GA, Button T, Tuohy O, Jones JL, May K, Somerfield J, et al. Long term lymphocyte reconstitution after alemtuzumab treatment of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2012;83:298–304. doi: 10.1136/jnnp-2011-300826.
    1. Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010;30:99–105. doi: 10.1007/s10875-009-9327-3.
    1. Durelli L, De Mercanti S, Rolla S, Cucci A, Bardina V, Cocco E, et al. Alemtuzumab long term immunological study: the immunosuppressive effect does not last more than 48 months. Neurology. 2016;86(S2):008.
    1. Cossburn MD, Harding K, Ingram G, El-Shanawany T, Heaps A, Pickersgill TP, et al. Clinical relevance of differential lymphocyte recovery after alemtuzumab therapy for multiple sclerosis. Neurology. 2013;80:55–61. doi: 10.1212/WNL.0b013e31827b5927.
    1. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, CARE-MS II Investigators et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–1839. doi: 10.1016/S0140-6736(12)61768-1.
    1. Khatri BO, Man S, Giovannoni G, Koo AP, Lee JC, Tucky B, et al. Effect of plasma exchange in accelerating natalizumab clearance and restoring leukocyte function. Neurology. 2009;72:402–409. doi: 10.1212/01.wnl.0000341766.59028.9d.
    1. Plavina T, Muralidharan KK, Kuesters G, Mikol D, Evans K, Subramanyam M, et al. Natalizumab’s effects on peripheral immune cells in patients with multiple sclerosis (MS) are reversible by 16–20 weeks after treatment discontinuation. Neurology. 2016;86(16 suppl):P5.408.
    1. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, Natarajan A, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366:1870–1880. doi: 10.1056/NEJMoa1107829.
    1. Koendgen H, Chang I, Sperling B, Bloomgren G, Richman S, Ho PR, Campbell N. New algorithm to estimate risk of natalizumab-associated progressive multifocal leukoencephalopathy (PML) in anti-JCV antibody positive patients: analyses of clinical trial data to provide further temporal precision and inform clinical practice. Mult Scler. 2016;22(3 suppl):P1249.
    1. Plavina T, Subramanyam M, Bloomgren G, Richman S, Pace A, Lee S, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76:802–812. doi: 10.1002/ana.24286.
    1. Kuesters G, Plavina T, Lee S, Campagnolo D, Richman S, Belachew S, Subramanyam M. Anti-JC virus (JCV) antibody index differentiates risk of progressive multifocal leukoencephalopathy (PML) in natalizumab-treated multiple sclerosis (MS) patients with no prior immunosuppressant (IS) use: an updated analysis. Neurology. 2015;84(14 suppl):P4.031.
    1. Gobbi C, Meier DS, Cotton F, Sintzel M, Leppert D, Guttmann CR, Zecca C. Interferon beta 1b following natalizumab discontinuation: one year, randomized, prospective, pilot trial. BMC Neurol. 2013;13:101. doi: 10.1186/1471-2377-13-101.
    1. Cohen M, Maillart E, Tourbah A, De Seze J, Vukusic S, Brassat D, Club Francophone de la Sclerose en Plaques Investigators et al. Switching from natalizumab to fingolimod in multiple sclerosis: a French prospective study. JAMA Neurol. 2014;71:436–441. doi: 10.1001/jamaneurol.2013.6240.
    1. Malucchi S, Capobianco M, Lo Re M, Malentacchi M, di Sapio A, Matta M, et al. High-risk PML patients switching from natalizumab to alemtuzumab: an observational study [published online 3 December 2016] Neurol Ther. 2016
    1. Alping P, Frisell T, Novakova L, Islam-Jakobsson P, Salzer J, Bjorck A, et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol. 2016;79:950–958. doi: 10.1002/ana.24651.
    1. Alvarez E, Vollmer B, Jace B, Corboy J, Vollmer T, Sillou SH, et al. Effectiveness of switching to rituximab over fingolimod or dimethyl fumarate after natalizumab in preventing disease activity in multiple sclerosis. Neurology. 2015;84(14 suppl):P3.288.
