Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits

Mahbubeh Setorki, Sedighe Asgary, Akram Eidi, Ali Haeri Rohani, Majid Khazaei, Mahbubeh Setorki, Sedighe Asgary, Akram Eidi, Ali Haeri Rohani, Majid Khazaei

Abstract

Background: Exaggerated postprandial spikes in blood glucose and lipids induce proportional increases in oxidative stress, which acutely trigger impairment endothelial, inflammation and increased risk of future cardiovascular events. In this research, we have investigated acute effects of vinegar intake on some of the biochemical atherosclerosis risk factors in high cholesterol fed rabbits to see if we can find a probable protective value for it.

Methods: The rabbits were randomly divided into four groups: normal diet, high cholesterol diet (%1 cholesterol), %1 cholesterol with 5 ml vinegar (low dose), %1 cholesterol with 10 ml vinegar (high dose). After fasting for 12-15 hours, blood samples were taken to determine baseline values. Three hours after feeding, blood samples were collected again to investigate acute effects of vinegar intake on the measured factors.

Results: Using high-dose vinegar with cholesterolemic diet caused significant reduce in LDL-cholesterol (LDL-C), oxidized-LDL (ox-LDL), malondialdehyde (MDA), total cholesterol (TC) and apolipoprotein B (ApoB) in comparison with hypercholesterolemic diet. Consumption low-dose vinegar with cholesterolemic diet induced a significant decrease in fibrinogen and glucose compared to hypercholesterolemic diet. Level of serum nitrite, nitrate, triacylglycerol (TAG), HDL-cholesterol (HDL-C), apolipoprotein A (ApoA), serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetate transaminase (SGOT) and C-reactive protein (CRP) were not significantly difference in low and high doses vinegar with cholesterolemic diet compared to hypercholesterolemic diet. A significant difference was observed for LDL-C, ApoB100 and TC between low and high doses vinegar.

Conclusion: This study suggest that vinegar, might have some acute effects on biochemical risk factors of atherosclerosis and a probable protective value can be considered for its postprandial use.

