SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial

Yuan Tian, Xiao-Min Chen, Xian-Ming Liang, Xiao-Bin Wu, Chun-Meng Yao, Yuan Tian, Xiao-Min Chen, Xian-Ming Liang, Xiao-Bin Wu, Chun-Meng Yao

Abstract

To evaluate the effect of SGLT2 inhibitor (SGLT2i) on albuminuria, nephrin (NPH) and transforming-growth-factor-beta1 (TGF-β1) levels in urine and low-grade inflammation in type 2 diabetes (T2D) patients. A randomized, blank-controlled clinical trial included 68 T2D patients and 10 controls. Based on the urinary albumin-to-creatinine ratio (UACR), 68 diabetic patients were stratified into three levels, UACR < 30 mg/g, UACR ≧ 30 mg/g to ≦ 300 mg/g and UACR ˃ 300 mg/g, who were randomized (1:1:1) to receive SGLT2i treatment for 12 weeks. The concentrations of NPH and TGF-β1 in urine were measured as indications of podocyte injury and renal fibrosis. Low-grade inflammation was assessed by the levels of IL-6, TNFα and hsCRP. After 12 weeks of SGLT2i treatment, the levels of UACR and NPH decreased, UTGF-β1 increased in the T2D with microalbuminuria and macroalbuminuria groups, NPH (1.12 [0.59, 1.29] vs. 0.71 [0.41, 1.07] µg/ml, P = 0.022) and (1.29 [0.99, 1.96] vs. 0.93 [0.57, 1.31] µg/ml, P = 0.002), UTGF-β1 (4.88 ± 1.31 vs. 7.27 ± 1.21 pg/ml, P < 0.001) and (4.30 ± 1.34 vs. 6.78 ± 2.59 pg/ml, P < 0.001), respectively. The changes in NPH were positively correlated with the UACR and negatively correlated with UTGF-β1 in T2D with albuminuria. SGLT2i alleviate nephrin loss and enhance TGF-β1 excretion in urine in T2DM with albuminuria. The anti-albuminuric effect of SGLT2i could be attributed to mitigating podocyte apoptosis and attenuating renal fibrosis.Trial registration This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Changes of nephrin (NPH) before and after 12-week treatment with SGLT2 inhibitors in different UACR levels. NPH nephrin, UACR urinary albumin-to-creatinine ratio.
Figure 2
Figure 2
Changes of UTGFβ1 before and after 12-week treatment with SGLT2 inhibitors in different UACR levels. UTGFβ1 urine transforming-growth-factor-beta1, UACR urinary albumin-to-creatinine ratio, *P < 0.001.

