Olfactory function is associated with cognitive performance: results from the population-based LIFE-Adult-Study

Maryam Yahiaoui-Doktor, Tobias Luck, Steffi G Riedel-Heller, Markus Loeffler, Kerstin Wirkner, Christoph Engel, Maryam Yahiaoui-Doktor, Tobias Luck, Steffi G Riedel-Heller, Markus Loeffler, Kerstin Wirkner, Christoph Engel

Abstract

Background: Studies in older adults or those with cognitive impairment have shown associations between cognitive and olfactory performance, but there are few population-based studies especially in younger adults. We therefore cross-sectionally analyzed this association using data from the population-based LIFE-Adult-Study.

Methods: Cognitive assessments comprised tests from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD): verbal fluency (VF), word list learning and recall (WLL, WLR), and the Trail Making Tests (TMT) A and B. The "Sniffin' Sticks Screening 12" test was used to measure olfactory performance. Linear regression analyses were performed to determine associations between the number of correctly identified odors (0 to 12) and the five cognitive test scores, adjusted for sex, age, education, and the presence of depressive symptoms. Receiver operating characteristic (ROC) analysis was carried out to determine the discriminative performance of the number of correctly identified odors regarding identification of cognition impairment.

Results: A total of 6783 participants (51.3% female) completed the olfaction test and the VF test and TMT. A subgroup of 2227 participants (46.9% female) also completed the WLL and WLR tests. Based on age-, sex-, and education-specific norms from CERAD, the following numbers of participants were considered cognitively impaired: VF 759 (11.2%), WLL 242 (10.9%), WLR: 132 (5.9%), TMT-A 415 (6.1%), and TMT-B/A ratio 677 (10.0%). On average, score values for VF were higher by 0.42 points (p < 0.001), for WLL higher by 0.32 points (p = 0.001), for WLR higher by 0.31 points (p = 0.002), for TMT-A lower by 0.25 points (p < 0.001), and for TMT-B/A ratio lower by 0.01 points (p < 0.001) per number of correctly identified odors. ROC analysis revealed area under the curve values from 0.55 to 0.62 for the five cognitive tests.

Conclusions: Better olfactory performance was associated with better cognitive performance in all five tests in adults - adjusted for age, sex, education, and the presence of depressive symptoms. However, the ability of the smell test to discriminate between individuals with and without cognitive impairment was limited. The value of olfactory testing in early screening for cognitive impairment should be investigated in longitudinal studies.

Keywords: Cognition; Cross-sectional; General population; Olfactory function.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the ethics committee at the Medical Faculty of the University of Leipzig and complies with the ethical standards of the Declaration of Helsinki.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Association of olfactory performance and cognitive performance

