The impact of thiamine treatment in the diabetes mellitus

Khanh Vinh Quoc Luong, Lan Thi Hoang Nguyen, Khanh Vinh Quoc Luong, Lan Thi Hoang Nguyen

Abstract

Thiamine acts as a coenzyme for transketolase (Tk) and for the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, enzymes which play a fundamental role for intracellular glucose metabolism. The relationship between thiamine and diabetes mellitus (DM) has been reported in the literature. Thiamine levels and thiamine-dependent enzyme activities have been reduced in DM. Genetic studies provide opportunity to link the relationship between thiamine and DM (such as Tk, SLC19A2 gene, transcription factor Sp1, α-1-antitrypsin, and p53). Thiamine and its derivatives have been demonstrated to prevent the activation of the biochemical pathways (increased flux through the polyol pathway, formation of advanced glycation end-products, activation of protein kinase C, and increased flux through the hexosamine biosynthesis pathway) induced by hyperglycemia in DM.Thiamine definitively has a role in the diabetic endothelial vascular diseases (micro and macroangiopathy), lipid profile, retinopathy, nephropathy, cardiopathy, and neuropathy.

Keywords: Diabetes Mellitus; Thiamine; Vitamin B1.

References

    1. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–853.
    1. Hypoglycemia in the Diabetes Control and Complications Trial. The Diabetes Control and Complications Trial Research Group. Diabetes. 1997;46(2):271–286.
    1. Hammes HP, Du X, Edelstein D, Taguchi T, Matsumura T, Ju Q, Lin J. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. 2003;9(3):294–299.
    1. Watson JD, Dako DY. Erythrocyte transketolase activity in adult Ghanaian subjects. Clin Chim Acta. 1975;59(1):55–61.
    1. Valerio G, Franzese A, Poggi V, Patrini C, Laforenza U, Tenore A. Lipophilic thiamine treatment in long-standing insulin-dependent diabetes mellitus. Acta Diabetol. 1999;36(1-2):73–76.
    1. Berant M, Berkovitz D, Mandel H, Zinder O, Mordohovich D. Thiamin status of the offspring of diabetic rats. Pediatr Res. 1988;23(6):574–575.
    1. Clark JA, Burny I, Sarnaik AP, Audhya TK. Acute thiamine deficiency in diabetic ketoacidosis: Diagnosis and management. Pediatr Crit Care Med. 2006;7(6):595–599.
    1. Oriot D, Wood C, Gottesman R, Huault G. Severe lactic acidosis related to acute thiamine deficiency. JPEN J Parenter Enteral Nutr. 1991;15(1):105–109.
    1. Saito N, Kimura M, Kuchiba A, Itokawa Y. Blood thiamine levels in outpatients with diabetes mellitus. J Nutr Sci Vitaminol (Tokyo) 1987;33(6):421–430.
    1. Kjosen B, Seim SH. The transketolase assay of thiamine in some diseases. Am J Clin Nutr. 1977;30(10):1591–1596.
    1. Thornalley PJ, Babaei-Jadidi R, Al Ali H, Rabbani N, Antonysunil A, Larkin J, Ahmed A. et al. High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease. Diabetologia. 2007;50(10):2164–2170.
    1. Baron D, Assaraf YG, Drori S, Aronheim A. Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome family. Eur J Biochem. 2003;270(22):4469–4477.
    1. Bergmann AK, Sahai I, Falcone JF, Fleming J, Bagg A, Borgna-Pignati C, Casey R. et al. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J Pediatr. 2009;155(6):888–892 e881.
    1. Stagg AR, Fleming JC, Baker MA, Sakamoto M, Cohen N, Neufeld EJ. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts. J Clin Invest. 1999;103(5):723–729.
    1. Olsen BS, Hahnemann JM, Schwartz M, Ostergaard E. Thiamine-responsive megaloblastic anaemia: a cause of syndromic diabetes in childhood. Pediatr Diabetes. 2007;8(4):239–241.
    1. Kurtoglu S, Hatipoglu N, Keskin M, Kendirci M, Akcakus M. Thiamine withdrawal can lead to diabetic ketoacidosis in thiamine responsive megaloblastic anemia: report of two siblings. J Pediatr Endocrinol Metab. 2008;21(4):393–397.
