Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression

Giuseppe Musumeci, Flavia Concetta Aiello, Marta Anna Szychlinska, Michelino Di Rosa, Paola Castrogiovanni, Ali Mobasheri, Giuseppe Musumeci, Flavia Concetta Aiello, Marta Anna Szychlinska, Michelino Di Rosa, Paola Castrogiovanni, Ali Mobasheri

Abstract

Osteoarthritis (OA) is a growing public health problem across the globe, affecting more than half of the over 65 population. In the past, OA was considered a wear and tear disease, leading to the loss of articular cartilage and joint disability. Nowadays, thanks to advancements in molecular biology, OA is believed to be a very complex multifactorial disease. OA is a degenerative disease characterized by "low-grade inflammation" in cartilage and synovium, resulting in the loss of joint structure and progressive deterioration of cartilage. Although the disease can be dependent on genetic and epigenetic factors, sex, ethnicity, and age (cellular senescence, apoptosis and lubricin), it is also associated with obesity and overweight, dietary factors, sedentary lifestyle and sport injuries. The aim of this review is to highlight how certain behaviors, habits and lifestyles may be involved in the onset and progression of OA and to summarize the principal risk factors involved in the development of this complicated joint disorder.

Figures

Figure 1
Figure 1
This figure shows the alterations that occur in the joints during the onset of osteoarthritis (OA).
Figure 2
Figure 2
The scheme represents the major risk factors that lead to the increased susceptibility and predisposition to develop OA.
Figure 3
Figure 3
This figure shows 5 different lifestyles. (A) Pictograph A shows a person who leads a healthy life choosing a controlled diet, rich in nutrients and vitamins, and moderate physical activity. This subject reduces the risk to develop OA, both in cartilage alterations and inflammation; (B) Pictograph B shows a sportsman. In this case, the extremely forced physical activity, wrong movement, and direct joint impact or torsional load, lead to an increased joint risk. This risk is mostly located in the joint of the shoulders, arms, hips and knees; (C) Pictograph C shows a person who leads a sedentary lifestyle. Here, little physical training is responsible for muscle weakening and, consequently, to wrong posture. The major risk is visible in the joints of the spinal column and shoulders. Furthermore, the use of smart phones and computers increases the risk of OA in the joints of hands and wrists; (D) Pictograph D shows an obese subject. Here, the increased body weight lies heavily on the joints of the spinal column and of the lower limbs, such as hips, knees and ankles; (E) Pictograph E shows a subject not consuming a proper diet. The loss of vital nutrients increases the risk of developing OA in most of the joints of the subject itself.
Figure 4
Figure 4
The OA-associated molecules, including IL-1β, TNF-α, RAGE, leptin, IGF-1, TGFβ1, iNOS, MMP13, laminin, fibronectin, integrin and collagen are involved in chondrocyte activation. These molecules contribute to the pathogenesis of OA by destroying the cartilage in the joints or serving as the substrates for extracellular matrix destruction (i.e., laminin, fibronectin and collagen type II).
Figure 5
Figure 5
Target genes involved in OA. Molecular graphics and analyses were performed with the UCSF Chimera package. Chimera is developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco.

References

    1. Musumeci G., Szychlinska M.A., Mobasheri A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: Molecular markers of senescent chondrocytes. Histol. Histopathol. 2015;30:1–12. doi: 10.7243/2055-091X-2-1.
    1. Reynard L.N., Loughlin J. Genetics and epigenetics of osteoarthritis. Maturitas. 2012;71:200–204. doi: 10.1016/j.maturitas.2011.12.001.
    1. Brandt K.D., Dieppe P., Radin E.L. Etiopathogenesis of osteoarthritis. Rheum. Dis. Clin. N. Am. 2008;34:531–559. doi: 10.1016/j.rdc.2008.05.011.
    1. Ryder J.J., Garrison K., Song F., Hooper L., Skinner J., Loke Y., Loughlin J., Higgins J.P., MacGregor A.J. Genetic associations in peripheral joint osteoarthritis and spinal degenerative disease: A systematic review. Ann. Rheum. Dis. 2008;67:584–591. doi: 10.1136/ard.2007.073874.
    1. Nordenvall R., Bahmanyar S., Adami J., Stenros C., Wredmark T., Felländer-Tsai L. A population-based ationwide study of cruciate ligament injury in Sweden, 2001–2009: Incidence, treatment, and sex differences. Am. J. Sports Med. 2012;40:1808–1813. doi: 10.1177/0363546512449306.