    1. Maillart E, Vidal JS, Brassat D, Stankoff B, Fromont A, de Seze J, et al. Natalizumab-PML survivors with subsequent MS treatment: clinico-radiologic outcome. Neurol Neuroimmunol Neuroinflamm. 2017;4:e346. doi: 10.1212/NXI.0000000000000346.
    1. Genentech (2017) Ocrevus [prescribing information]. Genentech, Inc., South San Francisco, CA, USA
    1. Sorensen PS, Blinkenberg M. The potential role for ocrelizumab in the treatment of multiple sclerosis: current evidence and future prospects. Ther Adv Neurol Disord. 2016;9:44–52. doi: 10.1177/1756285615601933.
    1. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, OPERA I and OPERA II Clinical Investigators et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376:221–234. doi: 10.1056/NEJMoa1601277.
    1. National Multiple Sclerosis Society (2017) Vaccinations. . Accessed 22 April 2017
    1. Cunningham AL, Lal H, Kovac M, Chlibek R, Hwang SJ, Diez-Domingo J, et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375:1019–1032. doi: 10.1056/NEJMoa1603800.
    1. Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144–156. doi: 10.1002/path.2104.
    1. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, et al. T helper type 1 and 17 cells determine efficacy of interferon-ß in multiple sclerosis and experimental encephalomyelitis. Nat Med. 2010;16:406–412. doi: 10.1038/nm.2110.
    1. Grossman I, Avidan N, Singer C, Goldstaub D, Hayardeny L, Eyal E, et al. Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug–response markers. Pharmacogenet Genomics. 2007;17:657–666. doi: 10.1097/FPC.0b013e3281299169.
    1. Steinberg SC, Faris RJ, Chang CF, Chan A, Tankersley MA. Impact of adherence to interferons in the treatment of multiple sclerosis: a non-experimental, retrospective, cohort study. Clin Drug Investig. 2010;30:89–100. doi: 10.2165/11533330-000000000-00000.
    1. Devonshire V, Lapierre Y, Macdonell R, Ramo-Tello C, Patti F, Fontoura P, GAP Study Group et al. The Global Adherence Project (GAP): a multicenter observational study on adherence to disease-modifying therapies in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2011;18:69–77. doi: 10.1111/j.1468-1331.2010.03110.x.
    1. Cerghet M, Dobie E, Lafata J, Schultz L, Elias S, Pladevall M, Reuther J. Adherence to disease-modifying agents and association with quality of life among patients with relapsing-remitting multiple sclerosis. Int J MS Care. 2010;12:51–58. doi: 10.7224/1537-2073-12.2.51.
    1. Uitdehaag B, Constantinescu C, Cornelisse P, Jeffery D, Kappos L, Li D, et al. Impact of exposure to interferon beta-1a on outcomes in patients with relapsing-remitting multiple sclerosis: exploratory analyses from the PRISMS long-term follow-up study. Ther Adv Neurol Disord. 2011;4:3–14. doi: 10.1177/1756285610391693.
    1. Marrie RA, Hanwell H. General health issues in multiple sclerosis: comorbidities, secondary conditions, and health behaviors. Continuum (Minneap Minn) 2013;19:1046–1057.
    1. Marrie RA, Miller A, Sormani MP, Thompson A, Waubant E, Trojano M, Attendees of the International Workshop on Comorbidity in Multiple Sclerosis et al. The challenge of comorbidity in clinical trials for multiple sclerosis. Neurology. 2016;86:1437–1445. doi: 10.1212/WNL.0000000000002471.
    1. Otero-Romero S, Amato MP, Chandraratna D, Clanet M, Comi G, Derfuss T, et al. ECTRIMS-EAN clinical practice guideline on pharmacological management of multiple sclerosis. Mult Scler. 2016;22(3 suppl):255.
