Genetic variations in complement factors in patients with congenital thrombotic thrombocytopenic purpura with renal insufficiency

Xinping Fan, Johanna A Kremer Hovinga, Hiroko Shirotani-Ikejima, Yuka Eura, Hidenori Hirai, Shigenori Honda, Koichi Kokame, Magnus Mansouri Taleghani, Anne-Sophie von Krogh, Yoko Yoshida, Yoshihiro Fujimura, Bernhard Lämmle, Toshiyuki Miyata, Xinping Fan, Johanna A Kremer Hovinga, Hiroko Shirotani-Ikejima, Yuka Eura, Hidenori Hirai, Shigenori Honda, Koichi Kokame, Magnus Mansouri Taleghani, Anne-Sophie von Krogh, Yoko Yoshida, Yoshihiro Fujimura, Bernhard Lämmle, Toshiyuki Miyata

Abstract

The congenital form of thrombotic thrombocytopenic purpura (TTP) is caused by genetic mutations in ADAMTS13. Some, but not all, congenital TTP patients manifest renal insufficiency in addition to microangiopathic hemolysis and thrombocytopenia. We included 32 congenital TTP patients in the present study, which was designed to assess whether congenital TTP patients with renal insufficiency have predisposing mutations in complement regulatory genes, as found in many patients with atypical hemolytic uremic syndrome (aHUS). In 13 patients with severe renal insufficiency, six candidate complement or complement regulatory genes were sequenced and 11 missense mutations were identified. One of these missense mutations, C3:p.K155Q mutation, is a rare mutation located in the macroglobulin-like 2 domain of C3, where other mutations predisposing for aHUS cluster. Several of the common missense mutations identified in our study have been reported to increase disease-risk for aHUS, but were not more common in patients with as compared to those without renal insufficiency. Taken together, our results show that the majority of the congenital TTP patients with renal insufficiency studied do not carry rare genetic mutations in complement or complement regulatory genes.

Trial registration: ClinicalTrials.gov NCT01257269.

Keywords: Atypical hemolytic uremic syndrome; Complement factors; Renal insufficiency; Thrombotic thrombocytopenic purpura; Upshaw–Schulman syndrome.

References

    1. Thromb Haemost. 2015 Oct;114(4):862-3
    1. Nat Rev Nephrol. 2012 Nov;8(11):622-33
    1. J Immunol. 2013 Sep 1;191(5):2184-93
    1. Hamostaseologie. 2013 May 29;33(2):138-43
    1. N Engl J Med. 2009 Oct 22;361(17):1676-87
    1. Nature. 2001 Oct 4;413(6855):488-94
    1. J Am Soc Nephrol. 2011 Aug;22(8):1551-9
    1. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11902-7
    1. Best Pract Res Clin Haematol. 2001 Jun;14 (2):437-54
    1. Proc Natl Acad Sci U S A. 2011 May 24;108(21):8761-6
    1. N Engl J Med. 2014 Nov 6;371(19):1847-8
    1. Clin J Am Soc Nephrol. 2010 Oct;5(10):1844-59
    1. J Thromb Haemost. 2011 Jul;9 Suppl 1:283-301
    1. Transfusion. 2006 Aug;46(8):1444-52
    1. Blood. 2008 Feb 1;111(3):1512-4
    1. Hematology Am Soc Hematol Educ Program. 2012;2012:610-6
    1. J Am Soc Nephrol. 2005 May;16(5):1177-83
    1. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12839-44
    1. Blood. 2010 Feb 25;115(8):1500-11; quiz 1662
    1. Nat Genet. 2013 May;45(5):531-6
    1. N Engl J Med. 2007 Aug 9;357(6):553-61
    1. Nat Immunol. 2009 Jul;10(7):728-33
    1. J Hum Genet. 2008;53(11-12):1016-21
    1. Int J Hematol. 2014 Nov;100(5):437-42
    1. Nat Genet. 2006 Apr;38(4):458-62
    1. Haematologica. 2012 Feb;97(2):297-303
    1. J Am Soc Nephrol. 2014 Sep;25(9):2053-65
    1. Nat Genet. 2007 Oct;39(10):1200-1
    1. Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4366-71
    1. Hum Mol Genet. 2003 Dec 15;12(24):3385-95
    1. J Thromb Haemost. 2012 May;10 (5):791-8
    1. Thromb Haemost. 2006 Jul;96(1):3-6
    1. Mol Immunol. 2013 Jun;54(2):238-46
    1. Mol Genet Genomic Med. 2014 May;2(3):240-4
    1. Hum Mol Genet. 2009 Sep 15;18(18):3452-61

Source: PubMed

3
Suscribir