Identification of ER/SR resident proteins as biomarkers for ER/SR calcium depletion in skeletal muscle cells

Lacey K Greer, Katherine G Meilleur, Brandon K Harvey, Emily S Wires, Lacey K Greer, Katherine G Meilleur, Brandon K Harvey, Emily S Wires

Abstract

Background: Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking. While the consequences of their extracellular presence have yet to be fully delineated, the proteins that have undergone exodosis may be useful for biomarker development. Skeletal muscle cells rely upon tightly coordinated ER/SR calcium release for muscle contractions, and perturbations to calcium homeostasis can result in myopathies. Ryanodine receptor type-1 (RYR1) is a calcium release channel located in the SR. Mutations to the RYR1 gene can compromise calcium homeostasis leading to a vast range of clinical phenotypes encompassing hypotonia, myalgia, respiratory insufficiency, ophthalmoplegia, fatigue and malignant hyperthermia (MH). There are currently no FDA approved treatments for RYR1-related myopathies (RYR1-RM).

Results: Here we examine the exodosis profile of skeletal muscle cells following ER/SR calcium depletion. Proteomic analysis identified 4,465 extracellular proteins following ER/SR calcium depletion with 1,280 proteins significantly different than vehicle. A total of 54 ERS proteins were identified and 33 ERS proteins significantly increased following ER/SR calcium depletion. Specifically, ERS protein, mesencephalic astrocyte-derived neurotrophic factor (MANF), was elevated following calcium depletion, making it a potential biomarker candidate for human samples. Despite no significant elevation of MANF in plasma levels among healthy volunteers and RYR1-RM individuals, MANF plasma levels positively correlated with age in RYR1-RM individuals, presenting a potential biomarker of disease progression. Selenoprotein N (SEPN1) was also detected only in extracellular samples following ER/SR calcium depletion. This protein is integral to calcium handling and SEPN1 variants have a causal role in SEPN1-related myopathies (SEPN1-RM). Extracellular presence of ER/SR membrane proteins may provide new insight into proteomic alterations extending beyond ERS proteins. Pre-treatment of skeletal muscle cells with bromocriptine, an FDA approved drug recently found to have anti-exodosis effects, curbed exodosis of ER/SR resident proteins.

Conclusion: Changes to the extracellular content caused by intracellular calcium dysregulation presents an opportunity for biomarker development and drug discovery.

Trial registration: ClinicalTrials.gov NCT02362425.

Keywords: Bromocriptine; Exodosis; MANF; Myopathy; Ryanodine receptor isoform-1; SEPN1; SIL1; Skeletal muscle.