    1. Rae-Grant A, Rabinstein A, Cree B, Dubinsky R, Day G, Haboubi M et al (2015) Disease-modifying therapies for multiple sclerosis: a guideline project protocol. . Accessed 19 Nov 2016
    1. Bayer (2016) Betaseron [prescribing information]. Bayer HealthCare Pharmaceuticals Inc., Whippany, NJ, USA
    1. Biogen (2016) Avonex [prescribing information]. Biogen, Cambridge, MA, USA
    1. Alwan S, Chambers CD, Armenti VT, Sadovnick AD. The need for a disease-specific prospective pregnancy registry for multiple sclerosis (MS) Mult Scler Relat Disord. 2015;4:6–17. doi: 10.1016/j.msard.2014.10.001.
    1. Biogen (2015) Plegridy [prescribing information]. Biogen, Cambridge, MA, USA
    1. Teva (2016) Copaxone [prescribing information]. Teva Neuroscience, Inc., Overland Park, KS, USA
    1. European Medicines Agency (2014) Tecfidera 120 mg gastro-resistant hard capsules, Tecfidera 240 mg gastro-resistant hard capsules [summary of product characteristics]. . Accessed 15 April 2016
    1. European Medicines Agency (2017) EMA restricts use of multiple sclerosis medicine Zinbryta. . Accessed 20 July 2017
    1. European Medicines Agency (2013) Lemtrada 12 mg concentrate for solution for infusion [summary of product characteristics]. . Accessed 15 April 2016
    1. EMD Serono (2008) Novantrone [prescribing information]. EMD Serono, Inc., Rockland, MA, USA
    1. von Hehn C, Howard J, Liu S, Meka V, Pultz J, Sheikh S. An open-label study to assess the immune response to vaccination in patients with relapsing forms of multiple sclerosis treated with delayed-release dimethyl fumarate compared to non-pegylated interferon. Mult Scler. 2016;22(3 suppl):P633.
    1. Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs. 2014;74:659–674. doi: 10.1007/s40265-014-0212-x.
    1. Bar-Or A, Freedman MS, Kremenchutzky M, Menguy-Vacheron F, Bauer D, Jodl S, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81:552–558. doi: 10.1212/WNL.0b013e31829e6fbf.
    1. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–349. doi: 10.1126/science.1070238.
    1. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–360. doi: 10.1038/nature02284.
    1. Kappos L, Mehling M, Arroyo R, Izquierdo G, Selmaj K, Curovic-Perisic V, et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology. 2015;84:872–879. doi: 10.1212/WNL.0000000000001302.
    1. Francis G, Kappos L, O’Connor P, Collins W, Tang D, Mercier F, Cohen JA. Temporal profile of lymphocyte counts and relationship with infections with fingolimod therapy. Mult Scler. 2014;20:471–480. doi: 10.1177/1352458513500551.
    1. Mehta L, Umans K, Ozen G, Robinson RR, Elkins J. Immune response to seasonal influenza vaccine in patients with relapsing-remitting multiple sclerosis receiving long-term daclizumab beta: a prospective, open-label, single-arm study. Int J MS Care. 2017;19:141–147. doi: 10.7224/1537-2073.2016-026.
    1. Kaufman M, Pardo G, Rossman H, Sweetser MT, Forrestal F, Duda P. Natalizumab treatment shows no clinically meaningful effects on immunization responses in patients with relapsing-remitting multiple sclerosis. J Neurol Sci. 2014;341:22–27. doi: 10.1016/j.jns.2014.03.035.
    1. Sorensen PS. New management algorithms in multiple sclerosis. Curr Opin Neurol. 2014;27:246–259. doi: 10.1097/WCO.0000000000000096.
    1. Bellosillo B, Colomer D, Pons G, Gil J. Mitoxantrone, a topoisomerase II inhibitor, induces apoptosis of B-chronic lymphocytic leukaemia cells. Br J Haematol. 1998;100:142–146. doi: 10.1046/j.1365-2141.1998.00520.x.
    1. Gbadamosi J, Buhmann C, Tessmer W, Moench A, Haag F, Heesen C. Effects of mitoxantrone on multiple sclerosis patients’ lymphocyte subpopulations and production of immunoglobulin, TNF-alpha and IL-10. Eur Neurol. 2003;49:137–141. doi: 10.1159/000069082.
