Are There Potential Applications of Fecal Microbiota Transplantation beyond Intestinal Disorders?

Youlian Zhou, Haoming Xu, Hongli Huang, Yingfei Li, Huiting Chen, Jie He, Yanlei Du, Ye Chen, Yongjian Zhou, Yuqiang Nie, Youlian Zhou, Haoming Xu, Hongli Huang, Yingfei Li, Huiting Chen, Jie He, Yanlei Du, Ye Chen, Yongjian Zhou, Yuqiang Nie

Abstract

Intestinal microbial dysbiosis is associated with various intestinal and extraintestinal disorders. Fecal microbiota transplantation (FMT), a type of fecal bacteriotherapy, is considered an effective therapeutic option for recurrent Clostridium difficile infection (rCDI) and also has important value in other intestinal diseases including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). The purpose of this review is to discuss promising therapeutic value in extraintestinal diseases associated with gut microbial dysbiosis, including liver, metabolic, chronic kidney, neuropsychiatric, allergic, autoimmune, and hematological diseases as well as tumors.

Conflict of interest statement

The authors declare that they have no conflicts of interest or competing financial interests.

Figures

Figure 1
Figure 1

References

    1. Khanna S., Tosh P. K. A clinician's primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings. 2014;89(1):107–114. doi: 10.1016/j.mayocp.2013.10.011.
    1. Yatsunenko T., Rey F. E., Manary M. J., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053.
    1. Maynard C. L., Elson C. O., Hatton R. D., Weaver C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231–241. doi: 10.1038/nature11551.
    1. Benson A. K., Kelly S. A., Legge R., et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Acadamy of Sciences of the United States of America. 2010;107(44):18933–18938. doi: 10.1073/pnas.1007028107.
    1. Eckburg P. B., Bik E. M., Bernstein C. N., et al. Microbiology: diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–1638. doi: 10.1126/science.1110591.
    1. Laukens D., Brinkman B. M., Raes J., De Vos M., Vandenabeele P., Normark B. H. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiology Reviews. 2016;40(1):117–132. doi: 10.1093/femsre/fuv036.
    1. Hill D. A., Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annual Review of Immunology. 2010;28:623–667. doi: 10.1146/annurev-immunol-030409-101330.
    1. Renz H., Brandtzaeg P., Hornef M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nature Reviews Immunology. 2012;12(1):9–23. doi: 10.1038/nri3112.
    1. Sonnenberg G. F., Artis D. Innate lymphoid cell interactions with microbiota: implications for intestinal health and disease. Immunity. 2012;37(4):601–610. doi: 10.1016/j.immuni.2012.10.003.
    1. Kamada N., Chen G. Y., Inohara N., Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology. 2013;14(7):685–690. doi: 10.1038/ni.2608.
    1. Lawley T. D., Walker A. W. Intestinal colonization resistance. The Journal of Immunology. 2013;138(1):1–11. doi: 10.1111/j.1365-2567.2012.03616.x.
    1. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. doi: 10.1016/j.cell.2004.07.002.
    1. Stappenbeck T. S., Hooper L. V., Gordon J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proceedings of the National Acadamy of Sciences of the United States of America. 2002;99(24):15451–15455. doi: 10.1073/pnas.202604299.
    1. Reinhardt C., Bergentall M., Greiner T. U., et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature. 2012;483(7391):627–631. doi: 10.1038/nature10893.
    1. Bäckhed F., Ding H., Wang T., et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Acadamy of Sciences of the United States of America. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.
    1. Sjögren K., Engdahl C., Henning P., et al. The gut microbiota regulates bone mass in mice. Journal of Bone and Mineral Research. 2012;27(6):1357–1367. doi: 10.1002/jbmr.1588.
    1. Hsiao E. Y., McBride S. W., Hsien S., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. doi: 10.1016/j.cell.2013.11.024.
    1. Claus S. P., Ellero S. L., Berger B., et al. Colonization-induced host-gut microbial metabolic interaction. MBio. 2011;2(2):e00271–e00210.
    1. Carlucci C., Petrof E. O., Allen-Vercoe E. Fecal microbiota-based therapeutics for recurrent clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine. 2016;13:37–45. doi: 10.1016/j.ebiom.2016.09.029.