References

    1. Marigliano V, Gualdi G, Servello A, Marigliano B, Volpe LD, Fioretti A, et al. Olfactory deficit and hippocampal volume loss for early diagnosis of Alzheimer disease: a pilot study. Alzheimer Dis Assoc Disord. 2014;28(2):194–197. doi: 10.1097/WAD.0b013e31827bdb9f.
    1. Growdon ME, Schultz AP, Dagley AS, Amariglio RE, Hedden T, Rentz DM, et al. Odor identification and Alzheimer disease biomarkers in clinically normal elderly. Neurology. 2015;84(21):2153–2160. doi: 10.1212/WNL.0000000000001614.
    1. Maurage P, Callot C, Chang B, Philippot P, Rombaux P, de Timary P. Olfactory impairment is correlated with confabulation in alcoholism: towards a multimodal testing of orbitofrontal cortex. PLoS One. 2011;6(8):e23190. doi: 10.1371/journal.pone.0023190.
    1. Rupp CI, Fleischhacker WW, Drexler A, Hausmann A, Hinterhuber H, Kurz M. Executive function and memory in relation to olfactory deficits in alcohol-dependent patients. Alcohol Clin Exp Res. 2006;30(8):1355–1362. doi: 10.1111/j.1530-0277.2006.00162.x.
    1. Seligman SC, Kamath V, Giovannetti T, Arnold SE, Moberg PJ. Olfaction and apathy in Alzheimer’s disease, mild cognitive impairment, and healthy older adults. Aging Ment Health. 2013;17(5):564–570. doi: 10.1080/13607863.2013.768208.
    1. Passali GC, Politi L, Crisanti A, Loglisci M, Anzivino R, Passali D. Tau protein detection in anosmic Alzheimer’s disease patient’s nasal secretions. Chemosens Percept. 2015;8(4):201–206. doi: 10.1007/s12078-015-9198-3.
    1. Reijs BLR, Ramakers I, Elias-Sonnenschein L, Teunissen CE, Koel-Simmelink M, Tsolaki M, et al. Relation of odor identification with Alzheimer's disease markers in cerebrospinal fluid and cognition. J Alzheimers Dis. 2017;60(3):1025–1034. doi: 10.3233/JAD-170564.
    1. Eibenstein A, Fioretti AB, Simaskou MN, Sucapane P, Mearelli S, Mina C, et al. Olfactory screening test in mild cognitive impairment. Neurol Sci. 2005;26(3):156–160. doi: 10.1007/s10072-005-0453-2.
    1. Laakso MP, Tervo S, Hanninen T, Vanhanen M, Hallikainen M, Soininen H. Olfactory identification in non-demented elderly population and in mild cognitive impairment: a comparison of performance in clinical odor identification versus Boston Naming Test. J Neural Transm (Vienna) 2009;116(7):891–895. doi: 10.1007/s00702-009-0235-8.
    1. Orasji SS, Mulder JL, de Bruijn SF, Wirtz PW. Olfactory dysfunction in behavioral variant frontotemporal dementia. Clin Neurol Neurosurg. 2016;141:106–110. doi: 10.1016/j.clineuro.2016.01.003.
    1. Ottaviano G, Frasson G, Nardello E, Martini A. Olfaction deterioration in cognitive disorders in the elderly. Aging Clin Exp Res. 2016;28(1):37–45. doi: 10.1007/s40520-015-0380-x.
    1. Roalf DR, Moberg MJ, Turetsky BI, Brennan L, Kabadi S, Wolk DA, et al. A quantitative meta-analysis of olfactory dysfunction in mild cognitive impairment. J Neurol Neurosurg Psychiatry. 2017;88(3):226–232. doi: 10.1136/jnnp-2016-314638.
    1. Roberts RO, Christianson TJ, Kremers WK, Mielke MM, Machulda MM, Vassilaki M, et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurol. 2016;73(1):93–101. doi: 10.1001/jamaneurol.2015.2952.
    1. Streit S, Limacher A, Zeller A, Burge M. Detecting dementia in patients with normal neuropsychological screening by short smell test and palmo-mental reflex test: an observational study. BMC Geriatr. 2015;15:90. doi: 10.1186/s12877-015-0094-0.
    1. Wongrakpanich S, Petchlorlian A, Rosenzweig A. Sensorineural organs dysfunction and cognitive decline: a review article. Aging Dis. 2016;7(6):763–769. doi: 10.14336/AD.2016.0515.
    1. Sohrabi HR, Bates KA, Weinborn MG, Johnston AN, Bahramian A, Taddei K, et al. Olfactory discrimination predicts cognitive decline among community-dwelling older adults. Transl Psychiatry. 2012;2:e118. doi: 10.1038/tp.2012.43.
    1. Adams DR, Kern DW, Wroblewski KE, McClintock MK, Dale W, Pinto JM. Olfactory dysfunction predicts subsequent dementia in older U.S. adults. J Am Geriatr Soc. 2018;66(1):140–144. doi: 10.1111/jgs.15048.
    1. Lafaille-Magnan ME, Poirier J, Etienne P, Tremblay-Mercier J, Frenette J, Rosa-Neto P, et al. Odor identification as a biomarker of preclinical AD in older adults at risk. Neurology. 2017;89(4):327–335. doi: 10.1212/WNL.0000000000004159.
    1. Schubert CR, Cruickshanks KJ, Fischer ME, Chen Y, Klein BEK, Klein R, et al. Sensory impairments and cognitive function in middle-aged adults. J Gerontol A Biol Sci Med Sci. 2017;72(8):1087–1090. doi: 10.1093/gerona/glx067.
    1. Devanand DP, Lee S, Manly J, Andrews H, Schupf N, Doty RL, et al. Olfactory deficits predict cognitive decline and Alzheimer dementia in an urban community. Neurology. 2015;84(2):182–189. doi: 10.1212/WNL.0000000000001132.
    1. Suzuki Y, Yamamoto S, Umegaki H, Onishi J, Mogi N, Fujishiro H, et al. Smell identification test as an indicator for cognitive impairment in Alzheimer’s disease. Int J Geriatr Psychiatry. 2004;19(8):727–733. doi: 10.1002/gps.1161.