    1. Ramos Y.F., den Hollander W., Bovée J.V., Bomer N., van der Breggen R., Lakenberg N., Keurentjes J.C., Goeman J.J., Slagboom P.E., Nelissen R.G., et al. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study. PLoS One. 2014;9:e103056. doi: 10.1371/journal.pone.0103056.
    1. Silverwood V., Blagojevic-Bucknall M., Jinks C., Jordan J.L., Protheroe J., Jordan K.P. Current evidence on risk factors for knee osteoarthritis in older adults: A systematic review and meta-analysis. Osteoarthr. Cartil. 2014 doi: 10.1016/j.joca.2014.11.019.
    1. Musumeci G., Mobasheri A., Trovato F.M., Szychlinska M.A., Graziano A.C.E., Lo Furno D., Avola R., Mangano S., Giuffrida R., Cardile R. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue. Acta Histochem. 2014;116:1407–1417. doi: 10.1016/j.acthis.2014.09.008.
    1. Musumeci G., Lo Furno D., Loreto C., Giuffrida R., Caggia S., Leonardi R., Cardile V. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp. Biol. Med. 2011;236:1333–1341. doi: 10.1258/ebm.2011.011183.
    1. Mobasheri A., Kalamegam G., Musumeci G., Batt M.E. Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas. 2014;78:188–198. doi: 10.1016/j.maturitas.2014.04.017.
    1. Archer C.W., Francis-West P. The chondrocyte. Int. J. Biochem. Cell. Biol. 2003;35:401–404. doi: 10.1016/S1357-2725(02)00301-1.
    1. Khan I.M., Redman S.N., Williams R., Dowthwaite G.P., Oldfield S.F., Archer C.W. The development of synovial joints. Curr. Top. Dev. Biol. 2007;79:1–36.
    1. Felson D.T., Lawrence R.C., Dieppe P.A., Hirsch R., Helmick C.G., Jordan J.M., Kington R.S., Lane N.E., Nevitt M.C., Zhang Y., et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann. Intern. Med. 2000;133:635–646. doi: 10.7326/0003-4819-133-8-200010170-00016.
    1. Styrkarsdottir U., Thorleifsson G., Helgadottir H.T., Bomer N., Metrustry S., Bierma-Zeinstra S., Strijbosch A.M., Evangelou E., Hart D., Beekman M., et al. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31. Nat. Genet. 2014;46:498–502. doi: 10.1038/ng.2957.
    1. Bui C., Barter M.J., Scott J.L., Xu Y., Galler M., Reynard L.N., Rowan A.D., Young D.A. cAMP response element-binding (CREB) recruitment following a specific CpGdemethylation leads to the elevated expression of the matrix metalloproteinase 13 in human articular chondrocytes and osteoarthritis. FASEB J. 2012;26:3000–3011. doi: 10.1096/fj.12-206367.
    1. Hashimoto K., Otero M., Imagawa K., de Andrés M.C., Coico J.M., Roach H.I., Oreffo R.O., Marcu K.B., Goldring M.B. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG Sites. J. Biol. Chem. 2013;288:10061–10072. doi: 10.1074/jbc.M112.421156.
    1. Mobasheri A., Matta C., Zákány R., Musumeci G. Chondrosenescence: Definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas. 2015;80:237–244. doi: 10.1016/j.maturitas.2014.12.003.
    1. Hayflick L. Intracellular determinants of cell aging. Mech. Ageing Dev. 1984;28:177–185. doi: 10.1016/0047-6374(84)90018-6.
    1. Mobasheri A. Applications of proteomics to osteoarthritis, a musculoskeletal disease characterized by aging. Front. Physiol. 2011;2 doi: 10.3389/fphys.2011.00108.
    1. Hollander A.P., Pidoux I., Reiner A., Rorabeck C., Bourne R., Poole A.R. Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J. Clin. Investig. 1995;96:2859–2869. doi: 10.1172/JCI118357.
    1. Zamli Z., Sharif M. Chondrocyte apoptosis: A cause or consequence of osteoarthritis? Int. J. Rheum. Dis. 2011;14:159–166. doi: 10.1111/j.1756-185X.2011.01618.x.
