Effects of idebenone on color vision in patients with leber hereditary optic neuropathy

Guenther Rudolph, Konstantinos Dimitriadis, Boriana Büchner, Suzette Heck, Jasmina Al-Tamami, Florian Seidensticker, Christian Rummey, Mika Leinonen, Thomas Meier, Thomas Klopstock, Guenther Rudolph, Konstantinos Dimitriadis, Boriana Büchner, Suzette Heck, Jasmina Al-Tamami, Florian Seidensticker, Christian Rummey, Mika Leinonen, Thomas Meier, Thomas Klopstock

Abstract

Background: The authors investigated the correlation of protan and tritan color vision with disease characteristics in Leber hereditary optic neuropathy (LHON). The authors also characterized the therapeutic potential of idebenone in protecting patients from developing dyschromatopsia in LHON.

Methods: Color contrast data of 39 LHON patients participating in a randomized, double-blind placebo-controlled intervention study were evaluated. Patients reported disease onset <5 years before enrolment and were genetically confirmed. Protan and tritan color contrast sensitivity was measured using a computer graphics method in patients receiving idebenone (Catena; 900 mg/d; N = 28) or placebo (N = 11) for 6 months.

Results: Mean age of patients was 28.1 years, 87.2% were men, 76.9% carried the m11778G>A mutation, and mean duration since onset was 2 years. Assessing protan and tritan color vision at baseline revealed a high degree of color confusion even in young patients (<25 years) and with a short history of disease (<1 year). Treatment with idebenone improved tritan color vision compared with placebo (P = 0.008 at week 24); a similar trend was seen for protan. The effect of idebenone was most prominent in patients with discordant visual acuity (interocular difference of logMAR >0.2). In this subgroup, the treatment effect at week 24 was 20.4% (P = 0.005) in favor of idebenone for the tritan color domain and 13.5% (P = 0.067) for the protan domain.

Conclusion: This study confirms that protan and tritan color confusion is an early symptom in LHON. Treatment with idebenone can protect from loss of color vision, particularly in patients who are at imminent risk of further vision loss.

Conflict of interest statement

C. Rummey and T. Meier are regular employees of Santhera Pharmaceuticals (Liestal, Switzerland), the sponsor of the study. T. Klopstock received research support for this and other studies from Santhera Pharmaceuticals. He also has received research support from government entities (Deutsche Forschungsgemeinschaft, Bundesministerium für Bildung und Forschung, European Commission 7th Framework Programme) and from commercial entities (Santhera Pharmaceuticals; Actelion Pharmaceuticals, Ltd; H. Lundbeck A/S). T. Klopstock serves on scientific advisory boards for commercial entities (Santhera Pharmaceuticals; Actelion Pharmaceuticals, Ltd) and for nonprofit entities (Center for Rare Diseases, Bonn, Germany; Hoffnungsbaum e.V., Germany). He has received speaker honoraria and travel costs from commercial entities (Dr. Willmar Schwabe GmbH & Co. KG; Eisai Japan; Santhera Pharmaceuticals; Actelion Pharmaceuticals, Ltd) and performs consultancies for the Gerson Lehrman Group, USA.

Figures

FIG. 1
FIG. 1
Distribution of color contrast sensitivities for Leber hereditary optic neuropathy patients at baseline of the Rescue of Hereditary Optic Disease Outpatient Study show markedly elevated color confusion for protan (A) and tritan (B) color domains. C. Correlation of protan and tritan color confusion levels for all eyes (data points are slightly jittered for clarity). Note that many eyes had color confusion of >90% in both color domains resulting in a dense cluster of data points at the upper right hand corner of the graph.
FIG. 2
FIG. 2
Relationship between color contrast sensitivities and age (A, B), disease duration (C, D), and visual acuity (E, F) at baseline of the Rescue of Hereditary Optic Disease Outpatient Study. Each dot represents one eye. Data are shown for the protan (A, C, D) and tritan (B, D, F) color domains. Data points in all graphs are slightly jittered for clarity.