Conflict of interest statement

The authors declare they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Targeted validation of exodosis-related proteins. A MANF HTRF assay of media collected from T0034 skeletal muscle cell line treated with 100 nM Tg for 8 h. Extracellular MANF is increased following Tg treatment, mean ± SEM, n = 6 wells/treatment group, ***p = 0.0008, unpaired two-tailed t-test. B Carboxylesterase 1/2 fluorescence activity measured in media collected from T0034 skeletal muscle cell line treated with 100 nM Tg for 8 and 24 h, mean ± SEM, n = 10/treatment group, ****p < 0.0001, 2-way ANOVA, Sidak’s multiple comparison test. C PDIA1/P4HB IP of media collected from T0034 skeletal muscle cell line treated with 100 nM Tg for 8 h, mean ± SEM, n = 4/treatment group, *p = 0.022, unpaired two-tailed t-test. Of note, bands at approximate 28 kDa and 51 kDa are IgG light and heavy chains from IP, respectively
Fig. 2
Fig. 2
Calcium depletion elicits exodosis in skeletal muscle cell line. Mass spectrometry analysis of concentrated media from T0034 skeletal muscle cell line treated with 100 nM Tg for 8 h identified 4465 extracellular proteins. Red circles indicate the 54 ERS proteins that were identified. Biological processes of all identified extracellular proteins highlighted by pie chart inset
Fig. 3
Fig. 3
Bromocriptine attenuates exodosis in skeletal muscle cell line. A Mass spectrometry analysis of media from T0034 skeletal muscle cell line pre-treated with vehicle, 20 µM bromocriptine, or 50 µM dantrolene 30 min prior to 100 nM Tg for 8 h. Solid line represents mean fold change B Extracellular ERS proteins identified from mass spectrometry analysis pre-treated with vehicle, 20 µM bromocriptine, or 50 µM dantrolene 30 min prior to 100 nM Tg for 8 h; solid line represents mean fold change, ****p < 0.0001, 1-way ANOVA, Dunnett’s multiple comparison test, Tg vs bromocriptine or dantrolene. C Extracellular MANF identified by mass spectrometry in media from skeletal muscle cells pre-treated with vehicle, 20 µM bromocriptine, or 50 µM dantrolene 30 min prior to 100 nM Tg for 8 h; mean ± SEM, *p < 0.05, 1-way ANOVA, Dunnett’s multiple comparison test. D Extracellular MANF identified by MANF HTRF assay of media collected from T0034 skeletal muscle cell line pre-treated with vehicle, 3 µM, 10 µM, 20 µM bromocriptine, or 10 µM, 30 µM, 50 µM dantrolene 30 min prior to 100 nM Tg for 8 h; mean ± SEM, n = 6–12 wells/treatment group, *p < 0.05, ***p < 0.001, ****p < 0.0001, 1-way ANOVA, Dunnett’s multiple comparison test, Tg vs other treatment groups. E) Densitometry analysis of western blot of concentrated media collected from T0034 skeletal muscle cell line pre-treated with vehicle, 20 µM bromocriptine, or 50 µM dantrolene, mean ± SEM, n = 2/treatment groups, *p < 0.05, **p < 0.01, 1-way ANOVA, Dunnett’s multiple comparison test vehicle/Tg vs vehicle/vehicle, bromocriptine/Tg, or dantrolene/Tg
Fig. 4
Fig. 4
MANF is marginally elevated in individuals with RYR1 mutations. A Extracellular human MANF in plasma obtained from healthy volunteers or individuals with RYR1 mutations, mean ± SEM, n = 7 healthy volunteers, n = 9 RYR1 mutations, participant sex indicated next to confirmed genotype, p = 0.1665, two-tailed t-test. B, C Circulating levels of MANF is significantly correlated with age in individuals with RYR1 mutations, but not healthy volunteers, n = 7 healthy volunteers, r = -0.5122, p = 0.2398; n = 9 RYR1 mutations, r = 0.7511 *p = 0.0196