    1. Loeser R.F. Aging and osteoarthritis. Curr. Opin. Rheumatol. 2011;23:492–496. doi: 10.1097/BOR.0b013e3283494005.
    1. Musumeci G., Loreto C., Carnazza M.L., Martinez G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2011;19:307–313. doi: 10.1007/s00167-010-1215-0.
    1. Musumeci G., Loreto C., Carnazza M.L., Strehin I., Elisseeff J. OA cartilage derived chondrocytes encapsulated in poly(ethylene glycol) diacrylate (PEGDA) for the evaluation of cartilage restoration and apoptosis in an in vitro model. Histol. Histopathol. 2011;26:1265–1278.
    1. Musumeci G., Castrogiovanni P., Loreto C., Castorina S., Pichler K., Weinberg A.M. Post-traumatic caspase-3 expression in the adjacent areas of growth plate injury site. A morphological study. Int. J. Mol. Sci. 2013;14:15767–15784. doi: 10.3390/ijms140815767.
    1. Zamli Z., Adams M.A., Tarlton J.F., Sharif M. Increased chondrocyte apoptosis is associated with progression of osteoarthritis in spontaneous Guinea pig models of the disease. Int. J. Mol. Sci. 2013;14:17729–17743. doi: 10.3390/ijms140917729.
    1. Musumeci G., Castrogiovanni P., Mazzone V., Szychlinska M.A., Castorina S., Loreto C. Histochemistry as a unique approach for investigating normal and osteoarthritic cartilage. Eur. J. Histochem. 2014;58:107–111. doi: 10.4081/ejh.2014.2371.
    1. Musumeci G., Trovato F.M., Pichler K., Weinberg A.M., Loreto C., Castrogiovanni P. Extra-virgin olive oil diet and mild physical activity prevent cartilage degeneration in an osteoarthritis model: An in vivo and in vitro study on lubricin expression. J. Nutr. Biochem. 2013;24:2064–2075. doi: 10.1016/j.jnutbio.2013.07.007.
    1. Musumeci G., Loreto C., Leonardi R., Castorina S., Giunta S., Carnazza M.L., Trovato F.M., Pichler K., Weinberg A.M. The effects of physical activity on apoptosis and lubricin expression in articular cartilage in rats with glucocorticoid-induced osteoporosis. J. Bone Miner. Metab. 2013;31:274–284. doi: 10.1007/s00774-012-0414-9.
    1. Musumeci G., Loreto C., Carnazza M.L., Coppolino F., Cardile V., Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur. J. Histochem. 2011;55 doi: 10.4081/ejh.2011.e31.
    1. Leonardi R., Rusu M.C., Loreto F., Loreto C., Musumeci G. Immunolocalization and expression of lubricin in the bilaminar zone of the human temporomandibular joint disc. Acta Histochem. 2011;114:1–5. doi: 10.1016/j.acthis.2010.11.011.
    1. Leonardi R., Musumeci G., Sicurezza E., Loreto C. Lubricin in human temporomandibular joint disc: An immunohistochemical study. Arch. Oral Biol. 2012;57:614–619. doi: 10.1016/j.archoralbio.2011.12.004.
    1. Leonardi R., Loreto C., Talic N., Caltabiano R., Musumeci G. Immunolocalization of lubricin in the rat periodontal ligament during experimental tooth movement. Acta Histochem. 2012;114:700–704. doi: 10.1016/j.acthis.2011.12.005.
    1. Musumeci G., Trovato F.M., Loreto C., Leonardi R., Szychlinska M.A., Castorina S., Mobasheri A. Lubricin expression in human osteoarthritic knee meniscus and synovial fluid: A morphological, immunohistochemical and biochemical study. Acta Histochem. 2014;116:965–972. doi: 10.1016/j.acthis.2014.03.011.
    1. Teeple E., Elsaid K.A., Jay G.D., Zhang L., Badger G.J., Akelman M., Bliss T.F., Fleming B.C. Effects of supplemental intra-articular lubricin and hyaluronic acid on the progression of posttraumatic arthritis in the anterior cruciate ligament-deficient rat knee. Am. J. Sports Med. 2011;39:164–172. doi: 10.1177/0363546510378088.
    1. Srikanth V.K., Fryer J.L., Zhai G., Winzenberg T.M., Hosmer D., Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr. Cartil. 2005;13:769–781. doi: 10.1016/j.joca.2005.04.014.