References

    1. Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011; 30: 81– 114
    1. Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010; 55: 299– 334
    1. Sadun AA, La Morgia C, Carelli V. Leber's hereditary optic neuropathy. Curr Treat Options Neurol. 2011; 13: 109– 117
    1. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004; 23: 53– 89
    1. Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber's hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc. 2000; 98: 223– 232
    1. Grigsby SS, Vingrys AJ, Benes SC, King-Smith PE. Correlation of chromatic, spatial, and temporal sensitivity in optic nerve disease. Invest Ophthalmol Vis Sci. 1991; 32: 3252– 3262
    1. Ventura DF, Gualtieri M, Oliveira AGF, Costa MF, Quiros P, Sadun F, de Negri AM, Salomao SR, Berezovsky A, Sherman J, Sadun AA, Valerio Carelli V. Male prevalence of acquired color vision defects in asymptomatic carriers of Leber's hereditary optic neuropathy. Invest Ophthalmol Vis Sci. 2007; 48: 2362– 2370
    1. Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet. 1995; 57: 77– 86
    1. Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber's hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain. 1995; 118: 319– 337
    1. Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M. Caspase-independent death of Leber's hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and endonuclease G. Apoptosis. 2005; 10: 997– 1007
    1. Baracca A, Solaini G, Sgarbi G, Lenaz G, Baruzzi A, Schapira AHV, Martinuzzi A, Carelli V. Severe impairment of complex I-driven adenosine triphosphate synthesis in Leber hereditary optic neuropathy cybrids. Arch Neurol. 2005; 62: 730– 736
    1. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009; 46: 145– 158
    1. Spruijt L, Kolbach DN, de Coo RF, Plomp A, Bauer NJ, Smeets HJ, De Die-Smulders C. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am J Ophthalmol. 2006; 141: 676– 682
    1. Mashima Y, Hiida Y, Oguchi Y. Remission of Leber's hereditary optic neuropathy with idebenone. Lancet. 1992; 340: 368– 369
    1. Carelli V, Barboni P, Zacchini A, Mancini R, Monari L, Cevoli S, Liguori R, Sensi M, Lugaresi E, Montagna P. Leber's hereditary optic neuropathy (LHON) with 14484/ND6 mutation in a North African patient. J Neurol Sci. 1998; 160: 183– 188
    1. Carelli V, Valentino ML, Liguori R, Meletti S, Vetrugno R, Provini F, Mancardi GL, Bandini F, Baruzzi A, Montagna P. Leber's hereditary optic neuropathy (LHON/11778) with myoclonus: report of two cases. J Neurol Neurosurg Psychiatry. 2001; 71: 813– 816
    1. Cortelli P, Montagna P, Pierangeli G, Lodi R, Barboni P, Liguori R, Carelli V, Iotti S, Zaniol P, Lugaresi E, Barbiroli B. Clinical and brain bioenergetics improvement with idebenone in a patient with Leber's hereditary optic neuropathy: a clinical and 31P-MRS study. J Neurol Sci. 1997; 148: 25– 31
    1. Mashima Y, Kigasawa K, Wakakura M, Yoshihisa O. Do idebenone and vitamin therapy shorten the time to achieve visual recovery in Leber hereditary optic neuropathy? J Neuroophthalmol. 2000; 20: 166– 170
    1. Klopstock T, Yu-Wai-Man P, Dimitriadis K, Rouleau J, Heck S, Bailie M, Atawan A, Chattopadhyay S, Schubert M, Garip A, Kernt M, Petraki D, Rummey C, Leinonen M, Metz G, Griffiths PG, Meier T, Chinnery PF. A randomized placebo-controlled trial of idebenone in Leber's hereditary optic neuropathy. Brain. 2011; 134: 2677– 2686
    1. Carelli V, La Morgia C, Valentino ML, Rizzo G, Carbonelli M, De Negri AM, Sadun F, Carta A, Guerriero S, Simonelli F, Sadun AA, Aggarwal D, Liguori R, Avoni P, Baruzzi A, Zeviani M, Montagna P, Barboni P. Idebenone treatment in Leber's hereditary optic neuropathy. Brain. 2011; 134: e188.
    1. Arden GB, Wolf JE. Colour vision testing as an aid to diagnosis and management of age related maculopathy. Br J Ophthalmol. 2004; 88: 1180– 1185
    1. Quiros PA, Torres RJ, Salomao S, Berezovsky A, Carelli V, Sherman J, Sadun F, De Negri A, Belfort R, Sadun AA. Colour vision defects in asymptomatic carriers of the Leber's hereditary optic neuropathy (LHON) mtDNA 11778 mutation from a large Brazilian LHON pedigree: a case-control study. Br J Ophthalmol. 2006; 90: 150– 153
    1. Haefeli RH, Erb M, Gemperli AC, Robay D, Courdier-Fruh I, Anklin C, Dallmann R, Gueven N. NQO1-dependent redox cycling of idebenone: effects on cellular redox potential and energy levels. PLoS One. 2011; 6: e17963.
    1. Barboni P, Savini G, Valentino ML, Montagna P, Cortelli P, De Negri AM, Sadun F, Bianchi S, Longanesi L, Zanini M, di Vivo A, Carelli V. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber's hereditary optic neuropathy. Ophthalmology. 2005; 112: 120– 126
    1. Barboni P, Carbonelli M, Savini G, do Ramos C, Carta A, Berezovsky A, Salomao SR, Carelli V, Sadun AA. Natural history of Leber's hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology. 2010; 117: 623– 627

Source: PubMed

3
Suscribir