    1. Thameem F, Wolford JK, Bogardus C, Prochazka M. Analysis of slc19a2, on 1q23.3 encoding a thiamine transporter as a candidate gene for type 2 diabetes mellitus in pima indians. Mol Genet Metab. 2001;72(4):360–363.
    1. Nabokina SM, Said HM. Characterization of the 5'-regulatory region of the human thiamin transporter SLC19A3: in vitro and in vivo studies. Am J Physiol Gastrointest Liver Physiol. 2004;287(4):G822–829.
    1. Yoshida-Hata N, Mitamura Y, Oshitari T, Namekata K, Harada C, Harada T, Yamamoto S. Transcription factor, SP1, in epiretinal membranes of patients with proliferative diabetic retinopathy. Diabetes Res Clin Pract. 2010;87(3):e26–28.
    1. Chae YM, Park KK, Magae J, Lee IS, Kim CH, Kim HC, Hong S. et al. Sp1-decoy oligodeoxynucleotide inhibits high glucose-induced mesangial cell proliferation. Biochem Biophys Res Commun. 2004;319(2):550–555.
    1. Goldberg HJ, Scholey J, Fantus IG. Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. Diabetes. 2000;49(5):863–871.
    1. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR. et al. The hormone resistin links obesity to diabetes. Nature. 2001;409(6818):307–312.
    1. Pravenec M, Kazdova L, Landa V, Zidek V, Mlejnek P, Jansa P, Wang J. et al. Transgenic and recombinant resistin impair skeletal muscle glucose metabolism in the spontaneously hypertensive rat. J Biol Chem. 2003;278(46):45209–45215.
    1. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J. et al. Regulation of fasted blood glucose by resistin. Science. 2004;303(5661):1195–1198.
    1. Osawa H, Yamada K, Onuma H, Murakami A, Ochi M, Kawata H, Nishimiya T. et al. The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am J Hum Genet. 2004;75(4):678–686.
    1. Schmechel DE. Art, alpha-1-antitrypsin polymorphisms and intense creative energy: blessing or curse? Neurotoxicology. 2007;28(5):899–914.
    1. Kalis M, Kumar R, Janciauskiene S, Salehi A, Cilio CM. alpha 1-antitrypsin enhances insulin secretion and prevents cytokine-mediated apoptosis in pancreatic beta-cells. Islets. 2010;2(3):185–189.
    1. Loganathan G, Dawra RK, Pugazhenthi S, Wiseman AC, Sanders MA, Saluja AK, Sutherland DE. et al. Culture of impure human islet fractions in the presence of alpha-1 antitrypsin prevents insulin cleavage and improves islet recovery. Transplant Proc. 2010;42(6):2055–2057.
    1. Ma H, Lu Y, Li H, Campbell-Thompson M, Parker M, Wasserfall C, Haller M. et al. Intradermal alpha1-antitrypsin therapy avoids fatal anaphylaxis, prevents type 1 diabetes and reverses hyperglycaemia in the NOD mouse model of the disease. Diabetologia. 2010;53(10):2198–2204.
    1. Oh SH, Witek RP, Bae SH, Darwiche H, Jung Y, Pi L, Brown A. et al. Detection of transketolase in bone marrow-derived insulin-producing cells: benfotiamine enhances insulin synthesis and glucose metabolism. Stem Cells Dev. 2009;18(1):37–46.
    1. Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH. et al. Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J. 2011;37(6):1453–1465.
    1. Coy JF, Dressler D, Wilde J, Schubert P. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005;51(5-6):257–273.
    1. Zhao J, Zhong CJ. A review on research progress of transketolase. Neurosci Bull. 2009;25(2):94–99.
    1. Pacal L, Tomandl J, Svojanovsky J, Krusova D, Stepankova S, Rehorova J, Olsovsky J. et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol Dial Transplant. 2011;26(4):1229–1236.
    1. Saito N, Kimura M, Kuchiba A, Itokawa Y. The relationship between blood thiamine levels and dietary thiamine content in diabetic outpatients and healthy subjects. J Nutr Sci Vitaminol (Tokyo) 1987;33(6):431–438.
    1. Rodriguez Melendez R. [Importance of water-soluble vitamins as regulatory factors of genetic expression] Rev Invest Clin. 2002;54(1):77–83.
