Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors

Yongkun Sun, Wei Niu, Feng Du, Chunxia Du, Shuting Li, Jinwan Wang, Li Li, Fengqing Wang, Yu Hao, Chuan Li, Yihebali Chi, Yongkun Sun, Wei Niu, Feng Du, Chunxia Du, Shuting Li, Jinwan Wang, Li Li, Fengqing Wang, Yu Hao, Chuan Li, Yihebali Chi

Abstract

Background: Anlotinib is a novel multi-target tyrosine kinase inhibitor that is designed to primarily inhibit VEGFR2/3, FGFR1-4, PDGFR α/β, c-Kit, and Ret. We aimed to evaluate the safety, pharmacokinetics, and antitumor activity of anlotinib in patients with advanced refractory solid tumors.

Methods: Anlotinib (5-16 mg) was orally administered in patients with solid tumor once a day on two schedules: (1) four consecutive weeks (4/0) or (2) 2-week on/1-week off (2/1). Pharmacokinetic sampling was performed in all patients. Twenty-one patients were further enrolled in an expanded cohort study on the recommended dose and schedule. Preliminary tumor response was also assessed.

Results: On the 4/0 schedule, dose-limiting toxicity (DLT) was grade 3 hypertension at 10 mg. On the 2/1 schedule, DLT was grade 3 hypertension and grade 3 fatigue at 16 mg. Pharmacokinetic assessment indicated that anlotinib had long elimination half-lives and significant accumulation during multiple oral doses. The 2/1 schedule was selected, with 12 mg once daily as the maximum tolerated dose for the expanding study. Twenty of the 21 patients (with colon adenocarcinoma, non-small cell lung cancer, renal clear cell cancer, medullary thyroid carcinoma, and soft tissue sarcoma) were assessable for antitumor activity of anlotinib: 3 patients had partial response, 14 patients had stable disease including 12 tumor burden shrinkage, and 3 had disease progression. The main serious adverse effects were hypertension, triglyceride elevation, hand-foot skin reaction, and lipase elevation.

Conclusions: At the dose of 12 mg once daily at the 2/1 schedule, anlotinib displayed manageable toxicity, long circulation, and broad-spectrum antitumor potential, justifying the conduct of further studies.

Keywords: Advanced refractory solid tumors; Anlotinib; Anti-angiogenesis; Pharmacokinetics; Phase I study; Safety.

Figures

Fig. 1
Fig. 1
The lung metastasis changes in patients of alveolar soft tissue sarcoma with lung metastasis during treatment. a Before treatment. b Treatment after 2 cycles (42 days). c Treatment after 3 years
Fig. 2
Fig. 2
Duration of treatment and tumor size changes of 20 patients who received 12 mg QD at the 2/1 schedule
Fig. 3
Fig. 3
Plasma concentrations of anlotinib over time after a single oral dose of anlotinib capsules at 5 (green line), 10 (purple line), 12 (blue line), or 16 mg anlotinib/person (red line) in male (solid circles) and female cancer patients (open circles) (a). b Correlation of dose with plasma AUC0–120 h. c Correlation of dose with plasma Cmax. d Correlation of dose with t1/2. e Plasma concentrations of anlotinib (24 h after daily dosing) over time during multiple oral doses of anlotinib capsules at 12 mg anlotinib/person/day in female cancer patients. f Plasma concentrations of anlotinib (24 h after daily dosing) over time during multiple oral doses of anlotinib capsules at 12 mg anlotinib/person/day in male cancer patients