    1. The IFNB Multiple Sclerosis Study Group Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology. 1993;43:655–661. doi: 10.1212/WNL.43.4.655.
    1. Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. Ann Neurol. 1996;39:285–294. doi: 10.1002/ana.410390304.
    1. Ebers GC, PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group Randomised double-blind placebo-controlled study of interferon ß-1a in relapsing/remitting multiple sclerosis. Lancet. 1998;352:1498–1504. doi: 10.1016/S0140-6736(98)03334-0.
    1. European Medicines Agency (2015) Rebif 22 micrograms solution [summary of product characteristics]. . Accessed 20 July 2017
    1. European Medicines Agency (2014) Plegridy 63 micrograms and 94 micrograms solution [summary of product characteristics]. . Accessed 20 July 2017
    1. Johnson KP, Brooks BR, Cohen JA, Ford CC, Goldstein J, Lisak RP, Copolymer 1 Multiple Sclerosis Study Group et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. Neurology. 1995;45:1268–1276. doi: 10.1212/WNL.45.7.1268.
    1. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, CONFIRM Study Investigators et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367:1087–1097. doi: 10.1056/NEJMoa1206328.
    1. Viglietta V, Miller D, Bar-Or A, Phillips JT, Arnold DL, Selmaj K, et al. Efficacy of delayed-release dimethyl fumarate in relapsing-remitting multiple sclerosis: integrated analysis of the phase 3 trials. Ann Clin Transl Neurol. 2015;2:103–118. doi: 10.1002/acn3.148.
    1. O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, TEMSO Trial Group et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365:1293–1303. doi: 10.1056/NEJMoa1014656.
    1. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, TOWER Trial Group et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:247–256. doi: 10.1016/S1474-4422(13)70308-9.
    1. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, FREEDOMS Study Group et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387–401. doi: 10.1056/NEJMoa0909494.
    1. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:545–556. doi: 10.1016/S1474-4422(14)70049-3.
    1. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, TRANSFORMS Study Group et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–415. doi: 10.1056/NEJMoa0907839.
    1. Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015;373:1418–1428. doi: 10.1056/NEJMoa1501481.
    1. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, CAMMS223 Trial Investigators et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–1801. doi: 10.1056/NEJMoa0802670.
    1. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, CARE-MS I investigators et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:1819–1828. doi: 10.1016/S0140-6736(12)61769-3.
    1. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, AFFIRM Investigators et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910. doi: 10.1056/NEJMoa044397.
    1. Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, Mitoxantrone in Multiple Sclerosis Study Group (MIMS) Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360:2018–2025. doi: 10.1016/S0140-6736(02)12023-X.
    1. Martinelli Boneschi F, Vacchi L, Rovaris M, Capra R, Comi G. Mitoxantrone for multiple sclerosis. Cochrane Database Syst Rev. 2013;5:CD002127.
    1. Amato MP, Portaccio E, Goretti B, Zipoli V, Battaglini M, Bartolozzi ML, et al. Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. Arch Neurol. 2007;64:1157–1161. doi: 10.1001/archneur.64.8.1157.
    1. Popescu V, Agosta F, Hulst HE, Sluimer IC, Knol DL, Sormani MP, MAGNIMS Study Group et al. Brain atrophy and lesion load predict long term disability in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;84:1082–1091. doi: 10.1136/jnnp-2012-304094.
    1. Fisher E, Rudick RA, Cutter G, Baier M, Miller D, Weinstock-Guttman B, et al. Relationship between brain atrophy and disability: an 8-year follow-up study of multiple sclerosis patients. Mult Scler. 2000;6:373–377. doi: 10.1191/135245800701566331.
    1. Jacobsen C, Hagemeier J, Myhr KM, Nyland H, Lode K, Bergsland N, et al. Brain atrophy and disability progression in multiple sclerosis patients: a 10-year follow-up study. J Neurol Neurosurg Psychiatry. 2014;85:1109–1115. doi: 10.1136/jnnp-2013-306906.
