The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength

David Bellar, Nina R LeBlanc, Brian Campbell, David Bellar, Nina R LeBlanc, Brian Campbell

Abstract

Background: Ergogenic aides are widely used by fitness enthusiasts and athletes to increase performance. Alpha glycerylphosphorylcholine (A-GPC) has demonstrated some initial promise in changing explosive performance. The purpose of the present investigation was to determine if 6 days of supplementation with A-GPC would augment isometric force production compared to a placebo.

Methods: Thirteen college-aged males (Means ± SD; Age: 21.9 ± 2.2 years, Height: 180.3 ± 7.7 cm, Weight: 87.6 ± 15.6 kg; VO2 max: 40.08 ± 7.23 ml O2*Kg(-1)*min(-1), Body Fat: 17.5 ± 4.6%) gave written informed consent to participate in the study. The study was a double blind, placebo controlled, cross-over design. The participants reported to the lab for an initial visit where they were familiarized with the isometric mid thigh pull in a custom squat cage on a force platform and upper body isometric test against a high frequency load cell, and baseline measurements were taken for both. The participant then consumed either 600 mg per day of A-GPC or placebo and at the end of 6 days performed isometric mid thigh pulls and an upper body isometric test. A one-week washout period was used before the participants' baseline was re-measured and crossed over to the other treatment.

Results: The A-GPC treatment resulted in significantly greater isometric mid thigh pull peak force change from baseline (t = 1.76, p = 0.044) compared with placebo (A-GPC: 98.8. ± 236.9 N vs Placebo: -39.0 ± 170.9 N). For the upper body test the A-GPC treatment trended towards greater change from baseline force production (A-GPC: 50.9 ± 67.2 N Placebo: -14.9 ± 114.9 N) but failed to obtain statistical significance (t = 1.16, p = 0.127).

Conclusions: A-GPC is effective at increasing lower body force production after 6 days of supplementation. Sport performance coaches can consider adding A-GPC to the diet of speed and power athletes to enhance muscle performance.

Keywords: Alpha glycerylphosphorylcholine; Human performance; Sport supplements; Strength.

Figures

Fig 1
Fig 1
Flowchart of Experimental Procedures
Fig 2
Fig 2
Mean change in Isometric Mid Thigh Pull Peak force after 6 days of supplementation with A-GPC. Error bars represent +/− 1 SEM
Fig 3
Fig 3
Mean change in Upperbody Isometric Test force after 6 days of supplementation with A-GPC. Error bars represent +/− 1 SEM