References

    1. Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol. 1997;79:350–354. doi: 10.1016/S0002-9149(96)00760-6.
    1. Creager MA, Cooke JP, Mendelsohn ME. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990;86:224–228. doi: 10.1172/JCI114688.
    1. Ceriello A, Taboga C, Tonutti L. Evidence for an Independent and Cumulative Effect of Postprandial ypertriglyceridemia and Hyperglycemia on Endothelial Dysfunction and Oxidative Stress Generation: Effects of Short- and Long-Term Simvastatin Treatment. Circulation. 2002;106:1211–1218. doi: 10.1161/01.CIR.0000027569.76671.A8.
    1. Nitenberg A, Cosson E, Pham I. Postprandial endothelial dysfunction: role of glucose, lipids and insulin. Diabetes Metab. 2006;32:S28–33.
    1. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–683. doi: 10.1146/annurev.immunol.14.1.649.
    1. Jagla A, Schrezenmeir J. Postprandial triglycerides and endothelial function. Exp Clin Endocrinol Diabetes. 2001;109:S533–547. doi: 10.1055/s-2001-15116.
    1. Pearson DA, Tan CH, German JB. Apple juice inhibits human low density lipoprotein oxidation. Life Sci. 1999;64:1913–1920. doi: 10.1016/S0024-3205(99)00137-X.
    1. Shanmuganayagam D, Warner T, Folts J. Effect of grape juice flavonoids on experimental atherosclerosis. FASEB J. 2000;14:A455.
    1. Stein JH, Keevil JG, Wiebe DA. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation. 1999;100:1050–1055.
    1. Shahidi F, McDonald J, Chandrasekara A, Zhong Y. Phytochemicals of foods, beverages and fruit vinegars:chemistry and health effects. Asia Pac J Clin Nutr. 2008;17(Suppl 1):380–382.
    1. Johnston CS, Gaas CA. Vinegar: Medicinal uses and antiglycemic effect. Med Gen Med. 2006;8:61.
    1. Fushimi T, Tayama K, Fukaya M. acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J Nutr. 2001;131:Acetic1973–1977.
    1. Kondo S, Tayama K, Tsukamoto Y. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2001;65:2690–2694. doi: 10.1271/bbb.65.2690.
    1. Kishi M, Fukaya M, Tsukamoto Y. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Biosci Biotechnol Biochem. 1999;63:905–910. doi: 10.1271/bbb.63.905.
    1. Fushimi T, Suruga K, Oshima Y. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr. 2006;95:916–924. doi: 10.1079/BJN20061740.
    1. Johnston CS, Buller AJ. Vinegar and peanut products as complementary foods to reduce postprandial glycemia. J Am Diet Assoc. 2005;105:1939–1942. doi: 10.1016/j.jada.2004.10.026.
    1. Ostman E, Granfeldt Y, Persson L. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur Clin Nutr. 2001;59:983–988. doi: 10.1038/sj.ejcn.1602197.
    1. Hromatka O, Ebner H. Vinegar by Submerged Oxidative Fermentation. Ind Eng Chem. 1959;10:1279–1280. doi: 10.1021/ie50598a033.
    1. Asgary S, Jafari Dinani N, Madani H. Effect of glycyrrhiza glabra extracts on aorta wall atherosclerotic lesion in hypercholesterolemic rabbits. Pak J Nutr. 2007;6:313–317. doi: 10.3923/pjn.2007.313.317.
    1. Decorde K, Teissedre PL, Auqer C. Phenolics from purple grape, apple, purple grape juice, and apple juice prevent early atherosclerosis induced by an atherogenic diet in hamsters. Mol Nutr Food Res. 2008;2:400–407. doi: 10.1002/mnfr.200700141.
    1. Daher CF, Abou-Khalil J, Baroody GM. Effect of acute and chronic grapefruit, orange and pineapple juice intake on blood lipid profile in normolipidemic rat. Med Sci Monit. 2005;11:465–472.
    1. Kostner K, Hornykewycz S, Yang P. Is oxidative steress causally linked to unstable angine apectoris? A study in 100 CAD patients and matched control. Cardiovasc Res. 1997;36:330–336. doi: 10.1016/S0008-6363(97)00185-5.
    1. Mccormick DB, Greene HL. In: Tietz Text Book of Clinical Chemistry. Carl A, Britis Edward R, Ashwood, editor. Vol. 2. Philadelphia: W. B. Saunders; 1994. Vitamins; pp. 1313–1314.
    1. Kumar S, Kumar D, Rakash O. Evaluation of antioxidant potential, phenolic and flavonoid contents of hibiscus tiliaceus flowers. EJAFche. 2008;7:2863–2871.
    1. Francis FJ. In anthocyanins as food colors. New york:Academic press; 1982. pp. 181–207.
    1. Lenghor N, Jakmunee J, Vilen M, Sara R, Christian GD, Grudpan K. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid. Talanta. 2002;6:1139–44. doi: 10.1016/S0039-9140(02)00444-7.
    1. Kay CD, Holub BJ. The postprandial effects of dietary antioxidants in humans. Curr Atheroscler Rep. 2003;5:452–458. doi: 10.1007/s11883-003-0035-9.
    1. Slyper AH. A fresh look at the atherogenic remnant hypothesis. Lancet. 1992;340:289–291. doi: 10.1016/0140-6736(92)92368-P.
    1. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990's. Nature. 1993;362:801–809. doi: 10.1038/362801a0.
    1. Ogawa N, Satsu H, Watanabe H. Acetic acid suppresses the increase in disamlharidase activity that omlurs during culture of caco-2 cells. J Nutr. 2000;130:507–513.
    1. Liljeberg H, Bjorck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr. 1998;52:368–371. doi: 10.1038/sj.ejcn.1600572.
    1. Fushimi T, Sato Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Br J Nutr. 2005;94:714–719. doi: 10.1079/BJN20051545.