References

    1. Henderson MJ, Wires ES, Trychta KA, Richie CT, Harvey BK. SERCaMP: a carboxy-terminal protein modification that enables monitoring of ER calcium homeostasis. Mol Biol Cell. 2014;25(18):2828–2839. doi: 10.1091/mbc.e14-06-1141.
    1. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79–94. doi: 10.1007/s00018-015-2052-6.
    1. Qi L, Tsai B, Arvan P. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol. 2017;27(6):430–440. doi: 10.1016/j.tcb.2016.12.002.
    1. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528–531. doi: 10.1038/nature09968.
    1. Lemmer IL, Willemsen N, Hilal N, Bartelt A. A guide to understanding endoplasmic reticulum stress in metabolic disorders. Mol Metab. 2021;47:101169. doi: 10.1016/j.molmet.2021.101169.
    1. Cribb AE, Peyrou M, Muruganandan S, Schneider L. The endoplasmic reticulum in xenobiotic toxicity. Drug Metab Rev. 2005;37(3):405–442. doi: 10.1080/03602530500205135.
    1. Rayavarapu S, Coley W, Nagaraju K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr Rheumatol Rep. 2012;14(3):238–243. doi: 10.1007/s11926-012-0247-5.
    1. Trychta KA, Back S, Henderson MJ, Harvey BK. KDEL Receptors are differentially regulated to maintain the ER proteome under calcium deficiency. Cell Rep. 2018;25(7):1829–40 e6.
    1. Trychta KA, Xie B, Verma RK, Xu M, Shi L, Harvey BK. Computational modeling of C-terminal tails to predict the calcium-dependent secretion of endoplasmic reticulum resident proteins. Front Chem. 2021;9:689608. doi: 10.3389/fchem.2021.689608.
    1. Henderson MJ, Trychta KA, Yang SM, Bäck S, Yasgar A, Wires ES, et al. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell Rep. 2021;35(4):109040. doi: 10.1016/j.celrep.2021.109040.
    1. Witherspoon JW, Meilleur KG. Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathol Commun. 2016;4(1):121. doi: 10.1186/s40478-016-0392-6.
    1. Jeyakumar LH, Gleaves LA, Ridley BD, Chang P, Atkinson J, Barnett JV, et al. The skeletal muscle ryanodine receptor isoform 1 is found at the intercalated discs in human and mouse hearts. J Muscle Res Cell Motil. 2002;23(4):285–292. doi: 10.1023/A:1022091931677.
    1. Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol. 2011;70(4):662–665. doi: 10.1002/ana.22510.
    1. Rosenberg H, Davis M, James D, Pollock N, Stowell K. Malignant hyperthermia. Orphanet J Rare Dis. 2007;2:21. doi: 10.1186/1750-1172-2-21.
    1. StatPearls. 2021.
    1. Todd JJ, Sagar V, Lawal TA, Allen C, Razaqyar MS, Shelton MS, et al. Correlation of phenotype with genotype and protein structure in RYR1-related disorders. J Neurol. 2018;265(11):2506–2524. doi: 10.1007/s00415-018-9033-2.
    1. Wehner M, Rueffert H, Koenig F, Olthoff D. Calcium release from sarcoplasmic reticulum is facilitated in human myotubes derived from carriers of the ryanodine receptor type 1 mutations Ile2182Phe and Gly2375Ala. Genet Test. 2003;7(3):203–211. doi: 10.1089/109065703322537214.
    1. López JR, Linares N, Pessah IN, Allen PD. Enhanced response to caffeine and 4-chloro-m-cresol in malignant hyperthermia-susceptible muscle is related in part to chronically elevated resting [Ca2+]i. Am J Physiol Cell Physiol. 2005;288(3):C606–C612. doi: 10.1152/ajpcell.00297.2004.
    1. Zhou H, Yamaguchi N, Xu L, Wang Y, Sewry C, Jungbluth H, et al. Characterization of recessive RYR1 mutations in core myopathies. Hum Mol Genet. 2006;15(18):2791–2803. doi: 10.1093/hmg/ddl221.
    1. Choi RH, Koenig X, Launikonis BS. Dantrolene requires Mg. Proc Natl Acad Sci U S A. 2017;114(18):4811–4815. doi: 10.1073/pnas.1619835114.
    1. Miller KL, Fermaglich LJ, Maynard J. Using four decades of FDA orphan drug designations to describe trends in rare disease drug development: substantial growth seen in development of drugs for rare oncologic, neurologic, and pediatric-onset diseases. Orphanet J Rare Dis. 2021;16(1):265. doi: 10.1186/s13023-021-01901-6.
    1. Yamazawa T, Kobayashi T, Kurebayashi N, Konishi M, Noguchi S, Inoue T, et al. A novel RyR1-selective inhibitor prevents and rescues sudden death in mouse models of malignant hyperthermia and heat stroke. Nat Commun. 2021;12(1):4293. doi: 10.1038/s41467-021-24644-1.