    1. Walker A. W., Parkhill J. Microbiology. Fighting obesity with bacteria. Science. 2013;341(6150):1069–1070. doi: 10.1126/science.1243787.
    1. Ridaura V. K., Faith J. J., Rey F. E., et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341(6150)1241214
    1. Dinan T. G., Cryan J. F. Gut-brain axis in 2016: brain-gut-microbiota axis - mood, metabolism and behaviour. Nature Reviews Gastroenterology & Hepatology. 2017;14(2):69–70. doi: 10.1038/nrgastro.2016.200.
    1. Luckey D., Gomez A., Murray J., White B., Taneja V. Bugs & us: the role of the gut in autoimmunity. Indian Journal of Medical Research. 2013;138(5):732–743.
    1. Zhou Y., He H., Xu H., et al. Association of oncogenic bacteria with colorectal cancer in South China. Oncotarget. 2016;7(49):80794–80802. doi: 10.18632/oncotarget.13094.
    1. Gough E., Shaikh H., Manges A. R. Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent clostridium difficile infection. Clinical Infectious Diseases. 2011;53(10):994–1002. doi: 10.1093/cid/cir632.
    1. Borody T. J., Khoruts A. Fecal microbiota transplantation and emerging applications. Nature Reviews Gastroenterology & Hepatology. 2012;9(2):88–96. doi: 10.1038/nrgastro.2011.244.
    1. Landy J., Al-Hassi H. O., McLaughlin S. D., et al. Review article: faecal transplantation therapy for gastrointestinal disease. Alimentary Pharmacology & Therapeutics. 2011;34(4):409–415. doi: 10.1111/j.1365-2036.2011.04737.x.
    1. Palmer R. Fecal matters. Nature Medicine. 2011;17(2):150–152. doi: 10.1038/nm0211-150.
    1. Abt M. C., McKenney P. T., Pamer E. G. Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology. 2016;14(10):609–620. doi: 10.1038/nrmicro.2016.108.
    1. van Nood E., Vrieze A., Nieuwdorp M., et al. Duodenal infusion of donor feces for recurrent clostridium difficile. The New England Journal of Medicine. 2013;368(5):407–415. doi: 10.1056/NEJMoa1205037.
    1. Lee C. H., Steiner T., Petrof E. O., et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection: a randomized clinical trial. The Journal of the American Medical Association. 2016;315(2):142–149.
    1. Kassam Z., Lee C. H., Yuan Y., Hunt R. H. Fecal microbiota transplantation for clostridium difficile infection: systematic review and meta-analysis. American Journal of Gastroenterology. 2013;108(4):500–508. doi: 10.1038/ajg.2013.59.
    1. Drekonja D., Reich J., Gezahegn S., et al. Fecal microbiota transplantation for clostridium difficile infection a systematic review. Annals of Internal Medicine. 2015;162(9):630–638. doi: 10.7326/M14-2693.
    1. Cammarota G., Ianiro G., Tilg H., et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017;66(4):569–580.
    1. Hvas C. L., Jorgensen S. M. D., Jorgensen S. P., et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent clostridium difficile infection. Gastroenterology. 2019
    1. Jostins L., Ripke S., Weersma R. K., et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–124. doi: 10.1038/nature11582.
    1. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nature Reviews Gastroenterology & Hepatology. 2012;9(10):599–608. doi: 10.1038/nrgastro.2012.152.
    1. Frank D. N., Robertson C. E., Hamm C. M., et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflammatory Bowel Diseases. 2011;17(1):179–184. doi: 10.1002/ibd.21339.
    1. Morgan X. C., Tickle T. L., Sokol H., et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology. 2012;13(9):p. R79. doi: 10.1186/gb-2012-13-9-r79.
    1. Borody T. J., Campbell J. Fecal microbiota transplantation: current status and future directions. Expert Review of Gastroenterology & Hepatology. 2011;5(6):653–655. doi: 10.1586/egh.11.71.
    1. Borody T. J., Warren E. F., Leis S., Surace R., Ashman O. Treatment of ulcerative colitis using fecal bacteriotherapy. Journal of Clinical Gastroenterology. 2003;37(1):42–47. doi: 10.1097/00004836-200307000-00012.
