Neuroprotective strategies for traumatic brain injury: improving clinical translation

Shruti V Kabadi, Alan I Faden, Shruti V Kabadi, Alan I Faden

Abstract

Traumatic brain injury (TBI) induces secondary biochemical changes that contribute to delayed neuroinflammation, neuronal cell death, and neurological dysfunction. Attenuating such secondary injury has provided the conceptual basis for neuroprotective treatments. Despite strong experimental data, more than 30 clinical trials of neuroprotection in TBI patients have failed. In part, these failures likely reflect methodological differences between the clinical and animal studies, as well as inadequate pre-clinical evaluation and/or trial design problems. However, recent changes in experimental approach and advances in clinical trial methodology have raised the potential for successful clinical translation. Here we critically analyze the current limitations and translational opportunities for developing successful neuroprotective therapies for TBI.

References

    1. French L.M., Parkinson G.W. Assessing and treating veterans with traumatic brain injury. J. Clin. Psychol. 2008;64:1004–1013.
    1. Hoge C.W., McGurk D., Thomas J.L., Cox A.L., Engel C.C., Castro C.A. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N. Engl. J. Med. 2008;358:453–463.
    1. De Beaumont L., Tremblay S., Poirier J., Lassonde M., Théoret H. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb. Cortex. 2012;22:112–121.
    1. Shively S.B., Perl D.P. Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—Past, present, and future. J. Head Trauma Rehabil. 2012;27:234–239.
    1. Blennow K., Hardy J., Zetterberg H. The neuropathology and neurobiology of traumatic brain injury. Neuron. 2012;76:886–899.
    1. Maas A.I., Stocchetti N., Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7:728–741.
    1. Grotta J. Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke. 2002;33:306–307.
    1. Faden A.I. Neuroprotection and traumatic brain injury: Theoretical option or realistic proposition. Curr. Opin. Neurol. 2002;15:707–712.
    1. Faden A.I., Stoica B. Neuroprotection: Challenges and opportunities. Arch. Neurol. 2007;64:794–800.
    1. Loane D.J., Faden A.I. Neuroprotection for traumatic brain injury: Translational challenges and emerging therapeutic strategies. Trends Pharmacol. Sci. 2010;31:596–604.
    1. Panter S.S., Faden A.I. Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neurosci. Lett. 1992;136:165–168.
    1. Bramlett H., Dietrich W. Progressive damage after brain and spinal cord injury: Pathomechanisms and treatment strategies. Prog. Brain Res. 2007;161:125–141.
    1. Adams J.H., Graham D.I., Gennarelli T.A. Head injury in man and experimental animals: Neuropathology. Acta Neurochir. Suppl. (Wien) 1983;32:15–30.
    1. Saatman K.E., Duhaime A.C., Bullock R., Maas A.I., Valadka A., Manley G.T. Workshop Scientific Team and Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma. 2008;25:719–738.
    1. McIntosh T.K., Smith D.H., Meaney D.F., Kotapka M.J., Gennarelli T.A., Graham D.I. Neuropathological sequelae of traumatic brain injury: Relationship to neurochemical and biomechanical mechanisms. Lab. Investig. 1996;74:315–342.
    1. Nandoe R. Head trauma and Alzheimer’s disease. J. Alzheimer’s Dis. 2002;4:303–308.
    1. Byrnes K., Stoica B.A., Fricke S., di Giovanni S., Faden A.I. Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain. 2007;130:2977–2992.
    1. Byrnes K.R., Loane D.J., Stoica B.A., Zhang J., Faden A.I. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J. Neuroinflamm. 2012;9:43.
    1. Davis E., Foster T., Thomas W. Cellular forms and functions of brain microglia. Brain Res. Bull. 1994;34:73–78.
    1. Sołtys Z., Ziaja M., Pawliński R., Setkowicz Z., Janeczko K. Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J. Neurosci. Res. 2001;63:90–97.
