Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury

Lynda M Murray, Maria Knikou, Lynda M Murray, Maria Knikou

Abstract

Targeted neuromodulation strategies that strengthen neuronal activity are in great need for restoring sensorimotor function after chronic spinal cord injury (SCI). In this study, we established changes in the motoneuron output of individuals with and without SCI after repeated noninvasive transspinal stimulation at rest over the thoracolumbar enlargement, the spinal location of leg motor circuits. Cases of motor incomplete and complete SCI were included to delineate potential differences when corticospinal motor drive is minimal. All 10 SCI and 10 healthy control subjects received daily monophasic transspinal stimuli of 1-ms duration at 0.2 Hz at right soleus transspinal evoked potential (TEP) subthreshold and suprathreshold intensities at rest. Before and two days after cessation of transspinal stimulation, we determined changes in TEP recruitment input-output curves, TEP amplitude at stimulation frequencies of 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and TEP postactivation depression upon transspinal paired stimuli at interstimulus intervals of 60, 100, 300, and 500 ms. TEPs were recorded at rest from bilateral ankle and knee flexor/extensor muscles. Repeated transspinal stimulation increased the motoneuron output over multiple segments. In control and complete SCI subjects, motoneuron output increased for knee muscles, while in motor incomplete SCI subjects motoneuron output increased for both ankle and knee muscles. In control subjects, TEPs homosynaptic and postactivation depression were present at baseline, and were potentiated for the distal ankle or knee flexor muscles. TEPs homosynaptic and postactivation depression at baseline depended on the completeness of the SCI, with minimal changes observed after transspinal stimulation. These results indicate that repeated transspinal stimulation increases spinal motoneuron responsiveness of ankle and knee muscles in the injured human spinal cord, and thus can promote motor recovery. This noninvasive neuromodulation method is a promising modality for promoting functional neuroplasticity after SCI.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Transspinal evoked potentials (TEPs) in…
Fig 1. Transspinal evoked potentials (TEPs) in individuals with and without spinal cord injury (SCI).
Non-rectified TEP waveform averages recorded (N = 15, elicited at 0.2 Hz) bilaterally from ankle and knee muscles (solid black lines) in a healthy control participant (N-005) and two individuals with SCI presenting with American Spinal Injury Association Impairment Scale (AIS) D (R-003) and AIS A (R-010), respectively. Latencies of the soleus (SOL) maximal M-wave and H-reflex (dashed lines) along with all TEPs across individuals are also presented. MG: medial gastrocnemius; PL: peroneus longus; TA: tibialis anterior; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis.
Fig 2. Transspinal evoked potential (TEP) recruitment…
Fig 2. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in AIS C-D.
(A) TEPs normalized to the homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training along with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant difference before and after transspinal stimulation.
Fig 3. Transspinal evoked potential (TEP) recruitment…
Fig 3. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in AIS A-B.
(A) TEPs normalized to the homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training along with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant difference before and after transspinal stimulation.
Fig 4. Transspinal evoked potential (TEP) recruitment…
Fig 4. Transspinal evoked potential (TEP) recruitment curves before and after transspinal stimulation in healthy control subjects.
(A) TEPs normalized to the homonymous maximal TEP and plotted against normalized stimulation intensities to the S50-TEPmax obtained before transspinal stimulation training along with the sigmoid function fitted to the data. (B) Schematic representation of changes observed in the TEP recruitment input-output curves where red represents an increase and blue represents a decrease in the corresponding muscle from which the TEP was recorded. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. An asterisk indicates a significant difference before and after transspinal stimulation.
Fig 5. Homosynaptic transspinal evoked potential (TEP)…
Fig 5. Homosynaptic transspinal evoked potential (TEP) depression before and after transspinal stimulation in spinal cord injury (SCI).
Overall percent change of TEPs recorded at 0.125, 0.2, 0.33 and 1.0 Hz from the associated TEP recorded at 0.1 Hz before (black lines) and after (green lines) transspinal stimulation training in individuals with (A) AIS C-D and (B) AIS A-B. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a significant difference before and after transspinal stimulation.
Fig 6. Postactivation transspinal evoked potential (TEP)…
Fig 6. Postactivation transspinal evoked potential (TEP) depression upon paired transspinal stimuli before and after transspinal stimulation in spinal cord injury (SCI).
Overall amplitude of the second TEP (TEP2) as a percentage of the first mean homonymous TEP amplitude (TEP1) evoked at interstimulus intervals of 500, 300, 100 and 60 ms at a constant stimulation frequency of 0.2 Hz for participants with (A) AIS C-D and (B) AIS A-B. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a significant difference before and after the transspinal stimulation.
Fig 7. Homosynaptic and postactivation transspinal evoked…
Fig 7. Homosynaptic and postactivation transspinal evoked potential (TEP) depression before and after transspinal stimulation in healthy control subjects.
(A) Overall percent change of TEPs recorded at 0.125, 0.2, 0.33 and 1.0 Hz from the associated TEP recorded at 0.1 Hz before (black lines) and after (green lines) transspinal stimulation training. (B) Overall amplitude of the second TEP (TEP2) as a percentage of the first homonymous mean TEP (TEP1) evoked at interstimulus intervals of 500, 300, 100 and 60 ms at a constant stimulation frequency of 0.2 Hz. SOL: soleus; MG: medial gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH: medial hamstring; LH: lateral hamstring; RF: rectus femoris; GRC: gracilis. Error bars indicate SE. An asterisk indicates a significant difference before and after transspinal stimulation.