    1. Bajotto G, Murakami T, Nagasaki M, Tamura T, Tamura N, Harris RA, Shimomura Y. et al. Downregulation of the skeletal muscle pyruvate dehydrogenase complex in the Otsuka Long-Evans Tokushima Fatty rat both before and after the onset of diabetes mellitus. Life Sci. 2004;75(17):2117–2130.
    1. Schummer CM, Werner U, Tennagels N, Schmoll D, Haschke G, Juretschke HP, Patel MS. et al. Dysregulated pyruvate dehydrogenase complex in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2008;294(1):E88–96.
    1. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10(9):1054–1072.
    1. Eid AA, Ford BM, Block K, Kasinath BS, Gorin Y, Ghosh-Choudhury G, Barnes JL. et al. AMP-activated protein kinase (AMPK) negatively regulates Nox4-dependent activation of p53 and epithelial cell apoptosis in diabetes. J Biol Chem. 2010;285(48):37503–37512.
    1. Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res. 2010;316(17):2903–2909.
    1. Nguyen PD, Tutela JP, Thanik VD, Knobel D, Allen RJ, Jr, Chang CC, Levine JP. et al. Improved diabetic wound healing through topical silencing of p53 is associated with augmented vasculogenic mediators. Wound Repair Regen. 2010;18(6):553–559.
    1. Morimoto Y, Bando YK, Shigeta T, Monji A, Murohara T. Atorvastatin prevents ischemic limb loss in type 2 diabetes: role of p53. J Atheroscler Thromb. 2011;18(3):200–208.
    1. Manca Bitti ML, Saccucci P, Bottini E, Gloria-Bottini F. p53 codon 72 polymorphism and type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2010;23(3):291–292.
    1. Lo PK, Chen JY, Tang PP, Lin J, Lin CH, Su LT, Wu CH. et al. Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53. J Biol Chem. 2001;276(40):37186–37193.
    1. McLure KG, Takagi M, Kastan MB. NAD+ modulates p53 DNA binding specificity and function. Mol Cell Biol. 2004;24(22):9958–9967.
    1. Yang Z, Ge J, Yin W, Shen H, Liu H, Guo Y. [The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure] Yan Ke Xue Bao. 2004;20(4):259–263.
    1. Berrone E, Beltramo E, Solimine C, Ape AU, Porta M. Regulation of intracellular glucose and polyol pathway by thiamine and benfotiamine in vascular cells cultured in high glucose. J Biol Chem. 2006;281(14):9307–9313.
    1. Karachalias N, Babaei-Jadidi R, Rabbani N, Thornalley PJ. Increased protein damage in renal glomeruli, retina, nerve, plasma and urine and its prevention by thiamine and benfotiamine therapy in a rat model of diabetes. Diabetologia. 2010;53(7):1506–1516.
    1. Karachalias N, Babaei-Jadidi R, Kupich C, Ahmed N, Thornalley PJ. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci. 2005;1043:777–783.
    1. Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol. 1991;261(4 Pt 2):F571–577.
    1. Babaei-Jadidi R, Karachalias N, Ahmed N, Battah S, Thornalley PJ. Prevention of incipient diabetic nephropathy by high-dose thiamine and benfotiamine. Diabetes. 2003;52(8):2110–2120.
    1. Kohda Y, Kanematsu M, Kono T, Terasaki F, Tanaka T. Protein O-glycosylation induces collagen expression and contributes to diabetic cardiomyopathy in rat cardiac fibroblasts. J Pharmacol Sci. 2009;111(4):446–450.
    1. Marsh SA, Dell'Italia LJ, Chatham JC. Activation of the hexosamine biosynthesis pathway and protein O-GlcNAcylation modulate hypertrophic and cell signaling pathways in cardiomyocytes from diabetic mice. Amino Acids. 2011;40(3):819–828.
    1. Kohda Y, Shirakawa H, Yamane K, Otsuka K, Kono T, Terasaki F, Tanaka T. Prevention of incipient diabetic cardiomyopathy by high-dose thiamine. J Toxicol Sci. 2008;33(4):459–472.
    1. Hakim AM, Pappius HM. The effect of thiamine deficiency on local cerebral glucose utilization. Ann Neurol. 1981;9(4):334–339.