    1. Einhorn L, Krapfenbauer K. HTRF: a technology tailored for biomarker determination-novel analytical detection system suitable for detection of specific autoimmune antibodies as biomarkers in nanogram level in different body fluids. EPMA J. 2015;6:23. doi: 10.1186/s13167-015-0046-y.
    1. Todd JJ, Lawal TA, Witherspoon JW, Chrismer IC, Razaqyar MS, Punjabi M, et al. Randomized controlled trial of. Neurology. 2020;94(13):e1434–e1444. doi: 10.1212/WNL.0000000000008872.
    1. Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol. 2011;3(6).
    1. Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Miller Needleman KI, et al. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19(2):93–111. doi: 10.1038/s41573-019-0049-9.
    1. Chien CY, Hung YJ, Shieh YS, Hsieh CH, Lu CH, Lin FH, et al. A novel potential biomarker for metabolic syndrome in Chinese adults: circulating protein disulfide isomerase family A, member 4. PLoS ONE. 2017;12(6):e0179963. doi: 10.1371/journal.pone.0179963.
    1. Sollazzo D, Forte D, Polverelli N, Perricone M, Romano M, Luatti S, et al. Circulating calreticulin is increased in myelofibrosis: correlation with interleukin-6 plasma levels, bone marrow fibrosis, and splenomegaly. Mediators Inflamm. 2016;2016:5860657. doi: 10.1155/2016/5860657.
    1. Wu T, Zhang F, Yang Q, Zhang Y, Liu Q, Jiang W, et al. Circulating mesencephalic astrocyte-derived neurotrophic factor is increased in newly diagnosed prediabetic and diabetic patients, and is associated with insulin resistance. Endocr J. 2017;64(4):403–410. doi: 10.1507/endocrj.EJ16-0472.
    1. Giusti L, Baldini C, Ciregia F, Giannaccini G, Giacomelli C, De Feo F, et al. Is GRP78/BiP a potential salivary biomarker in patients with rheumatoid arthritis? Proteomics Clin Appl. 2010;4(3):315–324. doi: 10.1002/prca.200900082.
    1. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature. 2011;475(7356):324–332. doi: 10.1038/nature10317.
    1. Parakh S, Atkin JD. Novel roles for protein disulphide isomerase in disease states: a double edged sword? Front Cell Dev Biol. 2015;3:30. doi: 10.3389/fcell.2015.00030.
    1. Galligan JJ, Petersen DR. The human protein disulfide isomerase gene family. Hum Genomics. 2012;6:6. doi: 10.1186/1479-7364-6-6.
    1. Wang C, Zhu Y, Wu D, Wang Z, Xu X, Shi Y, et al. The role of PDIA3 in myogenesis during muscle regeneration. Exp Mol Med. 2020;52(1):105–117. doi: 10.1038/s12276-019-0368-2.
    1. Wilkinson B, Gilbert HF. Protein disulfide isomerase. Biochim Biophys Acta. 2004;1699(1–2):35–44. doi: 10.1016/S1570-9639(04)00063-9.
    1. Molinari M, Galli C, Piccaluga V, Pieren M, Paganetti P. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol. 2002;158(2):247–257. doi: 10.1083/jcb.200204122.
    1. Trychta KA, Heathward EJ, Sulima A, Back S, Farokhnia M, Richie CT, et al. Extracellular esterase activity as an indicator of endoplasmic reticulum calcium depletion. Biomarkers. 2018;23(8):756–765. doi: 10.1080/1354750X.2018.1490968.
    1. Wires ES, Trychta KA, Back S, Sulima A, Rice KC, Harvey BK. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol. 2017;67(5):1009–1017. doi: 10.1016/j.jhep.2017.05.023.
    1. Wu MH, Chen P, Remo BF, Cook EH, Das S, Dolan ME. Characterization of multiple promoters in the human carboxylesterase 2 gene. Pharmacogenetics. 2003;13(7):425–435. doi: 10.1097/00008571-200307000-00008.
    1. Jӓntti M, Harvey BK. Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res. 2020;382(1):83–100. doi: 10.1007/s00441-020-03263-0.
    1. Glembotski CC, Thuerauf DJ, Huang C, Vekich JA, Gottlieb RA, Doroudgar S. Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J Biol Chem. 2012;287(31):25893–25904. doi: 10.1074/jbc.M112.356345.
    1. Lee CS, Hanna AD, Wang H, Dagnino-Acosta A, Joshi AD, Knoblauch M, et al. A chemical chaperone improves muscle function in mice with a RyR1 mutation. Nat Commun. 2017;8:14659. doi: 10.1038/ncomms14659.
    1. Afroze D, Kumar A. ER stress in skeletal muscle remodeling and myopathies. FEBS J. 2019;286(2):379–398. doi: 10.1111/febs.14358.