References

    1. Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma. 2006;23(3–4): 318–334. 10.1089/neu.2006.23.318
    1. Alam M, Rodrigues W, Pham BN, Thakor N V. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: recent progress and future perspectives. Brain Res. 2016;1646: 25–33. 10.1016/j.brainres.2016.05.039
    1. Knikou M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol. 2010;121(10): 1655–1668. 10.1016/j.clinph.2010.01.039
    1. James ND, McMahon SB, Field-Fote EC, Bradbury EJ. Neuromodulation in the restoration of function after spinal cord injury. Lancet Neurol. 2018;17(10): 905–917. 10.1016/S1474-4422(18)30287-4
    1. Smith AC, Knikou M. A review on locomotor training after spinal cord injury: reorganization of spinal neuronal circuits and recovery of motor function. Neural Plast. 2016;2016: 1216258 10.1155/2016/1216258
    1. Hofstoetter US, Knikou M, Guertin PA, Minassian K. Probing the human spinal locomotor circuits by phasic step-induced feedback and by tonic electrical and pharmacological neuromodulation. Curr Pharm Des. 2017;23(12): 1805–1820. 10.2174/1381612822666161214144655
    1. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, et al. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci. 2009;12(10): 1333–1342. 10.1038/nn.2401
    1. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781): 1938–1947. 10.1016/S0140-6736(11)60547-3
    1. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(5): 1394–1409. 10.1093/brain/awu038
    1. Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379(13): 1244–1250. 10.1056/NEJMoa1803588
    1. Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, et al. Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma. 2015;32(24): 1968–1980. 10.1089/neu.2015.4008
    1. Rejc E, Angeli CA, Bryant N, Harkema SJ. Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J Neurotrauma. 2017;34(9): 1787–1802. 10.1089/neu.2016.4516
    1. Rejc E, Angeli C, Harkema S. Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One. 2015;10(7):e0133998 10.1371/journal.pone.0133998
    1. Gill ML, Grahn PJ, Calvert JS, Linde MB, Lavrov IA, Strommen JA, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11): 1677–1682. 10.1038/s41591-018-0175-7
    1. Harkema SJ, Wang S, Angeli CA, Chen Y, Boakye M, Ugiliweneza B, et al. Normalization of blood pressure with spinal cord epidural stimulation after severe spinal cord injury. Front Hum Neurosci. 2018;12:83 10.3389/fnhum.2018.00083
    1. Aslan SC, Legg Ditterline BE, Park MC, Angeli CA, Rejc E, Chen Y, et al. Epidural spinal cord stimulation of lumbosacral networks modulates arterial blood pressure in individuals with spinal cord injury-induced cardiovascular deficits. Front Physiol. 2018;9:565 10.3389/fphys.2018.00565
    1. DiMarco AF, Kowalski KE, Geertman RT, Hromyak DR, Frost FS, Creasey GH, et al. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health–Sponsored Clinical Trial. Part II: clinical outcomes. Arch Phys Med Rehabil. 2009;90(5): 726–732. 10.1016/j.apmr.2008.11.014
    1. DiMarco AF, Kowalski KE, Geertman RT, Hromyak DR. Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored Clinical Trial. Part I: methodology and effectiveness of expiratory muscle activation. Arch Phys Med Rehabil. 2009;90(5): 717–725. 10.1016/j.apmr.2008.11.013
    1. Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37(2): 202–211. 10.1179/2045772313Y.0000000149
    1. Murray LM, Knikou M. Remodeling brain activity by repetitive cervicothoracic transspinal stimulation after human spinal cord injury. Front Neurol. 2017;8:50 10.3389/fneur.2017.00050