    1. Hakim AM, Carpenter S, Pappius HM. Metabolic and histological reversibility of thiamine deficiency. J Cereb Blood Flow Metab. 1983;3(4):468–477.
    1. Anderson JW. Dietary fiber and diabetes: what else do we need to know? Diabetes Res Clin Pract. 1992;17(2):71–73.
    1. Baum RA, Iber FL. Thiamin--the interaction of aging, alcoholism, and malabsorption in various populations. World Rev Nutr Diet. 1984;44:85–116.
    1. Bakker SJ, Hoogeveen EK, Nijpels G, Kostense PJ, Dekker JM, Gans RO, Heine RJ. The association of dietary fibres with glucose tolerance is partly explained by concomitant intake of thiamine: the Hoorn Study. Diabetologia. 1998;41(10):1168–1175.
    1. Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Ramirez-Ramirez V, Ramos-Zavala MG. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in drug-naive patients with type 2 diabetes. Eur J Nutr. 2011;50(2):145–149.
    1. Nikolic A, Kacar A, Lavrnic D, Basta I, Apostolski S. [The effect of benfothiamine in the therapy of diabetic polyneuropathy] Srp Arh Celok Lek. 2009;137(11-12):594–600.
    1. Prasannan KG, Sundaresan R, Venkatesan D. Thiamine deficency and protein secretion by pancreatic slices in vitro. Experientia. 1977;33(2):169–170.
    1. Mee L, Nabokina SM, Sekar VT, Subramanian VS, Maedler K, Said HM. Pancreatic beta cells and islets take up thiamin by a regulated carrier-mediated process: studies using mice and human pancreatic preparations. Am J Physiol Gastrointest Liver Physiol. 2009;297(1):G197–206.
    1. Rathanaswami P, Pourany A, Sundaresan R. Effects of thiamine deficiency on the secretion of insulin and the metabolism of glucose in isolated rat pancreatic islets. Biochem Int. 1991;25(3):577–583.
    1. Debski B, Kuryl T, Gralak MA, Pierzynowska J, Drywien M. Effect of inulin and oligofructose enrichment of the diet on rats suffering thiamine deficiency. J Anim Physiol Anim Nutr (Berl) 2011;95(3):335–342.
    1. Ascher E, Gade PV, Hingorani A, Puthukkeril S, Kallakuri S, Scheinman M, Jacob T. Thiamine reverses hyperglycemia-induced dysfunction in cultured endothelial cells. Surgery. 2001;130(5):851–858.
    1. Beltramo E, Berrone E, Buttiglieri S, Porta M. Thiamine and benfotiamine prevent increased apoptosis in endothelial cells and pericytes cultured in high glucose. Diabetes Metab Res Rev. 2004;20(4):330–336.
    1. Arora S, Lidor A, Abularrage CJ, Weiswasser JM, Nylen E, Kellicut D, Sidawy AN. Thiamine (vitamin B1) improves endothelium-dependent vasodilatation in the presence of hyperglycemia. Ann Vasc Surg. 2006;20(5):653–658.
    1. Wong CY, Qiuwaxi J, Chen H, Li SW, Chan HT, Tam S, Shu XO. et al. Daily intake of thiamine correlates with the circulating level of endothelial progenitor cells and the endothelial function in patients with type II diabetes. Mol Nutr Food Res. 2008;52(12):1421–1427.
    1. Gadau S, Emanueli C, Van Linthout S, Graiani G, Todaro M, Meloni M, Campesi I. et al. Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia. 2006;49(2):405–420.
    1. Katare R, Caporali A, Emanueli C, Madeddu P. Benfotiamine improves functional recovery of the infarcted heart via activation of pro-survival G6PD/Akt signaling pathway and modulation of neurohormonal response. J Mol Cell Cardiol. 2010;49(4):625–638.
    1. Ceylan-Isik AF, Wu S, Li Q, Li SY, Ren J. High-dose benfotiamine rescues cardiomyocyte contractile dysfunction in streptozotocin-induced diabetes mellitus. J Appl Physiol. 2006;100(1):150–156.
    1. Katare RG, Caporali A, Oikawa A, Meloni M, Emanueli C, Madeddu P. Vitamin B1 analog benfotiamine prevents diabetes-induced diastolic dysfunction and heart failure through Akt/Pim-1-mediated survival pathway. Circ Heart Fail. 2010;3(2):294–305.