    1. Saha AK, Ruderman NB. Malonyl-CoA and AMP-activated proteinkinase: an expanding partnership. Mol Cell Biochem. 2003;253:65–70. doi: 10.1023/A:1026053302036.
    1. Chan DC, Watts GF. Apolipoproteins as markers and managers of coronary risk. QJM. 2006;99:277–287. doi: 10.1093/qjmed/hcl027.
    1. Juhel C, Armand M, Pafumi Y, Rosier C. Green tea extract (AR25) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J Nutr Biochem. 2000;11:45–51. doi: 10.1016/S0955-2863(99)00070-4.
    1. Teissedre P, Landrault N. Wine phenolics: contribution to dietary intake and bioavailability. Food Res Int. 2000;33:461–467. doi: 10.1016/S0963-9969(00)00070-3.
    1. Wilcox LJ, Borradaile NM, de Dreu LE. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hes peretin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res. 2001;42:725–734.
    1. Kim HK, Jeong TS, Lee MK. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin Chim Acta. 2003;327:129–137. doi: 10.1016/S0009-8981(02)00344-3.
    1. Naissides M, Mamo JC, James AP. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004;177:401–408. doi: 10.1016/j.atherosclerosis.2004.07.025.
    1. Adibi P, Sadeghi M, Mahsa M. Prediction of coronary atherosclerotic disease with liver transaminase level. Liver Int. 2007;27:895–900. doi: 10.1111/j.1478-3231.2007.01545.x.
    1. Pergola C, Rossi A, Dugo P. Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide. 2006;15:30–39. doi: 10.1016/j.niox.2005.10.003.
    1. Sierksma A, Gaag MS van der, Grobbee DE. Acute and chronic effects of dinner with alcoholic beverages on nitric oxide metabolites in healthy men. Clin Exp Pharmacol Physiol. 2003;30:504–506. doi: 10.1046/j.1440-1681.2003.03863.x.
    1. Tousoulis D, Ntarladimas I, Antoniades C. Acute effects of different alcoholic beverages on vascular endothelium, inflammatory markers and thrombosis fibrinolysis system. Clin Nutr. 2008;27:594–600. doi: 10.1016/j.clnu.2008.01.002.
    1. Alexopoulos N, Vlachopoulos C, Aznaouridis K, Baou K, Vasiliadou C, Pietri P, Xaplanteris P, Stefanadi E, Stefanadis C. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur J Cardiovas Prev Rehabil. 2008;15:300–305. doi: 10.1097/HJR.0b013e3282f4832f.
    1. Grenett HE, Abou-Agag LA, Parks DA. Ethanol and polyphenols (CAT, QUER) increase expression of fibrinolytic protein mRNAs in vivo in rat aortic endothelium. Biol Res. 2004;37:342.
    1. Ursini F, Zamburlini A, Cazzolato G. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med. 1998;25:250–252. doi: 10.1016/S0891-5849(98)00044-6.
    1. Cohn JS. Oxidized fat in the diet, postprandial lipaemia and cardiovascular disease. Opin Lipidol. 2002;13:19–24. doi: 10.1097/00041433-200202000-00004.
    1. Zou Y, Lu Y, Wei D. Hypercholesterolemic effects of a flavonoid-rich exteract of hypericum perforatum L. in rats fed a cholesterol-rich diet. J Agric Food Chem. 2005;53:2462–2466. doi: 10.1021/jf048469r.
    1. Prasad K, Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J. 1993;25:958–973. doi: 10.1016/0002-8703(93)90102-F.
    1. Prasad K, Kalra J, Lee P. Oxygen free radicals as a mechanism of hypercholesterolemic atherosclerosis: effects of probucol. Int J Angiol. 1994;3:100–112. doi: 10.1007/BF02014924.
    1. Cao G, Sofic E, Prior R. Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med. 1997;22:749–760. doi: 10.1016/S0891-5849(96)00351-6.
    1. Van Acker SA, Berg DJ van den, Tromp MN. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med. 1996;20:331–342. doi: 10.1016/0891-5849(95)02047-0.
    1. Arora A, Nair MG, Strasburg GM. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys. 1998;356:133–141. doi: 10.1006/abbi.1998.0783.
    1. Arora A, Nair MG, Strasburg GM. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med. 1998;24:1355–1363. doi: 10.1016/S0891-5849(97)00458-9.
    1. Gorelik SG, Ligumsky M, Kohen R, Kanner J. A novel functions of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products. FASEB. 2008;22:41–46. doi: 10.1096/fj.07-9041com.
    1. Natella F, Belelli F, Gentili V. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem. 2002;50:7720–7725. doi: 10.1021/jf020346o.
    1. Cook NC, Samman S. Flavonoids-Chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996;7:66–76. doi: 10.1016/0955-2863(95)00168-9.
    1. Yan LJ, Droy-Lefaix MT, Packer L. Ginkgobiloba extract (EGb 761) protects human low density lipoproteins against oxidative modification mediated by copper. Biochem Biophys Res Comm. 1995;212:360–366. doi: 10.1006/bbrc.1995.1978.
    1. Covas MI, Konstantinidou V, Mysytaki E, Fitó M, Weinbrenner T, De La Torre R, Farré-Albadalejo M, Lamuela-Raventós R. Postprandial effects of wine consumption on lipids and oxidative stess biomarkers. Drugs Exp Clin Res. 2003;29:217–223.
    1. Cortés B, Núñez I, Cofán M. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function. JACC. 2006;48:1666–1671.
    1. Kondo K, Hirano R, Matsumoto A. Inhibition of LDL oxidation by cocoa. Lancet. 1996;348:1514. doi: 10.1016/S0140-6736(05)65927-2.

Source: PubMed

3
Suscribir