    1. Gad PN, Kreydin E, Zhong H, Latack K, Edgerton VR. Non-invasive neuromodulation of spinal cord restores lower urinary tract function after paralysis. Front Neurosci. 2018;12: 432 10.3389/fnins.2018.00432
    1. Phillips AA, Squair JW, Sayenko DG, Edgerton VR, Gerasimenko Y, Krassioukov AV. An autonomic neuroprosthesis: noninvasive electrical spinal cord stimulation restores autonomic cardiovascular function in individuals with spinal cord injury. J Neurotrauma. 2018;35(3): 446–451. 10.1089/neu.2017.5082
    1. Rath M, Vette AH, Ramasubramaniam S, Li K, Burdick J, Edgerton VR, et al. Trunk stability enabled by noninvasive spinal electrical stimulation after spinal cord injury. J Neurotrauma. 2018;35(21): 2540–2553. 10.1089/neu.2017.5584
    1. Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, et al. Transcutaneous electrical stimulation of the spinal cord: a noninvasive tool for the activation of stepping pattern generators in humans. Hum Physiol. 2012;38(2): 158–167. 10.1134/S0362119712020065
    1. Hounsgaard J, Kiehn O. Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. J Physiol. 1993;468: 245–259.
    1. Elbasiouny SM, Mushahwar VK. Suppressing the excitability of spinal motoneurons by extracellularly applied electrical fields: insights from computer simulations. J Appl Physiol. 2007;103(5): 1824–1836. 10.1152/japplphysiol.00362.2007
    1. Li Y, Bennett DJ. Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J Neurophysiol. 2003;90(2): 857–869. 10.1152/jn.00236.2003
    1. Hultborn H, Brownstone RB, Toth TI, Gossard J-P. Key mechanisms for setting the input–output gain across the motoneuron pool. Prog Brain Res. 2004;143: 75–95.
    1. Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord: role of NMDA receptors. J Neurophysiol. 2012;107(11): 3027–3039. 10.1152/jn.00015.2012
    1. Mendell LM, Munson JB, Arvanian VL. Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol. 2001;533(1): 91–97.
    1. Knikou M, Dixon L, Santora D, Ibrahim MM. Transspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity. J Neurophysiol. 2015;114(3): 1486–1499. 10.1152/jn.00449.2015
    1. Sayenko DG, Atkinson DA, Dy CJ, Gurley KM, Smith VL, Angeli C, et al. Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans. J Appl Physiol. 2015;118(11): 1364–1374. 10.1152/japplphysiol.01128.2014
    1. Einhorn J, Li A, Hazan R, Knikou M. Cervicothoracic multisegmental transpinal evoked potentials in humans. PLoS One. 2013;8(10): e76940 10.1371/journal.pone.0076940
    1. Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics. 2013;34(8): 630–640. 10.1002/bem.21808
    1. Galea JM, Celnik P. Brain polarization enhances the formation and retention of motor memories. J Neurophysiol. 2009;102(1): 294–301. 10.1152/jn.00184.2009
    1. Danner SM, Krenn M, Hofstoetter US, Toth A, Mayr W, Minassian K. Body position influences which neural structures are recruited by lumbar transcutaneous spinal cord stimulation. PLoS One. 2016;11(1): e0147479 10.1371/journal.pone.0147479
    1. Ellaway PH. Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr Clin Neurophysiol. 1978;45(2): 302–304.
    1. Klimstra M, Zehr EP. A sigmoid function is the best fit for the ascending limb of the Hoffmann reflex recruitment curve. Exp Brain Res. 2008;186(1): 93–105. 10.1007/s00221-007-1207-6
    1. Brinkworth RS, Tuncer M, Tucker KJ, Jaberzadeh S, Türker KS. Standardization of H-reflex analyses. J Neurosci Methods. 2007;162(1–2): 1–7. 10.1016/j.jneumeth.2006.11.020
    1. Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One. 2014;9(7): 1–14. 10.1371/journal.pone.0102313
    1. Mallik A, Weir AI. Nerve conduction studies: essentials and pitfalls in practice. J Neurol Neurosurg Psychiatry. 2005;76(suppl 2): 23–31. 10.1136/jnnp.2005.069138