References

    1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–1252. doi: 10.1016/S0140-6736(16)32064-5.
    1. Heerspink HJL, Greene T, Tighiouart H, Gansevoort RT, Coresh J, Simon AL, Chan TM, et al. Chronic Kidney Disease Epidemiology Collaboration: Change in albuminuria as a surrogate endpoint for progression of kidney disease: A meta-analysis oftreatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7(2):128–139. doi: 10.1016/S2213-8587(18)30314-0.
    1. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Int. Med. 2013;159(4):262–274. doi: 10.7326/0003-4819-159-4-201308200-00007.
    1. Vallon V, Gerasimova M, Rose MA, Masuda T, Satriano J, Mayoux E, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal. Physiol. 2014;306(2):F194–204. doi: 10.1152/ajprenal.00520.2013.
    1. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, Singh P. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012;302(1):R75–83. doi: 10.1152/ajpregu.00357.2011.
    1. Shimizu M, Furuichi K, Toyama T, Kitajima S, Hara A, Kitagawa K, et al. Long-term outcomes of Japanese type 2 diabetic patients with biopsy-proven diabetic nephropathy. Diabetes Care. 2013;36(11):3655–3662. doi: 10.2337/dc13-0298.
    1. Weir MR, Hollenberg NK, Zappe DH, Meng X, Parving HH, Viberti G, Remuzzi G. Antihypertensive effects of double the maximum dose of valsartan in African-American patients with type 2 diabetes mellitus and albuminuria. J. Hypertens. 2010;28(1):186–193. doi: 10.1097/HJH.0b013e328332bd61.
    1. Levey AS, Inker LA, Coresh J. GFR estimation: From physiology to public health. Am. J. Kidney Dis. 2014;63(5):820–834. doi: 10.1053/j.ajkd.2013.12.006.
    1. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Me.d. 2016;375:323–334. doi: 10.1056/NEJMoa1515920.
    1. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE Trial Investigators. Canagliflozin and renal Outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744.
    1. Yoon JJ, Park JH, Kim HJ, Jin HG, KimH Y, Ahn YM, et al. Dianthus superbus improves glomerular fibrosisand renal dysfunction in diabetic nephropathy model. Nutrients. 2019;11:553. doi: 10.3390/nu12061655.
    1. Lin JS, Susztak K. Podocytes: The weakest link in diabetic kidney disease? Curr. Diab. Rep. 2016;16(5):45. doi: 10.1007/s11892-016-0735-5.
    1. Huber TB, Benzing T. The slit diaphragm: A signaling platform to regulate podocyte function. Curr. Opin. Nephrol. Hypertens. 2005;14(3):211–216. doi: 10.1097/01.mnh.0000165885.85803.a8.
    1. Li X, Chuang PY, D'Agati VD, Dai Y, Yacoub R, Fu J, et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J. Am. Soc. Nephrol. 2015;26(10):2361–2377. doi: 10.1681/ASN.2014040405.
    1. Zhai L, Gu J, Yang D, Hu W, Wang W, Ye S. Metformin ameliorates podocyte damage by restoring renal tissue nephrin expression in type 2 diabetic rats. J. Diabetes. 2017;9(5):510–517. doi: 10.1111/1753-0407.12437.
    1. Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA. Amelioration of early markers of diabetic nephropathy by linagliptin in fructose-streptozotocin-induced type 2 diabetic rats. Nephron. 2019;141(4):273–286. doi: 10.1159/000495517.
    1. Wang D, Luo Y, Wang X, Orlicky DJ, Myakala K, Yang P, Levi M. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents renal and liver disease in western diet induced obesity mice. Int. J. Mol. Sci. 2018;19:137. doi: 10.3390/ijms19010137.
    1. Schiffer M, Bitzer M, Roberts IS, Dai Y, Yacoub R, Fu J, et al. Apoptosis in podocytes induced by TGF-beta and Smad7. J. Clin. Invest. 2001;108(6):807–816. doi: 10.1172/JCI12367.
    1. Panchapakesan U, Pegg K, Gross S, Komala MG, Mudaliar H, Forbes J, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells­renoprotection in diabetic nephropathy? PLoS ONE. 2013;8(2):e54442. doi: 10.1371/journal.pone.0054442.
    1. Niu Y, Zhang Y, Zhang W, Lu J, Chen Y, Hao W, Zhou J, Wang L, Xie W. Canagliflozin Ameliorates NLRP3 Inflammasome-Mediated Inflammation Through Inhibiting NF-κB Signaling and Upregulating Bif-1. Front Pharmacol. 2022;13:820541. doi: 10.3389/fphar.2022.820541.
    1. Morrissey J, Guo G, Moridaira K, Fitzgerald M, McCracken R, Tolley T, Klahr S. Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. J. Am. Soc. Nephrol. 2002;13(6):1499–1508. doi: 10.1097/01.asn.0000017905.77985.4a.
    1. Sweetwyne MT, Gruenwald A, Niranjan T, Nishinakamura R, Strobl LJ, Susztak K. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes. 2015;64(12):4099–4111. doi: 10.2337/db15-0260.
    1. Murea M, Park JK, Sharma S, Kato H, Gruenwald A, Niranjan T, et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int. 2010;78(5):514–522. doi: 10.1038/ki.2010.172.
    1. Lin CL, Wang FS, Hsu YC, Chen CN, Tseng MJ, Saleem MA, et al. Modulation of notch-1 signaling alleviates vascular endothelial growth factor-mediated diabetic nephropathy. Diabetes. 2010;59(8):1915–1925. doi: 10.2337/db09-0663.
    1. Pirklbauer M, Schupart R, Fuchs L, Staudinger P, Corazza U, Sallaberger S, et al. Unraveling reno-protective effects of SGLT2 inhibition in human proximal tubular cells. Am. J. Physiol. Renal. Physiol. 2019;316(3):F449–F462. doi: 10.1152/ajprenal.00431.2018.
    1. Balzer MS, Rong S, Nordlohne J, Zemtsovski JD, Schmidt S, Stapel B, et al. SGLT2 inhibition by intraperitoneal dapagliflozin mitigates peritoneal fibrosis and ultrafiltration failure in a mouse model of chronic peritoneal exposure to high-glucose dialysate. Biomolecules. 2020;10(11):1573. doi: 10.3390/biom10111573.
    1. Shentu Y, Li Y, Xie S, Jiang H, Sun S, Lin R, Chen C, Bai Y, Zhang Y, Zheng C, Zhou Y. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. Int. Immunopharmacol. 2021;93:107374. doi: 10.1016/j.intimp.2021.107374.
    1. Klimontov VV, Korbut AI, Taskaeva IS, Bgatova NP, Dashkin MV, Orlov NB, et al. Empagliflozin alleviates podocytopathy and enhances glomerular nephrin expression in db/db diabetic mice. World J. Diabetes. 2020;11(12):596–610. doi: 10.4239/wjd.v11.i12.596.
    1. Ikezumi Y, Suzuki T, Karasawa T, Kawachi H, Nikolic-Paterson DJ, Uchiyama M. Activated macrophages down-regulate podocyte nephrin and podocin expression via stress-activated protein kinases. Biochem. Biophys. Res. Commun. 2008;376(4):706–711. doi: 10.1016/j.bbrc.2008.09.049.
    1. Takano Y, Yamauchi K, Hayakawa K, Leierer J, Hansen MK, Heinzel A, Mayer G. Transcriptional suppression of nephrin in podocytes by macrophages: Roles of inflammatory cytokines and involvement of the PI3K/Akt pathway. FEBS Lett. 2007;581:421–426. doi: 10.1016/j.febslet.2006.12.051.
    1. Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, Mayer G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019;62(7):1154–1166. doi: 10.1007/s00125-019-4859-4.
    1. Soltani Z, Washco V, Morse S, Reisin E. The impacts of obesity on the cardiovascular and renal systems: Cascade of events and therapeutic approaches. Curr. Hypertens. Rep. 2015;17(2):7. doi: 10.1007/s11906-014-0520-2.

Source: PubMed

3
Suscribir