    1. Lavorgna L, Bonavita S, Ippolito D, Lanzillo R, Salemi G, Patti F, et al. Clinical and magnetic resonance imaging predictors of disease progression in multiple sclerosis: a nine-year follow-up study. Mult Scler. 2014;20:220–226. doi: 10.1177/1352458513494958.
    1. Mowry EM, Beheshtian A, Waubant E, Goodin DS, Cree BA, Qualley P, et al. Quality of life in multiple sclerosis is associated with lesion burden and brain volume measures. Neurology. 2009;72:1760–1765. doi: 10.1212/WNL.0b013e3181a609f8.
    1. Miller JR. The importance of early diagnosis of multiple sclerosis. J Manag Care Pharm. 2004;10(3 suppl B):S4–S11.
    1. Rotstein DL, Healy BC, Malik MT, Chitnis T, Weiner HL. Evaluation of no evidence of disease activity in a 7-year longitudinal multiple sclerosis cohort. JAMA Neurol. 2015;72:152–158. doi: 10.1001/jamaneurol.2014.3537.
    1. Langer-Gould A, Popat RA, Huang SM, Cobb K, Fontoura P, Gould MK, Nelson LM. Clinical and demographic predictors of long-term disability in patients with relapsing-remitting multiple sclerosis: a systematic review. Arch Neurol. 2006;63:1686–1691. doi: 10.1001/archneur.63.12.1686.
    1. Runmarker B, Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993;116(Pt 1):117–134. doi: 10.1093/brain/116.1.117.
    1. Salzer J, Svenningsson A, Sundstrom P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler. 2010;16:287–292. doi: 10.1177/1352458509359725.
    1. Sola P, Mandrioli J, Simone AM, Ferraro D, Bedin R, Annecca R, et al. Primary progressive versus relapsing-onset multiple sclerosis: presence and prognostic value of cerebrospinal fluid oligoclonal IgM. Mult Scler. 2011;17:303–311. doi: 10.1177/1352458510386996.
    1. Tintore M, Rovira A, Rio J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138:1863–1874. doi: 10.1093/brain/awv105.
    1. Theodore Phillips J, Erwin AA, Agrella S, Kremenchutzky M, Kramer JF, Darkes MJ, et al. Consensus management of gastrointestinal events associated with delayed-release dimethyl fumarate: a Delphi study. Neurol Ther. 2015;4:137–146. doi: 10.1007/s40120-015-0037-x.
    1. European Medicines Agency (2016) Scientific conclusions and grounds for the variation to the terms of the marketing authorisation. . Accessed 14 July 2016
    1. Cossburn M, Pace AA, Jones J, Ali R, Ingram G, Baker K, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77:573–579. doi: 10.1212/WNL.0b013e318228bec5.
    1. Daniels GH, Vladic A, Brinar V, Zavalishin I, Valente W, Oyuela P, et al. Alemtuzumab-related thyroid dysfunction in a phase 2 trial of patients with relapsing-remitting multiple sclerosis. J Clin Endocrinol Metab. 2014;99:80–89. doi: 10.1210/jc.2013-2201.
    1. Penkert H, Delbridge C, Wantia N, Wiestler B, Korn T. Fulminant central nervous system nocardiosis in a patient treated with alemtuzumab for relapsing-remitting multiple sclerosis. JAMA Neurol. 2016;73:757–759. doi: 10.1001/jamaneurol.2016.0146.
    1. Senior P, Arnold D, Cohen J, Fox E, Hartung H-P, Havrdova E, et al. Incidence and timing of thyroid adverse events in patients with RRMS treated with alemtuzumab through 5 years of the CARE-MS studies. Neurology. 2016;86(16 suppl):P2.086.
    1. Hillen ME, Cook SD, Samanta A, Grant E, Quinless JR, Rajasingham JK. Fatal acute liver failure with hepatitis B virus infection during natalizumab treatment in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2015;2:e72. doi: 10.1212/NXI.0000000000000072.
    1. Shenoy ES, Mylonakis E, Hurtado RM, Venna N. Natalizumab and HSV meningitis. J Neurovirol. 2011;17:288–290. doi: 10.1007/s13365-011-0027-4.

Source: PubMed

3
Suscribir