    1. Loane D.J., Byrnes K.R. Role of microglia in neurotrauma. Neurotherapeutics. 2010;7:366–377.
    1. Eikelenboom P., Bate C., van Gool W.A., Hoozemans J.J.M., Rozemuller J.M., Veerhuis R., Williams A. Neuroinflammation in Alzheimer’s disease and prion disease. Glia. 2002;40:232–239.
    1. Byrnes K., Faden A. Role of cell cycle proteins in CNS injury. Neurochem. Res. 2007;32:1799–1807.
    1. Maas A.I., Roozenbeek B., Manley G.T. Clinical trials in traumatic brain injury: Past experience and current developments. Neurotherapeutics. 2010;7:115–126.
    1. Schouten J.W. Neuroprotection in traumatic brain injury: A complex struggle against the biology of nature. Curr. Opin. Crit. Care. 2007;13:134–142.
    1. Narayan R.K., Michel M.E., Ansell B., Baethmann A., Biegon A., Bracken M.B., Bullock M.R., Choi S.C., Clifton G.L., Contant C.F., et al. Clinical trials in head injury. J. Neurotrauma. 2002;19:503–557.
    1. Cernak I. Animal models of head trauma. NeuroRx. 2005;2:410–422.
    1. David S., Aguayo A.J. Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J. Neurocytol. 1985;14:1–12.
    1. Park H.J., Kim H.N., Kim K.M. Redistribution of facial nerve motor neurons after recovery from nerve crushing injury in the gerbil. Acta Otolaryngol. 1995;115:273–275.
    1. Statler K.D., Alexander H., Vagni V., Dixon C.E., Clark R.S.B., Jenkins L., Kochanek P.M. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J. Neurotrauma. 2006;23:97–108.
    1. Statler K.D., Kochanek P.M., Dixon C.E., Alexander H.L., Warner D.S., Clark R.S.B., Wisniewski S.R., Graham S.H., Jenkins L.W., Marion D.W., et al. Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J. Neurotrauma. 2000;17:1179–1189.
    1. Fox G.B., LeVasseur R.A., Faden A.I. Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: Implications for gene targeting approaches to neurotrauma. J. Neurotrauma. 1999;16:377–389.
    1. Smith D.H., Chen X.H., Xu B.N., McIntosh T.K., Gennarelli T.A., Meaney D.F. Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J. Neuropathol. Exp. Neurol. 1997;56:822–834.
    1. Dick R.W. Is there a gender difference in concussion incidence and outcomes? Br. J. Sports Med. 2009;43:i46–i50.
    1. Davis D.P., Douglas D.J., Smith W., Sise M.J., Vilke G.M., Holbrook T.L., Kennedy F., Eastman A.B., Velky T., Hoyt D.B. Traumatic brain injury outcomes in pre- and post-menopausal females versus age-matched males. J. Neurotrauma. 2006;23:140–148.
    1. Ottochian M., Salim A., Berry C., Chan L.S., Wilson M.T., Margulies D.R. Severe traumatic brain injury: Is there a gender difference in mortality? Am. J. Surg. 2009;197:155–158.
    1. Covassin T., Bay E. Are there gender differences in cognitive function, chronic stress, and neurobehavioral symptoms after mild-to-moderate traumatic brain injury? J. Neurosci. Nurs. 2012;44:124–133.
    1. Broshek D.K., Kaushik T., Freeman J.R., Erlanger D., Webbe F., Barth J.T. Sex differences in outcome following sports-related concussion. J. Neurosurg. 2005;102:856–863.
    1. Wagner A.K., Kline A.E., Sokoloski J., Zafonte R.D., Capulong E., Dixon C.E. Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neurosci. Lett. 2002;334:165–168.
    1. Wagner A.K., Kline A.E., Ren D., Willard L.A., Wenger M.K., Zafonte R.D., Dixon C.E. Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behav. Brain Res. 2007;181:200–209.
    1. Dewan Y., Komolafe E.O., Mejía-Mantilla J.H., Perel P., Roberts I., Shakur H. CRASH-3 Collaborators. CRASH-3—Tranexamic acid for the treatment of significant traumatic brain injury: Study protocol for an international randomized, double-blind, placebo-controlled trial. Trials. 2012;13:87.