    1. Anderson J. L., Edney R. J., Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Alimentary Pharmacology & Therapeutics. 2012;36(6):503–516. doi: 10.1111/j.1365-2036.2012.05220.x.
    1. Moayyedi P., Surette M. G., Kim P. T., et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149(1):102–109 e106. doi: 10.1053/j.gastro.2015.04.001.
    1. Paramsothy S., Kamm M. A., Kaakoush N. O., et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. The Lancet. 2017;389(10075):1218–1228. doi: 10.1016/S0140-6736(17)30182-4.
    1. Rossen N. G., Fuentes S., Van Der Spek M. J., et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149(1):110–118 e114. doi: 10.1053/j.gastro.2015.03.045.
    1. Kelly C. R., Kahn S., Kashyap P., et al. Update on fecal microbiota transplantation 2015: indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149(1):223–237. doi: 10.1053/j.gastro.2015.05.008.
    1. Borody T. J., Finlayson S., Paramsothy S. Is Crohn's disease ready for fecal microbiota transplantation? Journal of Clinical Gastroenterology. 2014;48(7):582–583. doi: 10.1097/MCG.0000000000000155.
    1. Zhang F.-M., Wang H.-G., Wang M., Cui B.-T., Fan Z.-N., Ji G.-Z. Fecal microbiota transplantation for severe enterocolonic fistulizing Crohn's disease. World Journal of Gastroenterology. 2013;19(41):7213–7216. doi: 10.3748/wjg.v19.i41.7213.
    1. Kao D., Hotte N., Gillevet P., Madsen K. Fecal microbiota transplantation inducing remission in crohn's colitis and the associated changes in fecal microbial profile. Journal of Clinical Gastroenterology. 2014;48(7):625–628. doi: 10.1097/MCG.0000000000000131.
    1. Gordon H., Harbord M. A patient with severe crohn's colitis responds to faecal microbiota transplantation. Journal of Crohn's and Colitis. 2014;8(3):256–257. doi: 10.1016/j.crohns.2013.10.007.
    1. He Z., Li P., Zhu J., et al. Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn’s disease complicated with inflammatory mass. Scientific Reports. 2017;7(1):p. 4753. doi: 10.1038/s41598-017-04984-z.
    1. Li P., Zhang T., Xiao Y., et al. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn's disease. Applied Microbiology and Biotechnology. 2019;103(1):349–360. doi: 10.1007/s00253-018-9447-x.
    1. Wang H., Cui B., Li Q., et al. The safety of fecal microbiota transplantation for crohn's disease: findings from a long-term study. Advances in Therapy. 2018;35(11):1935–1944. doi: 10.1007/s12325-018-0800-3.
    1. Johnsen P. H., Hilpüsch F., Cavanagh J. P., et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. The Lancet Gastroenterology and Hepatology. 2018;3(1):17–24. doi: 10.1016/S2468-1253(17)30338-2.
    1. Ianiro G., Eusebi L. H., Black C. J., Gasbarrini A., Cammarota G., Ford A. C. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics. 2019 doi: 10.1111/apt.15330.
    1. De Palma G., Lynch M. D., Lu J., et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine. 2017;9(379)
    1. Holvoet T., Joossens M., Wang J., et al. Assessment of faecal microbial transfer in irritable bowel syndrome with severe bloating. Gut. 2017;66(5):980–982. doi: 10.1136/gutjnl-2016-312513.
    1. Ge X., Tian H., Ding C., et al. Fecal microbiota transplantation in combination with soluble dietary fiber for treatment of slow transit constipation: a pilot study. Archives of Medical Research. 2016;47(3):236–242. doi: 10.1016/j.arcmed.2016.06.005.
    1. Shaukat A., Brenner D. M. Fecal microbiota transplant for irritable bowel syndrome: panacea or placebo? American Journal of Gastroenterology. 2019 doi: 10.14309/ajg.0000000000000259.
    1. Halkjaer S. I., Christensen A. H., Lo B. Z. S., et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut. 2018;67(12):2107–2115.