    1. Larsson M, Nilsson LG, Olofsson JK, Nordin S. Demographic and cognitive predictors of cued odor identification: evidence from a population-based study. Chem Senses. 2004;29(6):547–554. doi: 10.1093/chemse/bjh059.
    1. Stanciu I, Larsson M, Nordin S, Adolfsson R, Nilsson LG, Olofsson JK. Olfactory impairment and subjective olfactory complaints independently predict conversion to dementia: a longitudinal, population-based study. J Int Neuropsychol Soc. 2014;20(2):209–217. doi: 10.1017/S1355617713001409.
    1. Tebrugge S, Winkler A, Gerards D, Weimar C, Moebus S, Jockel KH, et al. Olfactory function is associated with cognitive performance: results of the Heinz Nixdorf Recall Study. J Alzheimers Dis. 2018;63(1):319–329. doi: 10.3233/JAD-170863.
    1. Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, et al. The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health. 2015;15:691. doi: 10.1186/s12889-015-1983-z.
    1. Hummel T, Kobal G, Gudziol H, Mackay-Sim A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. Eur Arch Otorhinolaryngol. 2007;264(3):237–243. doi: 10.1007/s00405-006-0173-0.
    1. Hummel T, Konnerth CG, Rosenheim K, Kobal G. Screening of olfactory function with a four-minute odor identification test: reliability, normative data, and investigations in patients with olfactory loss. Ann Otol Rhinol Laryngol. 2001;110(10):976–981. doi: 10.1177/000348940111001015.
    1. Reitan RM. Trail making test: manual for administration and scoring. Tucson: Reitan Neuropsychology Laboratory; 1992.
    1. Luck T, Pabst A, Rodriguez FS, Schroeter ML, Witte V, Hinz A, et al. Age-, sex-, and education-specific norms for an extended CERAD neuropsychological assessment battery-results from the population-based LIFE-Adult-Study. Neuropsychol. 2018;32(4):461–475. doi: 10.1037/neu0000440.
    1. Rumeau C, Nguyen DT, Jankowski R. How to assess olfactory performance with the Sniffin’ Sticks test((R)) Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(3):203–206. doi: 10.1016/j.anorl.2015.08.004.
    1. Ribeiro JC, Simoes J, Silva F, Silva ED, Hummel C, Hummel T, et al. Cultural adaptation of the Portuguese version of the “Sniffin’ Sticks” smell test: reliability, validity, and normative data. PLoS One. 2016;11(2):e0148937. doi: 10.1371/journal.pone.0148937.
    1. Fjaeldstad A, Kjaergaard T, Van Hartevelt TJ, Moeller A, Kringelbach ML, Ovesen T. Olfactory screening: validation of Sniffin’ Sticks in Denmark. Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands. Soc Oto-Rhino-Laryngol Cervico-Facial Surg. 2015;40(6):545–550.
    1. Silveira-Moriyama L, Sirisena D, Gamage P, Gamage R, de Silva R, Lees AJ. Adapting the Sniffin’ Sticks to diagnose Parkinson’s disease in Sri Lanka. Mov Disord. 2009;24(8):1229–1233. doi: 10.1002/mds.22545.
    1. Shu CH, Yuan BC, Lin SH, Lin CZ. Cross-cultural application of the “Sniffin’ Sticks” odor identification test. Am J Rhinol. 2007;21(5):570–573. doi: 10.2500/ajr.2007.21.3075.
    1. Hinz A, Luck T, Riedel-Heller SG, Herzberg PY, Rolffs C, Wirkner K, et al. Olfactory dysfunction: properties of the Sniffin’ Sticks Screening 12 test and associations with quality of life. Eur Arch Otorhinolaryngol. Eur Arch Otorhinolaryngol. 2019;276(2):389–95. doi: 10.1007/s00405-018-5210-2.
    1. Attems J, Walker L, Jellinger KA. Olfaction and aging: a mini-review. Gerontol. 2015;61(6):485–490. doi: 10.1159/000381619.
    1. Bennett S, Thomas AJ. Depression and dementia: cause, consequence or coincidence? Maturitas. 2014;79(2):184–190. doi: 10.1016/j.maturitas.2014.05.009.
    1. Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM. Prevalence of olfactory impairment in older adults. JAMA. 2002;288(18):2307–2312. doi: 10.1001/jama.288.18.2307.
    1. Falch T, Sandgren Massih S. The effect of education on cognitive ability. Econ Inq. 2011;49(3):838–856. doi: 10.1111/j.1465-7295.2010.00312.x.
    1. Le Carret N, Lafont S, Mayo W, Fabrigoule C. The effect of education on cognitive performances and its implication for the constitution of the cognitive reserve. Dev Neuropsychol. 2003;23(3):317–337. doi: 10.1207/S15326942DN2303_1.
    1. Mullol Joaquim, Alobid Isam, Mariño-Sánchez Franklin, Quintó Llorenç, de Haro Josep, Bernal-Sprekelsen Manuel, Valero Antonio, Picado Cèsar, Marin Concepció. Furthering the understanding of olfaction, prevalence of loss of smell and risk factors: a population-based survey (OLFACAT study) BMJ Open. 2012;2(6):e001256. doi: 10.1136/bmjopen-2012-001256.
    1. Shimada H, Park H, Makizako H, Doi T, Lee S, Suzuki T. Depressive symptoms and cognitive performance in older adults. J Psychiatr Res. 2014;57:149–156. doi: 10.1016/j.jpsychires.2014.06.004.
    1. Sorokowska A, Schriever VA, Gudziol V, Hummel C, Hahner A, Iannilli E, et al. Changes of olfactory abilities in relation to age: odor identification in more than 1400 people aged 4 to 80 years. Eur Arch Otorhinolaryngol. 2015;272(8):1937–1944. doi: 10.1007/s00405-014-3263-4.

Source: PubMed

3
Suscribir