    1. Perel P., Al-Shahi Salman R., Kawahara T., Morris Z., Prieto-Merino D., Roberts I., Sandercock P., Shakur H., Wardlaw J. CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage) intracranial bleeding study: The effect of tranexamic acid in traumatic brain injury—A nested randomised, placebo-controlled trial. Health Technol. Assess. 2012;16:iii–xii. 1–54.
    1. Maas A.I., Steyerberg E.W., Marmarou A., McHugh G.S., Lingsma H.F., Butcher I., Lu J., Weir J., Roozenbeek B., Murray G.D. IMPACT recommendations for improving the design and analysis of clinical trials in moderate to severe traumatic brain injury. Neurotherapeutics. 2010;7:127–134.
    1. Chow S.C., Chang M., Pong A. Statistical consideration of adaptive methods in clinical development. J. Biopharm. Stat. 2005;15:575–591.
    1. Chow S.C., Chang M. Adaptive design methods in clinical trials—A review. Orphanet J. Rare Dis. 2008;3:11.
    1. Gallo P., Chuang-Stein C., Dragalin V., Gaydos B., Krams M., Pinheiro J. PhRMA Working Group. Adaptive designs in clinical drug development—An Executive Summary of the PhRMA Working Group. J. Biopharm. Stat. 2006;16:275–283.
    1. Faden A.I. Comparison of single and combination drug treatment strategies in experimental brain trauma. J. Neurotrauma. 1993;10:91–100.
    1. Gonzalez Deniselle M.C., Lopez Costa J.J., Gonzalez S.L., Labombarda F., Garay L., Guennoun R., Schumacher M., de Nicola A.F. Basis of progesterone protection in spinal cord neurodegeneration. J. Steroid Biochem. Mol. Biol. 2002;83:199–209.
    1. Jiang N., Chopp M., Stein D., Feit H. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Stroke. 1997;28:109–109.
    1. Roof R.L., Hall E.D. Gender differences in acute CNS trauma and stroke: Neuroprotective effects of estrogen and progesterone. J. Neurotrauma. 2000;17:367–388.
    1. Smith S.S. Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience. 1991;42:309–320.
    1. Roof R.L., Hoffman S.W., Stein D.G. Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol. Chem. Neuropathol. 1997;31:1–11.
    1. Djebaili M., Guo Q., Pettus E.H., Hoffman S.W., Stein D.G. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma. 2005;22:106–118.
    1. O’Connor C.A., Cernak I., Johnson F.l., Vink R. Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats. Exp. Neurol. 2007;205:145–153.
    1. Wright D.W., Kellermann A.L., Hertzberg V.S., Clark P.L., Frankel M., Goldstein F.C., Salomone J.P., Dent L.L., Harris O.A., Ander D.S., et al. ProTECT: A randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med. 2007;49:391–402. 402.e1–402.e2.
    1. Xiao G., Wei J., Yan W., Wang W., Lu Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: A randomized controlled trial. Crit. Care. 2008;12:R61.
    1. Gilmer L.K., Roberts K.N., Scheff S.W. Efficacy of progesterone following a moderate unilateral cortical contusion injury. J. Neurotrauma. 2008;25:593–602.
    1. Gibson C.L., Gray L.J., Bath P.M.W., Murphy S.P. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2008;131:318–328.
    1. Stein D.G. Progesterone in the treatment of acute traumatic brain injury: A clinical perspective and update. Neuroscience. 2011;191:101–106.
    1. Stein D.G., Wright D.W. Progesterone in the clinical treatment of acute traumatic brain injury. Expert Opin. Investig. Drugs. 2010;19:847–857.
    1. Faden A.I., Knoblach S.M., Movsesyan V.A., Cernak I. Novel small peptides with neuroprotective and nootropic properties. J. Alzheimer’s Dis. 2004;6:S93–S97.
    1. Ponce L.L., Navarro J.C., Ahmed O., Robertson C.S. Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology. 2013;20:31–38.