    1. Gabbard S. L., Lacy B. E., Levine G. M., Crowell M. D. The impact of alcohol consumption and cholecystectomy on small intestinal bacterial overgrowth. Digestive Diseases and Sciences. 2014;59(3):638–644. doi: 10.1007/s10620-013-2960-y.
    1. Kirpich I. A., Solovieva N. V., Leikhter S. N., et al. Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol. 2008;42(8):675–682. doi: 10.1016/j.alcohol.2008.08.006.
    1. Bode C., Kolepke R., Schafer K., Bode J. Breath hydrogen excretion in patients with alcoholic liver disease—evidence of small intestinal bacterial overgrowth. Zeitschrift für Gastroenterologie. 1993;31(1):3–7.
    1. Casafont Morencos F., de las Heras Castano G., Martín Ramos L., López Arias M. J., Ledesma F., Pons Romero F. Small bowel bacterial overgrowth in patients with alcoholic cirrhosis. Digestive Diseases and Sciences. 1995;40(6):1252–1256. doi: 10.1007/BF02065533.
    1. Michail S., Lin M., Frey M. R., et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease. FEMS Microbiology Ecology. 2015;91(2):1–9. doi: 10.1093/femsec/fiu002.
    1. Spencer M. D., Hamp T. J., Reid R. W., Fischer L. M., Zeisel S. H., Fodor A. A. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140(3):976–986. doi: 10.1053/j.gastro.2010.11.049.
    1. Raman M., Ahmed I., Gillevet P. M., et al. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clinical Gastroenterology and Hepatology. 2013;11(7):868–875 e861-863. doi: 10.1016/j.cgh.2013.02.015.
    1. Zhu L., Baker S. S., Gill C., et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–609. doi: 10.1002/hep.26093.
    1. Boursier J., Mueller O., Barret M., et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016;63(3):764–775. doi: 10.1002/hep.28356.
    1. Del Chierico F., Nobili V., Vernocchi P., et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017;65(2):451–464. doi: 10.1002/hep.28572.
    1. Qin N., Yang F., Li A., et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64. doi: 10.1038/nature13568.
    1. Chen Y., Yang F., Lu H., et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–572. doi: 10.1002/hep.24423.
    1. Chen Y., Ji F., Guo J., Shi D., Fang D., Li L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Scientific Reports. 2016;6:p. 34055. doi: 10.1038/srep34055.
    1. Yu L., Schwabe R. F. The gut microbiome and liver cancer: mechanisms and clinical translation. Nature Reviews Gastroenterology & Hepatology. 2017;14(9):527–539. doi: 10.1038/nrgastro.2017.72.
    1. Ren Y., Ye Z., Yang L., et al. Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology. 2017;65(5):1765–1768. doi: 10.1002/hep.29008.
    1. Ferrere G., Wrzosek L., Cailleux F., et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. Journal of Hepatology. 2017;66(4):806–815. doi: 10.1016/j.jhep.2016.11.008.
    1. le Roy T., Llopis M., Lepage P., et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut. 2013;62(12):1787–1794. doi: 10.1136/gutjnl-2012-303816.
    1. Zhang Z., Zhai H., Geng J., et al. Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing. American Journal of Gastroenterology. 2013;108(10):1601–1611. doi: 10.1038/ajg.2013.221.
    1. Bajaj J. S., Reddy K. R., Tandon P., et al. The 3-month readmission rate remains unacceptably high in a large North American cohort of patients with cirrhosis. Hepatology. 2016;64(1):200–208. doi: 10.1002/hep.28414.
    1. Bajaj J. S., Schubert C. M., Heuman D. M., et al. Persistence of cognitive impairment after resolution of overt hepatic encephalopathy. Gastroenterology. 2010;138(7):2332–2340. doi: 10.1053/j.gastro.2010.02.015.
    1. Bajaj J. S., Kassam Z., Fagan A., et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66(6):1727–1738. doi: 10.1002/hep.29306.
    1. Fischer M., Sipe B., Torbeck M., Xu H., Kassam Z., Allegretti J. R. Does fecal microbiota transplantation from an obese donor lead to weight gain? a case series of 70 recipients. Gastroenterology. 2017;152(5):p. S1004. doi: 10.1016/S0016-5085(17)33408-X.