    1. Babaei-Jadidi R, Karachalias N, Kupich C, Ahmed N, Thornalley PJ. High-dose thiamine therapy counters dyslipidaemia in streptozotocin-induced diabetic rats. Diabetologia. 2004;47(12):2235–2246.
    1. Alkhalaf A, Klooster A, van Oeveren W, Achenbach U, Kleefstra N, Slingerland RJ, Mijnhout GS. et al. A double-blind, randomized, placebo-controlled clinical trial on benfotiamine treatment in patients with diabetic nephropathy. Diabetes Care. 2010;33(7):1598–1601.
    1. Schmid U, Stopper H, Heidland A, Schupp N. Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab Res Rev. 2008;24(5):371–377.
    1. Rabbani N, Alam SS, Riaz S, Larkin JR, Akhtar MW, Shafi T, Thornalley PJ. High-dose thiamine therapy for patients with type 2 diabetes and microalbuminuria: a randomised, double-blind placebo-controlled pilot study. Diabetologia. 2009;52(2):208–212.
    1. Sanchez-Ramirez GM, Caram-Salas NL, Rocha-Gonzalez HI, Vidal-Cantu GC, Medina-Santillan R, Reyes-Garcia G, Granados-Soto V. Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol. 2006;530(1-2):48–53.
    1. Riaz S, Skinner V, Srai SK. Effect of high dose thiamine on the levels of urinary protein biomarkers in diabetes mellitus type 2. J Pharm Biomed Anal. 2011;54(4):817–825.
    1. Stracke H, Gaus W, Achenbach U, Federlin K, Bretzel RG. Benfotiamine in diabetic polyneuropathy (BENDIP): results of a randomised, double blind, placebo-controlled clinical study. Exp Clin Endocrinol Diabetes. 2008;116(10):600–605.
    1. Yenilmez A, Ozcifci M, Aydin Y, Turgut M, Uzuner K, Erkul A. Protective effect of high-dose thiamine (B1) on rat detrusor contractility in streptozotocin-induced diabetes mellitus. Acta Diabetol. 2006;43(4):103–108.
    1. Kinoshita JH. Aldose reductase in the diabetic eye. XLIII Edward Jackson memorial lecture. Am J Ophthalmol. 1986;102(6):685–692.
    1. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53(9):2404–2411.
    1. Beltramo E, Berrone E, Tarallo S, Porta M. Different apoptotic responses of human and bovine pericytes to fluctuating glucose levels and protective role of thiamine. Diabetes Metab Res Rev. 2009;25(6):566–576.
    1. Sax CM, Salamon C, Kays WT, Guo J, Yu FX, Cuthbertson RA, Piatigorsky J. Transketolase is a major protein in the mouse cornea. J Biol Chem. 1996;271(52):33568–33574.
    1. Tarallo S, Beltramo E, Berrone E, Dentelli P, Porta M. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells. Acta Diabetol. 2010;47(2):105–111.
    1. Beltramo E, Nizheradze K, Berrone E, Tarallo S, Porta M. Thiamine and benfotiamine prevent apoptosis induced by high glucose-conditioned extracellular matrix in human retinal pericytes. Diabetes Metab Res Rev. 2009;25(7):647–656.
    1. Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, Borch-Johnsen K. et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst. 1997;89(18):1360–1365.
    1. Blasiak J, Arabski M, Krupa R, Wozniak K, Zadrozny M, Kasznicki J, Zurawska M. et al. DNA damage and repair in type 2 diabetes mellitus. Mutat Res. 2004;554(1-2):297–304.
    1. Shimoi K, Okitsu A, Green MH, Lowe JE, Ohta T, Kaji K, Terato H. et al. Oxidative DNA damage induced by high glucose and its suppression in human umbilical vein endothelial cells. Mutat Res. 2001;480-481:371–378.
    1. Zhang Y, Zhou J, Wang T, Cai L. High level glucose increases mutagenesis in human lymphoblastoid cells. Int J Biol Sci. 2007;3(6):375–379.
    1. Schupp N, Dette EM, Schmid U, Bahner U, Winkler M, Heidland A, Stopper H. Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(3):283–291.

Source: PubMed

3
Suscribir