    1. Grasso G., Sfacteria A., Meli F., Fodale V., Buemi M., Iacopino D.G. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res. 2007;1182:99–105.
    1. Busto R., Dietrich W.D., Globus M.Y., Ginsberg M.D. The importance of brain temperature in cerebral ischemic injury. Stroke. 1989;20:1113–1114.
    1. Dietrich W.D. The importance of brain temperature in cerebral injury. J. Neurotrauma. 1992;9:S475–S485.
    1. Dietrich W.D., Alonso O., Busto R., Globus M.Y., Ginsberg M.D. Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol. 1994;87:250–258.
    1. Vitarbo E.A., Chatzipanteli K., Kinoshita K., Truettner J.S., Alonso O.F., Dietrich W.D. Tumor necrosis factor alpha expression and protein levels after fluid percussion injury in rats: The effect of injury severity and brain temperature. Neurosurgery. 2004;55:416–424. discussion 424–425.
    1. Dietrich W.D., Busto R., Halley M., Valdes I. The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J. Neuropathol. Exp. Neurol. 1990;49:486–497.
    1. Shiozaki T., Sugimoto H., Taneda M., Yoshida H., Iwai A., Yoshioka T., Sugimoto T. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg. 1993;79:363–368.
    1. Marion D.W., Penrod L.E., Kelsey S.F., Obrist W.D., Kochanek P.M., Palmer A.M., Wisniewski S.R., DeKosky S.T. Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med. 1997;336:540–546.
    1. Zhi D., Zhang S., Lin X. Study on therapeutic mechanism and clinical effect of mild hypothermia in patients with severe head injury. Surg. Neurol. 2003;59:381–385.
    1. Metz C., Holzschuh M., Bein T., Woertgen C., Frey A., Frey I., Taeger K., Brawanski A. Moderate hypothermia in patients with severe head injury: Cerebral and extracerebral effects. J. Neurosurg. 1996;85:533–541.
    1. Clifton G.L., Miller E.R., Choi S.C., Levin H.S., McCauley S., Smith K.R., Jr., Muizelaar J.P., Wagner F.C., Jr., Marion D.W., Luerssen T.G., et al. Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 2001;344:556–563.
    1. Guan J., Mathai S., Harris P., Wen J.Y., Zhang R., Brimble M., Gluckman P. Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia-ischemia in adult rats. Neuropharmacology. 2007;53:749–762.
    1. Simard J.M., Kilbourne M., Tsymbalyuk O., Tosun C., Caridi J., Ivanova S., Keledjian K., Bochicchio G., Gerzanich V. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J. Neurotrauma. 2009;26:2257–2267.
    1. Chen G., Zhang S., Shi J., Ai J., Qi M., Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: Possible involvement of TLR4/NF-kappaB pathway. Exp. Neurol. 2009;216:398–406.
    1. Chen S.F., Hung T.H., Chen C.C., Lin K.H., Huang Y.N., Tsai H.C., Wang J.Y. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci. 2007;81:288–298.
    1. Mbye L.H., Singh I.N., Carrico K.M., Saatman K.E., Hall E.D. Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J. Cereb. Blood Flow Metab. 2009;29:87–97.
    1. Mbye L.H., Singh I.N., Sullivan P.G., Springer J.E., Hall E.D. Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp. Neurol. 2008;209:243–253.
    1. Nimmo A.J., Cernak I., Heath D.L., Hu X., Bennett C.J., Vink R. Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides. 2004;38:40–47.
    1. Di Giovanni S., Movsesyan V., Ahmed F., Cernak I., Schinelli S., Stoica B., Faden A.I. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl. Acad. Sci. USA. 2005;102:8333–8338.
    1. Cernak I., Faden A.I. Role of the cell cycle in the pathophysiology of central nervous system trauma. Cell Cycle. 2005;4:1286–1293.
    1. Hilton G.D., Stoica B.A., Byrnes K.R., Faden A.I. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J. Cereb. Blood Flow Metab. 2008;28:1845–1859.
    1. Kabadi S.V., Stoica B.A., Byrnes K.R., Hanscom M., Loane D.J., Faden A.I. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J. Cereb. Blood Flow Metab. 2012;32:137–149.