    1. Lawrence J.S., Bremner J.M., Bier F. Osteo-arthrosis. Prevalence in the population and relationship between symptoms and X-ray changes. Ann. Rheum. Dis. 1966;25:1–24.
    1. Tsai C.L., Liu T.K. Osteoarthritis inwomen: Its relationship to estrogen and current trends. Life Sci. 1992;50:1737–1744.
    1. Anderson J.J., Felson D.T. Factors associated with osteoarthritis of the knee in the first national Health and Nutrition Examination Survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am. J. Epidemiol. 1988;128:179–189.
    1. Jordan J.M., Linder G.F., Renner J.B., Fryer J.G. The impact of arthritis in rural populations. Arthritis Care Res. 1995;8:242–250. doi: 10.1002/art.1790080407.
    1. Tepper S., Hochberg M.C. Factors associated with hip osteoarthritis: Data from the first National Health and Nutrition Examination Survey (NHANES-I) Am. J. Epidemiol. 1993;137:1081–1088.
    1. Jordan J.M., Helmick C.G., Renner J.B., Luta G., Dragomir A.D., Woodard J., Fang F., Schwartz T.A., Abbate L.M., Callahan L.F., et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: The Johnston County Osteoarthritis Project. J. Rheumatol. 2007;34:172–180.
    1. Clark A.G., Jordan J.M., Vilim V.V., Renner J.B., Dragomir A.D., Luta G., Kraus V.B. Serum cartilage oligomeric matrix protein reflects osteoarthritis presence and severity: The Johnston County Osteoarthritis Project. Arthritis Rheumatol. 1999;42:2356–2364. doi: 10.1002/1529-0131(199911)42:11<2356::AID-ANR14>;2-R.
    1. Sartori-Cintra A.R., Aikawa P., Cintra D.E. Obesity versus osteoarthritis: Beyond the mechanical overload. Einstein (Sao Paulo) 2014;12:374–379. doi: 10.1590/S1679-45082014RB2912.
    1. Sanghi D., Mishra A., Sharma A.C., Raj S., Mishra R., Kumari R., Natu S.M., Agarwal S., Srivastava R.N. Elucidation of dietary risk factors in osteoarthritis knee-a case-control study. J. Am. Coll. Nutr. 2015;34:15–20. doi: 10.1080/07315724.2013.875439.
    1. Eymard F., Parsons C., Edwards M.H., Petit-Dop F., Reginster J.Y., Bruyère O., Richette P., Cooper C., Chevalier X. Diabetes is a risk factor for knee osteoarthritis progression. Osteoarthr. Cartil. 2015 doi: 10.1016/j.joca.2015.01.013.
    1. Thijssen E., van Caam A., van der Kraan P.M. Obesity and osteoarthritis, more than just wear and tear: Pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology (Oxford) 2014 doi: 10.1093/rheumatology/keu464.
    1. Katz J.D., Agrawal S., Velasquez M. Getting to the heart of the matter: Osteoarthritis takes its place as part of the metabolic syndrome. Curr. Opin. Rheumatol. 2010;22:512–519. doi: 10.1097/BOR.0b013e32833bfb4b.
    1. Sowers M., Karvonen-Gutierrez C.A., Palmieri-Smith R., Jacobson J.A., Jiang Y., Ashton-Miller J.A. Knee osteoarthritis in obese women with cardiometabolic clustering. Arthritis Rheumatol. 2009;61:1328–1336. doi: 10.1002/art.24739.
    1. Yoshimura N., Muraki S., Oka H., Kawaguchi H., Nakamura K., Akune T. Association of knee osteoarthritis with the accumulation of metabolic risk factors such as overweight, hypertension, dyslipidemia, and impaired glucose tolerance in Japanese men and women: The ROAD study. J. Rheumatol. 2011;38:921–930. doi: 10.3899/jrheum.100569.
    1. Zhuo Q., Yang W., Chen J., Wang Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 2012;8:729–737. doi: 10.1038/nrrheum.2012.135.
    1. Reijman M., Pols H.A., Bergink A.P., Hazes J.M., Belo J.N., Lievense. A.M., Bierma-Zeinstra S.M. Body mass index associated with onset and progression of osteoarthritis of the knee but not of the hip: The Rotterdam study. Ann. Rheum. Dis. 2007;66:158–162. doi: 10.1136/ard.2006.053538.
