The use of erythropoiesis-stimulating agents with ruxolitinib in patients with myelofibrosis in COMFORT-II: an open-label, phase 3 study assessing efficacy and safety of ruxolitinib versus best available therapy in the treatment of myelofibrosis

Mary Frances McMullin, Claire N Harrison, Dietger Niederwieser, Hilde Demuynck, Nadja Jäkel, Prashanth Gopalakrishna, Mari McQuitty, Viktoriya Stalbovskaya, Christian Recher, Koen Theunissen, Heinz Gisslinger, Jean-Jacques Kiladjian, Haifa-Kathrin Al-Ali, Mary Frances McMullin, Claire N Harrison, Dietger Niederwieser, Hilde Demuynck, Nadja Jäkel, Prashanth Gopalakrishna, Mari McQuitty, Viktoriya Stalbovskaya, Christian Recher, Koen Theunissen, Heinz Gisslinger, Jean-Jacques Kiladjian, Haifa-Kathrin Al-Ali

Abstract

Background: Anemia is considered a negative prognostic risk factor for survival in patients with myelofibrosis. Most patients with myelofibrosis are anemic, and 35-54 % present with anemia at diagnosis. Ruxolitinib, a potent inhibitor of Janus kinase (JAK) 1 and JAK2, was associated with an overall survival benefit and improvements in splenomegaly and patient-reported outcomes in patients with myelofibrosis in the two phase 3 COMFORT studies. Consistent with the ruxolitinib mechanism of action, anemia was a frequently reported adverse event. In clinical practice, anemia is sometimes managed with erythropoiesis-stimulating agents (ESAs). This post hoc analysis evaluated the safety and efficacy of concomitant ruxolitinib and ESA administration in patients enrolled in COMFORT-II, an open-label, phase 3 study comparing the efficacy and safety of ruxolitinib with best available therapy for treatment of myelofibrosis. Patients were randomized (2:1) to receive ruxolitinib 15 or 20 mg twice daily or best available therapy. Spleen volume was assessed by magnetic resonance imaging or computed tomography scan.

Results: Thirteen of 146 ruxolitinib-treated patients had concomitant ESA administration (+ESA). The median exposure to ruxolitinib was 114 weeks in the +ESA group and 111 weeks in the overall ruxolitinib arm; the median ruxolitinib dose intensity was 33 mg/day for each group. Six weeks before the first ESA administration, 10 of the 13 patients had grade 3/4 hemoglobin abnormalities. These had improved to grade 2 in 7 of the 13 patients by 6 weeks after the first ESA administration. The rate of packed red blood cell transfusions per month within 12 weeks before and after first ESA administration remained the same in 1 patient, decreased in 2 patients, and increased in 3 patients; 7 patients remained transfusion independent. Reductions in splenomegaly were observed in 69 % of evaluable patients (9/13) following first ESA administration.

Conclusions: Concomitant use of an ESA with ruxolitinib was well tolerated and did not affect the efficacy of ruxolitinib. Further investigations evaluating the effects of ESAs to alleviate anemia in ruxolitinib-treated patients are warranted (ClinicalTrials.gov identifier, NCT00934544; July 6, 2009).

Keywords: Anemia management; ESA; Erythropoiesis-stimulating agents; Myelofibrosis; Ruxolitinib.

References

    1. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–2901. doi: 10.1182/blood-2008-07-170449.
    1. Cervantes F, Martinez-Trillos A. Myelofibrosis: an update on current pharmacotherapy and future directions. Expert Opin Pharmacother. 2013;14:873–884. doi: 10.1517/14656566.2013.783019.
    1. Levine RL, Gilliland DG. Myeloproliferative disorders. Blood. 2008;112:2190–2198. doi: 10.1182/blood-2008-03-077966.
    1. Mesa RA. Assessing new therapies and their overall impact in myelofibrosis. Hematology Am Soc Hematol Educ Prog. 2010;2010:115–121. doi: 10.1182/asheducation-2010.1.115.
    1. Jatiani SS, Baker SJ, Silverman LR, Reddy EP. JAK/STAT pathways in cytokine signaling and myeloproliferative disorders: approaches for targeted therapies. Genes Cancer. 2010;1:979–993. doi: 10.1177/1947601910397187.
    1. Tefferi A. Primary myelofibrosis: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol. 2013;88:141–150. doi: 10.1002/ajh.23384.
    1. Mughal TI, Vaddi K, Sarlis NJ, Verstovsek S. Myelofibrosis-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. Int J Gen Med. 2014;7:89–101.
    1. Guglielmelli P, Vannucchi AM. Struggling with myelofibrosis-associated anemia. Leuk Res. 2013;37:1429–1431. doi: 10.1016/j.leukres.2013.08.008.
    1. Tefferi A, Lasho TL, Jimma T, Finke CM, Gangat N, Vaidya R, et al. One thousand patients with primary myelofibrosis: the Mayo Clinic experience. Mayo Clin Proc. 2012;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001.
    1. Harrison C, Mesa R, Ross D, Mead A, Keohane C, Gotlib J, et al. Practical management of patients with myelofibrosis receiving ruxolitinib. Expert Rev Hematol. 2013;6(5):511–523. doi: 10.1586/17474086.2013.827413.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. doi: 10.1056/NEJMoa1110557.
    1. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–798. doi: 10.1056/NEJMoa1110556.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100:479–488. doi: 10.3324/haematol.2014.115840.
    1. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013;122:4047–4053. doi: 10.1182/blood-2013-02-485888.
    1. Rizzo JD, Brouwers M, Hurley P, Seidenfeld J, Arcasoy MO, Spivak JL, et al. American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. Blood. 2010;116(20):4045–4059. doi: 10.1182/blood-2010-08-300541.
    1. Huang J, Tefferi A. Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level. Eur J Haematol. 2009;83:154–155. doi: 10.1111/j.1600-0609.2009.01266.x.
    1. Cervantes F, Alvarez-Larran A, Hernandez-Boluda JC, Sureda A, Granell M, Vallansot R, et al. Darbepoetin-alpha for the anaemia of myelofibrosis with myeloid metaplasia. Br J Haematol. 2006;134:184–186. doi: 10.1111/j.1365-2141.2006.06142.x.
    1. Tsiara SN, Chaidos A, Bourantas LK, Kapsali HD, Bourantas KL. Recombinant human erythropoietin for the treatment of anaemia in patients with chronic idiopathic myelofibrosis. Acta Haematol. 2007;117:156–161. doi: 10.1159/000097463.
    1. Tefferi A. How I treat myelofibrosis. Blood. 2011;117:3494–3504. doi: 10.1182/blood-2010-11-315614.
    1. Elliott S, Pham E, Macdougall IC. Erythropoietins: a common mechanism of action. Exp Hematol. 2008;36:1573–1584. doi: 10.1016/j.exphem.2008.08.003.
    1. Mesa RA, Cortes J. Optimizing management of ruxolitinib in patients with myelofibrosis: the need for individualized dosing. J Hematol Oncol. 2013;6:79–85. doi: 10.1186/1756-8722-6-79.
    1. Quintas-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Nat Rev Drug Discov. 2011;10:127–140. doi: 10.1038/nrd3264.
    1. Gotlib J. JAK inhibition in the myeloproliferative neoplasms: lessons learned from the bench and bedside. Hematology Am Soc Hematol Educ Prog. 2013;2013:529–537. doi: 10.1182/asheducation-2013.1.529.

Source: PubMed

3
Suscribir