    1. Vrieze A., Van Nood E., Holleman F., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916.
    1. Tang W. H. W., Wang Z., Levison B. S., et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine. 2013;368(17):1575–1584. doi: 10.1056/nejmoa1109400.
    1. Wang Z., Klipfell E., Bennett B. J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–65. doi: 10.1038/nature09922.
    1. Zhu W., Gregory J. C., Org E., et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. doi: 10.1016/j.cell.2016.02.011.
    1. Wang Z., Roberts A. B., Buffa J. A., et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–1595. doi: 10.1016/j.cell.2015.11.055.
    1. Karlsson F. H., Tremaroli V., Nookaew I., et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103. doi: 10.1038/nature12198.
    1. Qin J., Li Y., Cai Z., et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.
    1. Wu H., Esteve E., Tremaroli V., et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine. 2017;23(7):850–858. doi: 10.1038/nm.4345.
    1. Vaziri N. D., Wong J., Pahl M., et al. Chronic kidney disease alters intestinal microbial flora. Kidney International. 2013;83(2):308–315. doi: 10.1038/ki.2012.345.
    1. Wong J., Piceno Y. M., DeSantis T. Z., Pahl M., Andersen G. L., Vaziri N. D. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. American Journal of Nephrology. 2014;39(3):230–237. doi: 10.1159/000360010.
    1. Barros A. F., Borges N. A., Ferreira D. C., et al. Is there interaction between gut microbial profile and cardiovascular risk in chronic kidney disease patients? Future Microbiology. 2015;10(4):517–526. doi: 10.2217/fmb.14.140.
    1. Duranton F., Cohen G., De Smet R., et al. Normal and pathologic concentrations of uremic toxins. Journal of the American Society of Nephrology. 2012;23(7):1258–1270. doi: 10.1681/ASN.2011121175.
    1. Sirich T. L., Funk B. A., Plummer N. S., Hostetter T. H., Meyer T. W. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. Journal of the American Society of Nephrology. 2014;25(3):615–622. doi: 10.1681/ASN.2013060597.
    1. Barreto F. C., Barreto D. V., Liabeuf S., et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clinical Journal of the American Society of Nephrology. 2009;4(10):1551–1558. doi: 10.2215/CJN.03980609.
    1. Wu I.-W., Hsu K.-H., Lee C.-C., et al. P-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrology Dialysis Transplantation . 2011;26(3):938–947. doi: 10.1093/ndt/gfq580.
    1. Devlin A. S., Marcobal A., Dodd D., et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota. Cell Host & Microbe. 2016;20(6):709–715. doi: 10.1016/j.chom.2016.10.021.
    1. Yacoub R., Wyatt C. M. Manipulating the gut microbiome to decrease uremic toxins. Kidney International. 2017;91(3):521–523. doi: 10.1016/j.kint.2017.01.003.
    1. Sirich T. L., Meyer T. W. Manipulating the microbiome. Kidney International. 2017;91(2):274–276. doi: 10.1016/j.kint.2016.10.016.
    1. Gacias M., Gaspari S., Santos P. M., et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. Elife. 2016;5
    1. Borre Y. E., O'Keeffe G. W., Clarke G., et al. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends in Molecular Medicine. 2014;20(9):509–518.
    1. Yin J., Liao S., He Y., et al. Dysbiosis of gut microbiota with reduced trimethylamine‐n‐oxide level in patients with large‐artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association. 2015;4(11) doi: 10.1161/JAHA.115.002699.
    1. Houlden A., Goldrick M., Brough D., et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain, Behavior, and Immunity. 2016;57:10–20. doi: 10.1016/j.bbi.2016.04.003.
    1. Winek K., Dirnagl U., Meisel A. The gut microbiome as therapeutic target in central nervous system diseases: implications for stroke. Neurotherapeutics. 2016;13(4):762–774. doi: 10.1007/s13311-016-0475-x.
    1. Li W., Wu X., Hu X., et al. Structural changes of gut microbiota in Parkinson's disease and its correlation with clinical features. Science China Life Sciences. 2017
    1. Keshavarzian A., Green S. J., Engen P. A., et al. Colonic bacterial composition in Parkinson's disease. Movement Disorders. 2015;30(10):1351–1360. doi: 10.1002/mds.26307.