    1. Hultborn H, Pierrot-Deseilligny E. Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. J Physiol. 1979;297: 267–287.
    1. Molnár E. Long-term potentiation in cultured hippocampal neurons. Semin Cell Dev Biol. 2011;22(5): 506–513. 10.1016/j.semcdb.2011.07.017
    1. Yoon H, Walters G, Paulsen AR, Scarisbrick IA. Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination. PLoS One. 2017;12(7): e0180697 10.1371/journal.pone.0180697
    1. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361: 31–39. 10.1038/361031a0
    1. Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994;4(3): 389–399.
    1. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A. Presynaptic spike timing-dependent long-term depression in the mouse hippocampus. Cereb Cortex. 2016;26(8): 3637–3654. 10.1093/cercor/bhw172
    1. Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat Rev Neurosci. 2008;9: 813–825. 10.1038/nrn2501
    1. Malenka RC. Synaptic plasticity in the hippocampus: LTP and LTD. Cell. 1994;78(4): 535–538.
    1. Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL. Long-term potentiation and the role of N-methyl-d-aspartate receptors. Brain Res. 2015;1621: 5–16. 10.1016/j.brainres.2015.01.016
    1. Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods. 2008;171(1): 1–12. 10.1016/j.jneumeth.2008.02.012
    1. Pierrot-Deseilligny E, Mazevet D. The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Clin Neurophysiol. 2000;30(2): 67–80.
    1. Hounsgaard J, Hultborn H, Jespersen B, Kiehn O. Bistability of alpha-motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5-hydroxytryptophan. J. Physiol. 1988;405: 345–67.
    1. Minassian K, Hofstoetter US. Spinal cord stimulation and augmentative control strategies for leg movement after spinal paralysis in humans. CNS Neurosci. Ther. 2016;22: 262–70. 10.1111/cns.12530
    1. Raithatha R, Carrico C, Powell ES, Westgate PM, CheletteIi KC, Lee K, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation 2016;38: 15–25. 10.3233/NRE-151291
    1. Estes SP, Iddings JA, Field-Fote EC. Priming neural circuits to modulate spinal reflex excitability. Front Neurol 2017;8:17 10.3389/fneur.2017.00017
    1. Côté M-P, Murray LM, Knikou M. Spinal control of locomotion: individual neurons, their circuits and functions. Front Physiol. 2018;9:784 10.3389/fphys.2018.00784
    1. Hultborn H, Illert M, Nielsen JB, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996;108(3): 450–462.
    1. Maertens De Noordhout A, Rothwell JC, Thompson PD, Day BL, Marsden CD. Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry. 1988;51(2): 174–181.
    1. Hammar I, Slawinska U, Jankowska E. A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord. Exp Brain Res. 2002;145(1): 126–129. 10.1007/s00221-002-1098-5
    1. Knikou M. Spinal excitability changes after transspinal and transcortical paired associative stimulation in humans. Neural Plast. 2017;2017: 6751810 10.1155/2017/6751810
    1. Knikou M, Murray LM. Neural interactions between transspinal evoked potentials and muscle spindle afferents in humans. J Electromyogr Kinesiol. 2018;43: 174–183. 10.1016/j.jelekin.2018.10.005
    1. Dixon L, Ibrahim MM, Santora D, Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. J Neurophysiol. 2016;116(2): 904–916. 10.1152/jn.00259.2016
    1. Karunakaran KD, He J, Zhao J, Cui J, Zang Y-F, Zhang Z, et al. Differences in cortical gray matter atrophy of paraplegia and tetraplegia after complete spinal cord injury. J Neurotrauma. 2018; November 15 10.1089/neu.2018.6040

Source: PubMed

3
Suscribir