    1. Gandhi R., Razak F., Tso P., Davey J.R., Mahomed N.N. Asian ethnicity and the prevalence of metabolic syndrome in the osteoarthritic total knee arthroplasty population. J. Arthroplast. 2010;25:416–419. doi: 10.1016/j.arth.2009.02.005.
    1. Jungmann P.M., Kraus M.S., Alizai H., Nardo L., Baum T., Nevitt M.C., McCulloch C.E., Joseph G.B., Lynch J.A., Link T.M. Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: Data from the osteoarthritis initiative. Arthritis Care Res. (Hoboken) 2013;65:1942–1950. doi: 10.1002/acr.22093.
    1. Engstrom G., Gerhardsson de Verdier M., Rollof J., Nilsson P.M., Lohmander L.S. C-reactive protein, metabolic syndrome and incidence of severe hip and knee osteoarthritis. A population-based cohort study. Osteoarthr. Cartil. 2009;17:168–173. doi: 10.1016/j.joca.2008.07.003.
    1. Puenpatom R.A., Victor T.W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: An analysis of NHANES III data. Postgrad. Med. 2009;121:9–20. doi: 10.3810/pgm.2009.11.2073.
    1. Hawker G.A., Stanaitis I. Osteoarthritis year in review 2014: Clinical. Osteoarthr. Cartil. 2014;22:1953–1957. doi: 10.1016/j.joca.2014.06.018.
    1. Frei B. Reactive oxygen species and antioxidant vitamins: Mechanisms of action. Am. J. Med. 1994;97:5S–13S. doi: 10.1016/0002-9343(94)90292-5.
    1. Rathakrishnan C., Tiku K., Raghavan A., Tiku M.L. Release of oxygen radicals by articular chondrocytes: A study of luminol-dependent chemoluminescence and hydrogen peroxide secretion. J. Bone Miner. Res. 1992;7:1139–1148. doi: 10.1002/jbmr.5650071005.
    1. Henrotin Y., Deby-Dupont G., Deby C., de Bruyn M., Lamy M., Franchimont P. Production of active oxygen species by isolated human chondrocytes. Br. J. Rheumatol. 1993;32:562–567. doi: 10.1093/rheumatology/32.7.562.
    1. Greenwald R.A., Moy W.W. Inhibition of collagen gelation by action of the superoxide radical. Arthritis Rheumatol. 1979;22:251–259. doi: 10.1002/art.1780220307.
    1. McCord J.M. Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science. 1974;185:529–531. doi: 10.1126/science.185.4150.529.
    1. McAlindon T.E., Jacques P., Zhang Y., Hannan M.Y., Aliabadi P., Weissman B., Rush D., Levy D., Felson D.T. Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheumatol. 1996;39:648–658. doi: 10.1002/art.1780390417.
    1. McAlindon T.E., Felson D., Zhang Y. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann. Intern. Med. 1996;125:353–359. doi: 10.7326/0003-4819-125-5-199609010-00001.
    1. Neogi T., Booth S.L., Zhang Y.Q., Jacques P.F., Terkeltaub R., Aliabadi P., Felson D.T. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheumatol. 2006;54:1255–1261. doi: 10.1002/art.21735.
    1. Felson D.T., Niu J., Clancy M., Aliabadis P., Sack B., Guermazi A., Hunter D.J., Amin S., Rogers G., Booth S.L. Low levels of vitamin D and worsening of knee osteoarthritis: Results of two longitudinal studies. Arthritis Rheumatol. 2007;56:129–136. doi: 10.1002/art.22292.
    1. Lane N.E., Gore L.R., Cummings S.R., Lin P., Christiansen L., Nevitt M.C. Serum vitamin D levels and incident changes of radiographic hip osteoarthritis: A longitudinal study. Study of Osteoporotic Fractures Research Group. Arthritis Rheumatol. 1999;42:854–860. doi: 10.1002/1529-0131(199905)42:5<854::AID-ANR3>;2-I.
    1. McAlindon T.E., Dawson-Huges B., Driban J. Clinical trial of vitamin D to reduce pain and structural progression of knee osteoarthritis (OA) Arthritis Rheumatol. 2010;62:S294.