    1. Anil A. New Scientist. 2011. Faecal transplant eases symptoms of Parkinson’s disease; pp. 8–9.
    1. Chesselet M.-F., Richter F., Zhu C., Magen I., Watson M. B., Subramaniam S. R. A progressive mouse model of parkinson's disease: the Thy1-aSyn ("Line 61") mice. Neurotherapeutics. 2012;9(2):297–314. doi: 10.1007/s13311-012-0104-2.
    1. Sampson T. R., Debelius J. W., Thron T., et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. Cell. 2016;167(6):1469–1480.
    1. Erny D., Prinz M. Microbiology: gut microbes augment neurodegeneration. Nature. 2017;544(7650):304–305. doi: 10.1038/nature21910.
    1. Harach T., Marungruang N., Duthilleul N., et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Scientific Reports. 2017;7:p. 41802.
    1. Thurman D. J., Beghi E., Begley C. E., et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52(supplement 7):2–26. doi: 10.1111/j.1528-1167.2011.03121.x.
    1. He Z., Cui B. T., Zhang T., et al. Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: the first report. World Journal of Gastroenterology. 2017;23(19):3565–3568. doi: 10.3748/wjg.v23.i19.3565.
    1. Wang H., Lee I., Braun C., Enck P. Effect of probiotics on central nervous system functions in animals and humans: a systematic review. Journal of Neurogastroenterology and Motility. 2016;22(4):589–605. doi: 10.5056/jnm16018.
    1. Strati F., Cavalieri D., Albanese D., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):p. 24.
    1. Luna R. A., Oezguen N., Balderas M., et al. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cellular and Molecular Gastroenterology and Hepatology. 2017;3(2):218–230. doi: 10.1016/j.jcmgh.2016.11.008.
    1. Braun J. Tightening the case for gut microbiota in autism-spectrum disorder. Cellular and Molecular Gastroenterology and Hepatology. 2017;3(2):131–132. doi: 10.1016/j.jcmgh.2017.01.010.
    1. Finegold S. M., Molitoris D., Song Y., et al. Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases. 2002;35(supplement 1):S6–S16. doi: 10.1086/341914.
    1. Song Y. L., Liu C., Finegold S. M. Real-time PCR quantitation of clostridia in Feces of autistic children. Applied and Environmental Microbiology. 2004;70(11):6459–6465. doi: 10.1128/aem.70.11.6459-6465.2004.
    1. Aroniadis O. C., Brandt L. J. Fecal microbiota transplantation: past, present and future. Current Opinion in Gastroenterology. 2013;29(1):79–84. doi: 10.1097/MOG.0b013e32835a4b3e.
    1. Kang D. W., Adams J. B., Gregory A. C., et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1):p. 10. doi: 10.1186/s40168-016-0225-7.
    1. Kelly J. R., Borre Y., O'Brien C., et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research. 2016;82:109–118. doi: 10.1016/j.jpsychires.2016.07.019.
    1. Borody T. J., Leis S. M., Campbell J., et al. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS) The American Journal of Gastroenterology. 2011:p. S352.
    1. Mazmanian S. K., Cui H. L., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122(1):107–118. doi: 10.1016/j.cell.2005.05.007.
    1. Berer K., Gerdes L. A., Cekanaviciute E., et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Acadamy of Sciences of the United States of America. 2017;114(40):10719–10724. doi: 10.1073/pnas.1711233114.
    1. Cekanaviciute E., Yoo B. B., Runia T. F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Acadamy of Sciences of the United States of America. 2017
    1. Borody T. J., Rosen D. M., Torres M., et al. Myoclonus-dystonia (M-D) mediated by GI microbiota diarrhoea treatment improves M-D symptoms. The American Journal of Gastroenterology. 2011:p. S352.
    1. Frémont M., Coomans D., Massart S., De Meirleir K. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe. 2013;22:50–56. doi: 10.1016/j.anaerobe.2013.06.002.
    1. Nagy-Szakal D., Williams B. L., Mishra N., et al. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2017;5(1):p. 44. doi: 10.1186/s40168-017-0261-y.
    1. Borody T., Nowak A., Finlayson S. The GI microbiome and its role in chronic fatigue syndrome: a summary of bacteriotherapy. Australasian College of Nutritional and Environmental Medicine. 2012;31:3–8.