References

    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi: 10.1016/j.cell.2011.02.013.
    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. doi: 10.1016/S0092-8674(00)81683-9.
    1. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23(5):965–72. doi: 10.1200/JCO.2005.06.124.
    1. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24(1):25–35. doi: 10.1200/JCO.2005.02.2194.
    1. Mross K, Frost A, Steinbild S, Hedbom S, Büchert M, Fasol U, et al. A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res. 2012;18(9):2658–67. doi: 10.1158/1078-0432.CCR-11-1900.
    1. Huang L, Huang Z, Bai Z, Xie R, Sun L, Lin K. Development and strategies of VEGFR-2/KDR inhibitors. Future Med Chem. 2012;4(14):1839–52. doi: 10.4155/fmc.12.121.
    1. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116–29. doi: 10.1038/nrc2780.
    1. Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010;125(1):105–17. doi: 10.1016/j.pharmthera.2009.10.001.
    1. Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437(2):199–213. doi: 10.1042/BJ20101603.
    1. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res. 2010;70(5):2085–94. doi: 10.1158/0008-5472.CAN-09-3746.
    1. Elbauomy ES, Green AR, Lambros MB, Turner NC, Grainge MJ, Powe D, et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis. Breast Cancer Res. 2007;9(2):R23. doi: 10.1186/bcr1665.
    1. Matsumoto K, Arao T, Hamaguchi T, Shimada Y, Kato K, Oda I, et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer. 2012;106(4):727–32. doi: 10.1038/bjc.2011.603.
    1. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 2012;61(5):673–84. doi: 10.1136/gutjnl-2011-301839.
    1. Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8(325):325ra17.
    1. Wang C, Chen J, Cao W, Sun L, Sun H, Liu Y. Aurora-B and HDAC synergistically regulate survival and proliferation of lymphoma cell via AKT, mTOR and Notch pathways. Eur J Pharmacol. 2015;779:1–7. doi: 10.1016/j.ejphar.2015.11.049.
    1. Kakiuchi-Kiyota S, Lappin PB, Heintz C, Brown PW, Pinho FO, Ryan AM, et al. Expression of proto-oncogene cFMS protein in lung, breast, and ovarian cancers. Appl Immunohistochem Mol Morphol. 2014;22(3):188–99. doi: 10.1097/PAI.0b013e31828e7104.
    1. Ambrogio C, Gómez-López G, Falcone M, Vidal A, Nadal E, Crosetto N, et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med. 2016;22(3):270–7. doi: 10.1038/nm.4041.
    1. Beck J, Procopio G, Bajetta E, Keilholz U, Negrier S, Szczylik C, et al. Final results of the European Advanced Renal Cell Carcinoma Sorafenib (EU-ARCCS) expanded-access study: a large open-label study in diverse community settings. Ann Oncol. 2011;22(8):1812–23. doi: 10.1093/annonc/mdq651.
    1. Porta C, Gore ME, Rini BI, Escudier B, Hariharan S, Charles LP, et al. Long-term safety of sunitinib in metastatic renal cell carcinoma. Eur Urol. 2016;69(2):345–51. doi: 10.1016/j.eururo.2015.07.006.
    1. Afonso FJ, Anido U, Fernández-Calvo O, Vázquez-Estévez S, León L, Lázaro M, et al. Comprehensive overview of the efficacy and safety of sorafenib in advanced or metastatic renal cell carcinoma after a first tyrosine kinase inhibitor. Clin Transl Oncol. 2013;15(6):425–33. doi: 10.1007/s12094-012-0985-x.
    1. Stadler WM, Figlin RA, McDermott DF, Dutcher JP, Knox JJ, Miller WH, et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in North America. Cancer. 2010;116(5):1272–80. doi: 10.1002/cncr.24864.
    1. Gore ME, Szczylik C, Porta C, Bracarda S, Bjarnason GA, Oudard S, et al. Safety and efficacy of sunitinib for metastatic renal-cell carcinoma: an expanded-access trial. Lancet Oncol. 2009;10(8):757–63. doi: 10.1016/S1470-2045(09)70162-7.
    1. Qi WX, Shen Z, Tang LN, Yao Y. Risk of arterial thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: an up-to-date meta-analysis. Crit Rev Oncol Hematol. 2014;92(2):71–82. doi: 10.1016/j.critrevonc.2014.04.004.

Source: PubMed

3
Suscribir