    1. Kabadi S.V., Stoica B.A., Hanscom M., Loane D.J., Kharebava G., Murray M.G., II, Cabatbat R.M., Faden A.I. CR8, a selective and potent CDK inhibitor, provides neuroprotection in experimental traumatic brain injury. Neurotherapeutics. 2012;9:405–421.
    1. Loane D.J., Stoica B.A., Pajoohesh-Ganji A., Byrnes K.R., Faden A.I. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem. 2009;284:15629–15639.
    1. Loane D.J., Stoica B.A., Byrnes K.R., Jeong W., Faden A.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma. 2013;30:403–412.
    1. Piao C.S., Loane D.J., Stoica B.A., Li S., Hanscom M., Cabatbat R., Blomgren K., Faden A.I. Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiol. Dis. 2012;46:745–758.
    1. Sabirzhanov B., Stoica B.A., Hanscom M., Piao C.S., Faden A.I. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J. Neurochem. 2012;123:542–554.
    1. Zhao Z., Faden A.I., Loane D.J., Lipinski M.M., Sabirzhanov B., Stoica B.A. Neuroprotective effects of geranylgeranylacetone in experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 2013;33:1897–1908.
    1. Piao C.S., Stoica B.A., Wu J., Sabirzhanov B., Zhao Z., Cabatbat R., Loane D.J., Faden A.I. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol. Dis. 2013;54:252–263.
    1. Nirula R., Diaz-Arrastia R., Brasel K., Weigelt J.A., Waxman K. Safety and efficacy of erythropoietin in traumatic brain injury patients: A pilot randomized trial. Crit. Care Res. Pract. 2010;2010 doi: 10.1155/2010/209848.
    1. Faden A.I., Knoblach S.M., Cernak I., Fan L., Vink R., Araldi G.L., Fricke S.T., Roth B.L., Kozikowski A.P. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J. Cereb. Blood Flow Metab. 2003;23:342–354.
    1. Faden A.I., Fox G.B., Di X., Knoblach S.M., Cernak I., Mullins P., Nikolaeva M., Kozikowski A.P. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J. Cereb. Blood Flow Metab. 2003;23:355–363.
    1. Faden A.I., Movsesyan V.A., Knoblach S.M., Ahmed F., Cernak I. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology. 2005;49:410–424.
    1. Simard J.M., Woo S.K., Bhatta S., Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr. Opin. Pharmacol. 2008;8:42–49.
    1. Cucchiara B., Kasner S.E. Use of statins in CNS disorders. J. Neurol. Sci. 2001;187:81–89.
    1. Wible E.F., Laskowitz D.T. Statins in traumatic brain injury. Neurotherapeutics. 2010;7:62–73.
    1. Lu D., Goussev A., Chen J., Pannu P., Li Y., Mahmood A., Chopp M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J. Neurotrauma. 2004;21:21–32.
    1. Lu D., Qu C., Goussev A., Jiang H., Lu C., Schallert T., Mahmood A., Chen J., Li Y., Chopp M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma. 2007;24:1132–1146.
    1. Tapia-Perez J., Sanchez-Aguilar M., Torres-Corzo J.G., Gordillo-Moscoso A., Martinez-Perez P., Madeville P., de la Cruz-Mendoza E., Chalita-Williams J. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758) J. Neurotrauma. 2008;25:1011–1017.
    1. Okonkwo D.O., Büki A., Siman R., Povlishock J.T. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport. 1999;10:353–358.
    1. Okonkwo D.O., Povlishock J.T. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J. Cereb. Blood Flow Metab. 1999;19:443–451.
    1. Sullivan P.G., Rabchevsky A.G., Hicks R.R., Gibson T.R., Fletcher-Turner A., Scheff S.W. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience. 2000;101:289–295.
    1. Sullivan P.G., Thompson M., Scheff S.W. Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp. Neurol. 2000;161:631–637.