References

    1. Paul DJ, Nassis GP. Testing strength and power in soccer players: the application of conventional and traditional methods of assessment. J Strength Cond Res. 2015;29(6):1748–1758. doi: 10.1519/JSC.0000000000000807.
    1. Judge LW, Bellar D, McAtee G, Judge M. Predictors of personal best performance in the hammer throw for U.S. Collegiate Throwers. Int J Perform Anal Sport. 2010;10(1):54–65.
    1. Judge LW, Bellar D, Turk M, Judge M, Gilreath E, Smith J. Relationship of squat one repetition maximum to weight throw performance among elite and collegiate athletes. Int J Perform Anal Sport. 2011;11(2):209–219.
    1. Judge LW, Moreau B, Burke JR. Neural adaptations with sport-specific training in highly skilled athletes. J Sports Sci. 2003;21(5):419–427. doi: 10.1080/0264041031000071173.
    1. Pessini M, Martin A, Maffiuletti NA. Central versus peripheral adaptations following eccentric resistance exercise. Int J Sports Med. 2002;23(8):567–574. doi: 10.1055/s-2002-35558.
    1. Traini E, Bramanti V, Amenta F. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) and old choline-containing phospholipid with a still interesting profile as cognition enhancing agent. Curr Alzheimer Res. 2013;10(10):1070–1079. doi: 10.2174/15672050113106660173.
    1. Hoffman JR, Ratamess NA, Gonzalez A, Beller NA, Hoffman MW, Olsen M, Purpura M, Jäger R. The effects of acute and prolonged CRAM supplementation on reaction time and subjective measures of focus and alertness in healthy college student. J Int Soc Sport Nutr. 2010;7:39. doi: 10.1186/1550-2783-7-39.
    1. Brownawell AM, Carmines EL, Montesano F. Safety assessment of AGPC as a food ingredient. Food Chem Toxicol. 2011;49(6):1303–15. doi: 10.1016/j.fct.2011.03.012.
    1. Parnetti L, Mignini F, Tomassoni D, Traini E, Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective or need for re-evalulation? J Neuro Sci. 2007;257:264–269. doi: 10.1016/j.jns.2007.01.043.
    1. Zeisel SH. A brief history of choline. Ann Nutr Metab. 2012;61(3):254–8. doi: 10.1159/000343120.
    1. Jäger R, Purpura M, Kingsley M. Phospholipids and sport performance. J Int Soc Sports Nutr. 2007;4:5. doi: 10.1186/1550-2783-4-5.
    1. Ryan EJ, Kim CH, Muller MD, Bellar DM, Barkley JE, Bliss MV, Jankowski-Wilkinson A, Russell M, Otterstetter R, Macander D, Glickman EL, Kamimori GH. Low-dose caffeine administred in chewing gum does not enhance cycling to exhaustion. J Strength Cond Res. 2012;26(4):1154–1161. doi: 10.1519/JSC.0b013e31822e008b.
    1. Beckham G, Mizuguchi S, Carter C, Sato K, Ramsey M, Lamont H, Horsby G, Haff G, Stone M. Relationship of isometric mid-thigh pull variables to weighlifting performance. J Sports Med Phys Fitness. 2010;35:573–581.
    1. Bellar D, Marcus L, Judge LW. Validation and Reliability of a novel test of upper body isometric strength. J Hum Kinet. 2015;47:185–195.
    1. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50–57.
    1. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–12. doi: 10.1249/MSS.0b013e31818cb278.
    1. Welsh AH, Knight EJ. “Magnitude-based inference”: a statistical review. Med Sci Sports Exerc. 2015;47:874–884. doi: 10.1249/MSS.0000000000000451.
    1. Conlay LA, Wurtman RJ, Blusztajn JK, Coviella ILG, Maher TJ, Evoniuk GE. Decreased plasma choline concentrations in marathon runners. N Engl J Med. 1986;315:982.
    1. Penry JT, Manore MM. Choline: an important micronutrient for maximal endurance-exercise performance? Int J Sport Nutr Exerc Metab. 2008;18:191–203.
    1. Jajim AR, Wright G, Schultz K, Antoine CS, Jones MT, Oliver JM. Effects of acute ingestion of a mult-ingredient pre-workout supplement on lower body power and anaerobic sprint performance. J Int Soc Sport Nutr. 2015;12(Suppl 1):49.
    1. Parker AG, Byars A, Purpura M, Jäger R. The effect of alpha-glycerylphosphorylcholine, caffeine or placebo on markers of mood, cognitive function, power, speed and agility. J Int Soc Sport Nutr. 2015;12(Suppl 1):41.
    1. Ziegenfuss T, Landis J, Hofheins J. Acute supplementation with alpha-glycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. J Int Soc Sport Nutr. 2008;5(Suppl 1):15. doi: 10.1186/1550-2783-5-S1-P15.
    1. Gatti G, Barzaghi N, Acuto G, Abbiati G, Fossati T, Perucca E. A comparative study of free plasma choline levels following intramuscular administration of L-alpha-glycerylphosphorylcholine and citicoline in normal volunteers. Int J Clin Pharmacol Ther Toxicol. 1992;30(9):331–335.
    1. Kawamura T, Okubo T, Sato K, Fujita S, Goto K, Hamaoka T, Iemitsu M. Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition. 2012;28:1122–1126. doi: 10.1016/j.nut.2012.02.011.
    1. Ceda GP, Ceresini G, Denti L, Marzani G, Piovani G, Banchini A, Tarditi E, Valenti G. alpha-Glycerylphosphorylcholine administration increases the GH responses to GHRP of young and elderly subjects. Horm Metab Res. 1992;24(3):119–121. doi: 10.1055/s-2007-1003272.

Source: PubMed

3
Suscribir