    1. Girard T, Cavagna D, Padovan E, Spagnoli G, Urwyler A, Zorzato F, et al. B-lymphocytes from malignant hyperthermia-susceptible patients have an increased sensitivity to skeletal muscle ryanodine receptor activators. J Biol Chem. 2001;276(51):48077–48082. doi: 10.1074/jbc.M107134200.
    1. Ducreux S, Zorzato F, Müller C, Sewry C, Muntoni F, Quinlivan R, et al. Effect of ryanodine receptor mutations on interleukin-6 release and intracellular calcium homeostasis in human myotubes from malignant hyperthermia-susceptible individuals and patients affected by central core disease. J Biol Chem. 2004;279(42):43838–43846. doi: 10.1074/jbc.M403612200.
    1. Howard EE, Pasiakos SM, Blesso CN, Fussell MA, Rodriguez NR. Divergent roles of inflammation in skeletal muscle recovery from injury. Front Physiol. 2020;11:87. doi: 10.3389/fphys.2020.00087.
    1. Sousa-Victor P, Neves J, Cedron-Craft W, Ventura PB, Liao CY, Riley RR, et al. MANF regulates metabolic and immune homeostasis in ageing and protects against liver damage. Nat Metab. 2019;1(2):276–290. doi: 10.1038/s42255-018-0023-6.
    1. Chernorudskiy A, Varone E, Colombo SF, Fumagalli S, Cagnotto A, Cattaneo A, et al. Selenoprotein N is an endoplasmic reticulum calcium sensor that links luminal calcium levels to a redox activity. Proc Natl Acad Sci U S A. 2020;117(35):21288–21298. doi: 10.1073/pnas.2003847117.
    1. Villar-Quiles RN, von der Hagen M, Métay C, Gonzalez V, Donkervoort S, Bertini E, et al. The clinical, histologic, and genotypic spectrum of. Neurology. 2020;95(11):e1512–e1527. doi: 10.1212/WNL.0000000000010327.
    1. Rosam M, Krader D, Nickels C, Hochmair J, Back KC, Agam G, et al. Bap (Sil1) regulates the molecular chaperone BiP by coupling release of nucleotide and substrate. Nat Struct Mol Biol. 2018;25(1):90–100. doi: 10.1038/s41594-017-0012-6.
    1. Ichhaporia VP, Kim J, Kavdia K, Vogel P, Horner L, Frase S, et al. SIL1, the endoplasmic-reticulum-localized BiP co-chaperone, plays a crucial role in maintaining skeletal muscle proteostasis and physiology. Dis Model Mech. 2018;11(5).
    1. Gatz C, Hathazi D, Münchberg U, Buchkremer S, Labisch T, Munro B, et al. Identification of cellular pathogenicity markers for SIL1 mutations linked to Marinesco-Sjögren syndrome. Front Neurol. 2019;10:562. doi: 10.3389/fneur.2019.00562.
    1. Thorner MO, Chait A, Aitken M, Benker G, Bloom SR, Mortimer CH, et al. Bromocriptine treatment of acromegaly. Br Med J. 1975;1(5953):299–303. doi: 10.1136/bmj.1.5953.299.
    1. Calne DB, Teychenne PF, Claveria LE, Eastman R, Greenacre JK, Petrie A. Bromocriptine in Parkinsonism. Br Med J. 1974;4(5942):442–444. doi: 10.1136/bmj.4.5942.442.
    1. Eshima H, Miura S, Senoo N, Hatakeyama K, Poole DC, Kano Y. Improved skeletal muscle Ca(2+) regulation in vivo following contractions in mice overexpressing PGC-1alpha. Am J Physiol Regul Integr Comp Physiol. 2017;312(6):R1017–R1028. doi: 10.1152/ajpregu.00032.2017.
    1. Gutierrez-Martin Y, Martin-Romero FJ, Henao F. Store-operated calcium entry in differentiated C2C12 skeletal muscle cells. Biochim Biophys Acta. 2005;1711(1):33–40. doi: 10.1016/j.bbamem.2005.02.017.
    1. Treves S, Vukcevic M, Griesser J, Armstrong CF, Zhu MX, Zorzato F. Agonist-activated Ca2+ influx occurs at stable plasma membrane and endoplasmic reticulum junctions. J Cell Sci. 2010;123(Pt 23):4170–4181. doi: 10.1242/jcs.068387.
    1. Tilgen N, Zorzato F, Halliger-Keller B, Muntoni F, Sewry C, Palmucci LM, et al. Identification of four novel mutations in the C-terminal membrane spanning domain of the ryanodine receptor 1: association with central core disease and alteration of calcium homeostasis. Hum Mol Genet. 2001;10(25):2879–2887. doi: 10.1093/hmg/10.25.2879.
    1. Cacheux M, Blum A, Sebastien M, Wozny AS, Brocard J, Mamchaoui K, et al. Functional characterization of a central core disease RyR1 Mutation (p.Y4864H) associated with quantitative defect in RyR1 Protein. J Neuromuscul Dis. 2015;2(4):421–32.
    1. Lawal TA, Wires ES, Terry NL, Dowling JJ, Todd JJ. Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990–2019. Orphanet J Rare Dis. 2020;15(1):113. doi: 10.1186/s13023-020-01384-x.

Source: PubMed

3
Suscribir