    1. Mazzeo A.T., Alves O.L., Gilman C.B., Hayes R.L., Tolias C., Niki Kunene K., Ross Bullock M. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: A microdialysis study. Acta Neurochir. (Wien) 2008;150:1019–1031. discussion 1031.
    1. Margulies S., Hicks R. Combination therapies for traumatic brain injury: Prospective considerations. J. Neurotrauma. 2009;26:925–939.
    1. Donkin J.J., Nimmo A.J., Cernak I., Blumbergs P.C., Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J. Cereb. Blood Flow Metab. 2009;29:1388–1398.
    1. Arendt T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: The ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease ordisease or the yin and yang of neuroplasticity. Prog. Neurobiol. 2003;71:83–248.
    1. Bettayeb K., Oumata N., Echalier A., Ferandin Y., Endicott J.A., Galons H., Meijer L. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene. 2008;27:5797–5807.
    1. Biber K., Laurie D.J., Berthele A., Sommer B., Tölle T.R., Gebicke-Härter P.J., van Calker D., Boddeke H.W. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J. Neurochem. 1999;72:1671–1680.
    1. Conti A.C., Raghupathi R., Trojanowski J.Q., McIntosh T.K. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J. Neurosci. 1998;18:5663–5672.
    1. Rink A., Fung K.M., Trojanowski J.Q., Lee V.M., Neugebauer E., McIntosh T.K. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol. 1995;147:1575–1583.
    1. Knoblach S.M., Nikolaeva M., Huang X., Fan L., Krajewski S., Reed J.C., Faden A.I. Multiple caspases are activated after traumatic brain injury: Evidence for involvement in functional outcome. J. Neurotrauma. 2002;19:1155–1170.
    1. Clark R.S., Kochanek P.M., Watkins S.C., Chen M., Dixon C.E., Seidberg N.A., Melick J., Loeffert J.E., Nathaniel P.D., Jin K.L., et al. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem. 2000;74:740–753.
    1. Candé C., Vahsen N., Kouranti I., Schmitt E., Daugas E., Spahr C., Luban J., Kroemer R.T., Giordanetto F., Garrido C., et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene. 2004;23:1514–1521.
    1. Culmsee C., Zhu C., Landshamer S., Becattini B., Wagner E., Pellecchia M., Blomgren K., Plesnila N. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J. Neurosci. 2005;25:10262–10272.
    1. Zhu C., Wang X., Huang Z., Qiu L., Xu F., Vahsen N., Nilsson M., Eriksson P.S., Hagberg H., Culmsee C., et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ. 2007;14:775–784.
    1. Redell J.B., Zhao J., Dash P.K. Acutely increased cyclophilin a expression after brain injury: A role in blood-brain barrier function and tissue preservation. J. Neurosci. Res. 2007;85:1980–1988.
    1. Turturici G., Sconzo G., Geraci F. Hsp70 and its molecular role in nervous system diseases. Biochem. Res. Int. 2011;2011:618127.
    1. Gribaldo S., Lumia V., Creti R., Conway de Macario E., Sanangelantoni A., Cammarano P. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 1999;181:434–443.
    1. Clark R.S., Bayir H., Chu C.T., Alber S.M., Kochanek P.M., Watkins S.C. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy. 2008;4:88–90.
    1. Lai Y., Hickey R.W., Chen Y., Bayir H., Sullivan M.L., Chu C.T., Kochanek P.M., Dixon C.E., Jenkins L.W., Graham S.H., et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J. Cereb. Blood Flow Metab. 2008;28:540–550.
    1. Erlich S., Alexandrovich A., Shohami E., Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 2007;26:86–93.
    1. Griesbach G.S., Gomez-Pinilla F., Hovda D.A. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J. Neurotrauma. 2007;24:1161–1171.
    1. Griesbach G.S., Gomez-Pinilla F., Hovda D.A. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res. 2004;1016:154–162.
    1. Griesbach G.S., Hovda D.A., Molteni R., Wu A., Gomez-Pinilla F. Voluntary exercise following traumatic brain injury: Brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience. 2004;125:129–139.

Source: PubMed

3
Suscribir