    1. DeGroot J., Verzijl N., Bank R.A., Lafeber F.P., Bijlsma J.W., TeKoppele J.M. Age-related decrease in proteoglycan synthesis of human articular chondrocytes: The role of nonenzymaticglycation. Arthritis Rheumatol. 1999;42:1003–1009. doi: 10.1002/1529-0131(199905)42:5<1003::AID-ANR20>;2-K.
    1. Loeser R.F., Yammani R.R., Carlson C.S., Chen H., Cole A., Im H.J., Bursch L.S., Yan S.D. Articular chondrocytes express the receptor for advanced glycation end products: Potential role in osteoarthritis. Arthritis Rheumatol. 2005;52:2376–2385. doi: 10.1002/art.21199.
    1. Verzijl N., DeGroot J., Ben Z.C., Brau-Benjamin O., Maroudas A., Bank R.A., Mizrahi J., Schalkwijk C.G., Thorpe S.R., Baynes J.W., et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: A possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheumatol. 2002;46:114–123. doi: 10.1002/1529-0131(200201)46:1<114::AID-ART10025>;2-P.
    1. Cecil D.L., Johnson K., Rediske J., Lotz M., Schmidt A.M., Terkeltaub R. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 2005;175:8296–8302. doi: 10.4049/jimmunol.175.12.8296.
    1. Yammani R.R., Carlson C.S., Bresnick A.R., Loeser R.F. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. Arthritis Rheumatol. 2006;54:2901–2911. doi: 10.1002/art.22042.
    1. Manninen P., Riihimaki H., Heliovaara M., Makela P. Overweight, gender and knee osteoarthritis. Int. J. Obes. Relat. Metab. Disord. 1996;20:595–597.
    1. Felson D.T., Zhang Y., Hannan M.T., Naimark A., Weissman B., Aliabadi P., Levy D. Risk factors for incident radiographic knee osteoarthritis in the elderly: The Framingham study. Arthritis Rheumatol. 1997;40:728–733. doi: 10.1002/art.1780400420.
    1. Carman W.J., Sowers M., Hawthorne V.M., Weissfeld L.A. Obesity as a risk factor for osteoarthritis of the hand and wrist: A prospective study. Am. J. Epidemiol. 1994;139:119–129.
    1. Cicuttini F., Baker J., Spector T. The association of obesity with osteoarthritis of the hand and knee in women: A twin study. J. Rheumatol. 1996;23:1221–1226.
    1. Margetic S., Gazzola C., Pegg G.G., Hill R.A. Leptin: A review of its peripheral actions and interactions. Int. J. Obes. Relat. Metab. Disord. 2002;26:1407–1433. doi: 10.1038/sj.ijo.0802142.
    1. Aspden R., Scheven B., Hutchison J. Osteoarthritis as a systemic disorder including stromal cell differentiation and lipid metabolism. Lancet. 2001;357:1118–1120. doi: 10.1016/S0140-6736(00)04264-1.
    1. Figenschau Y., Knutsen G., Shahazeydi S., Johansen O., Sveinbjornsson B. Human articular chondrocytes express functional leptin receptors. Biochem. Biophys. Res. Commun. 2001;287:190–197. doi: 10.1006/bbrc.2001.5543.
    1. Dumond H., Presle N., Terlain B., Mainard D., Loeuille D., Netter P., Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheumatol. 2003;48:3118–3129. doi: 10.1002/art.11303.
    1. Van Beuningen H.M., Glansbeek H.L., van der Kraan P.M., van den Berg W.B. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-B injections. Osteoarthr. Cartil. 2000;8:25–33. doi: 10.1053/joca.1999.0267.
    1. Otero M., Lago R., Lago F., Reino J.J., Gualillo O. Signalling pathway involved in nitric oxide synthase type II activation in chondrocytes: Synergistic effect of leptin with interleukin-1. Arthritis Res. Ther. 2005;7:581–591. doi: 10.1186/ar1708.
    1. Musumeci G., Loreto C., Imbesi R., Trovato F.M., di Giunta A., Lombardo C., Castorina S., Castrogiovanni P. Advantages of exercise in rehabilitation, treatment and prevention of altered morphological features in knee osteoarthritis. A narrative review. Histol. Histopathol. 2014;29:707–719.
    1. Musumeci G., Castrogiovanni P., Trovato F.M., Imbesi R., Giunta S., Szychlinska M.A., Loreto C., Castorina S., Mobasheri A. Physical activity ameliorates cartilage degeneration in a rat model of aging: A study on lubricin expression. Scand. J. Med. Sci. Sports. 2014 doi: 10.1111/sms.12290.