    1. Xu M.-Q., Cao H.-L., Wang W.-Q., et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World Journal of Gastroenterology. 2015;21(1):102–111. doi: 10.3748/wjg.v21.i1.102.
    1. Chen F., Stappenbeck T. S. Microbiome control of innate reactivity. Current Opinion in Immunology. 2019;56:107–113. doi: 10.1016/j.coi.2018.12.003.
    1. McCoy K. D., Ignacio A., Geuking M. B. Microbiota and type 2 immune responses. Current Opinion in Immunology. 2018;54:20–27. doi: 10.1016/j.coi.2018.05.009.
    1. Stensballe L. G., Simonsen J., Jensen S. M., Bønnelykke K., Bisgaard H. Use of antibiotics during pregnancy increases the risk of asthma in early childhood. Journal of Pediatrics. 2013;162(4):832–838 e833. doi: 10.1016/j.jpeds.2012.09.049.
    1. Goksör E., Alm B., Pettersson R., et al. Early fish introduction and neonatal antibiotics affect the risk of asthma into school age. Pediatric Allergy and Immunology. 2013;24(4):339–344. doi: 10.1111/pai.12078.
    1. Reynolds L. A., Finlay B. B. A case for antibiotic perturbation of the microbiota leading to allergy development. Expert Review of Clinical Immunology. 2013;9(11):1019–1030. doi: 10.1586/1744666X.2013.851603.
    1. Manzo V. E., Bhatt A. S. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–318. doi: 10.1182/blood-2015-04-574392.
    1. Khosravi A., Yáñez A., Price J. G., et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host & Microbe. 2014;15(3):374–381. doi: 10.1016/j.chom.2014.02.006.
    1. Josefsdottir K. S., Baldridge M. T., Kadmon C. S., King K. Y. Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood. 2017;129(6):729–739. doi: 10.1182/blood-2016-03-708594.
    1. Galloway-Pena J. R., Smith D. P., Sahasrabhojane P., et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome Medicine. 2017;9(1):p. 21. doi: 10.1186/s13073-017-0409-1.
    1. Varelias A., Ormerod K. L., Bunting M. D., et al. Acute graft-versus-host disease is regulated by an IL-17–sensitive microbiome. Blood. 2017;129(15):2172–2185. doi: 10.1182/blood-2016-08-732628.
    1. Ahn J., Sinha R., Pei Z., et al. Human gut microbiome and risk for colorectal cancer. Journal of the National Cancer Institute. 2013;105(24):1907–1911.
    1. Fox J. G., Feng Y., Theve E. J., et al. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut. 2010;59(1):88–97. doi: 10.1136/gut.2009.183749.
    1. Chen Y., Xia R., Huang Y., et al. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nature Communications. 2016;7:p. 13443.
    1. Shen S., Li H., Chen K., et al. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Letters. 2017;17(6):3822–3829. doi: 10.1021/acs.nanolett.7b01193.
    1. Daillere R., Vetizou M., Waldschmitt N., et al. Enterococcus hirae and barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45(4):931–943.
    1. Vétizou M., Pitt J. M., Daillère R., et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–1084. doi: 10.1126/science.aad1329.
    1. Sivan A., Corrales L., Hubert N., et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–1089. doi: 10.1126/science.aac4255.
    1. Wang Y., Wiesnoski D. H., Helmink B. A., et al. Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nature Medicine. 2018;24(12):1804–1808. doi: 10.1038/s41591-018-0238-9.
    1. Taniguchi C. M., Miao Y. R., Diep A. N., et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Science Translational Medicine. 2014;6(236):p. 236ra64. doi: 10.1126/scitranslmed.3008523.
    1. Leibowitz B. J., Wei L., Zhang L., et al. Ionizing irradiation induces acute haematopoietic syndrome and gastrointestinal syndrome independently in mice. Nature Communications. 2014;5(1):p. 3494. doi: 10.1038/ncomms4494.
    1. Cui M., Xiao H., Li Y., et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Molecular Medicine. 2017;9(4):448–461. doi: 10.15252/emmm.201606932.

Source: PubMed

3
Suscribir