    1. Pichler K., Loreto C., Leonardi R., Reuber T., Weinberg A.M., Musumeci G. In rat with glucocorticoid-induced osteoporosis, RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) Histol. Histopathol. 2013;28:1185–1196.
    1. Mow V.C., Ratcliffe A., Poole A.R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992;13:67–97. doi: 10.1016/0142-9612(92)90001-5.
    1. Macirowski T., Tepic S., Mann R.W. Cartilage stresses in the human hip joint. J. Biomech. Eng. 1994;116:10–18. doi: 10.1115/1.2895693.
    1. Ateshian G.A., Wang H., Lai W.M. The role of interstitial fluid pressurization and surface porosities on the boundary friction of articular cartilage. J. Tribol. 1998;120:241–251. doi: 10.1115/1.2834416.
    1. Soltz M.A., Ateshian G.A. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 1998;31:927–934. doi: 10.1016/S0021-9290(98)00105-5.
    1. Akizuki S., Mow V.C., Muller F., Pita J.C., Howell D.S. Tensile properties of human knee joint cartilage. II. Correlations between weight bearing and tissue pathology and the kinetics of swelling. J. Orthop. Res. 1987;5:173–186. doi: 10.1002/jor.1100050204.
    1. Lai W.M., Hou J.S., Mow V.C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Eng. 1991;113:245–258. doi: 10.1115/1.2894880.
    1. Musumeci G., Leonardi R., Carnazza M.L., Cardile V., Pichler K., Weinberg A.M., Loreto C. Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: An in vivo and in vitro study. Tissue Cell. 2013;45:145–152. doi: 10.1016/j.tice.2012.10.004.
    1. Loreto C., Lo Castro E., Musumeci G., Loreto F., Rapisarda G., Rezzani R., Castorina S., Leonardi R., Rusu M.C. Aquaporin 1 expression in human temporomandibular disc. Acta Histochem. 2012;114:744–748. doi: 10.1016/j.acthis.2012.01.001.
    1. Messier S.P., Leagult C., Mihalko S., Miller G.D., Loeser R.F., DeVita P., Lyles M., Eckstein F., Hunter D.J., Williamson J.D., et al. The Intensive Diet and Exercise for Arthritis (IDEA) trial: Design and rationale. BMC Muscul. Dis. 2009;10 doi: 10.1186/1471-2474-10-93.
    1. Buckwalter J.A., Lane L.E. Athletics and osteoarthritis. Am. J. Sports Med. 1997;25:873–881. doi: 10.1177/036354659702500624.
    1. Musumeci G., Loreto C., Carnazza M.L., Cardile V., Leonardi R. Acute injury affects lubricin expression in knee menisci. An immunohistochemical study. Ann. Anat. 2013;195:151–158.
    1. Slauterbeck J., Kousa P., Clifton B. Geographic mapping of meniscus and cartilage lesions associated with anterior cruciate ligament injuries. J. Bone Jt. Surg. Am. 2009;91:2094–2103. doi: 10.2106/JBJS.H.00888.
    1. Giunta S., Castorina A., Marzagalli R., Szychlinska M.A., Pichler K., Mobasheri A., Musumeci G. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int. J. Mol. Sci. 2015;16:5922–5944. doi: 10.3390/ijms16035922.
    1. Di Rosa M., Szychlinska M.A., Tibullo D., Malaguarnera L., Musumeci G. Expression of CHI3L1 and CHIT1 in osteoarthritic rat cartilage model. A morphological study. Eur. J. Histochem. 2014;58:213–221. doi: 10.1007/s00418-013-1152-3.
    1. Hadler N.M., Gillings D.B., Imbus H.R., Levitin P.M., Makuc D., Utsinger P.D., Yount W.J., Slusser D., Moskovitz N. Hand structure and function in an industrial setting. Arthritis Rheumatol. 1978;21:210–220. doi: 10.1002/art.1780210206.
    1. Jonsson H., Manolescu I., Stefansson E., Ingvarsson T., Jonsson H.H., Manolescu A., Gulcher J., Stefansson K. The inheritance of hand osteoarthritis in Iceland. Arthritis Rheumatol. 2003;48:391–395. doi: 10.1002/art.10785.

Source: PubMed

3
Suscribir