Maxillary anterior en masse retraction using different antero-posterior position of mini screw: a 3D finite element study

Zohreh Hedayati, Mehrdad Shomali, Zohreh Hedayati, Mehrdad Shomali

Abstract

Background: Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights.

Methods: A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software.

Results: Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis.

Conclusions: According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.

Figures

Fig. 1
Fig. 1
Geometric models of the maxillary dental arch
Fig. 2
Fig. 2
Geometric models of the teeth, wire, bracket, and hook
Fig. 3
Fig. 3
Schematic force diagram and θ1 angle in the mesial placement of the mini screw
Fig. 4
Fig. 4
Schematic force diagram and θ2 angle in the distal placement of the mini screw (θ1 > θ2)

References

    1. Melsen B, Bosch C. Different approaches to anchorage: a survey and an evaluation. Angle Orthod. 1997;67(1):23–30.
    1. Geron S, Shpack N, Kandos S, Davidovitch M, Vardimon AD. Anchorage loss—a multifactorial response. Angle Orthod. 2003;73(6):730–7.
    1. Park H-S, Kwon T-G. Sliding mechanics with microscrew implant anchorage. Angle Orthod. 2004;74(5):703–10.
    1. Güray E, Orhan M. “En masse” retraction of maxillary anterior teeth with anterior headgear. Am J Orthod Dentofacial Orthoped. 1997;112(5):473–9. doi: 10.1016/S0889-5406(97)70073-8.
    1. Park HS. A new protocol of the sliding mechanics with micro-implant anchorage (MIA) Korean J Orthod. 2000;30(6):677–85.
    1. Upadhyay M, Yadav S. Mini-implants for retraction, intrusion and protraction in a class II division 1 patient. J Orthod. 2007;34(3):158–67. doi: 10.1179/146531207225022140.
    1. Song JW, Lim JK, Lee KJ, Sung SJ, Chun YS, Mo SS. Finite element analysis of maxillary incisor displacement during en-masse retraction according to orthodontic mini-implant position. Korean J Orthod. 2016;46(4):242–52. doi: 10.4041/kjod.2016.46.4.242.
    1. Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorage: a preliminary report. Int J Adult Orthodon Orthognath Surg. 1997;13(3):201–9.
    1. Lee JS, Park H-S, Kyung H-M. Micro-implant anchorage for lingual treatment of a skeletal class II malocclusion. J Clin Orthod. 2001;35(10):643–7.
    1. Park H-S, Bae S-M, Kyung H-M, Sung J-H. Micro-implant anchorage for treatment of skeletal class I bialveolar protrusion. J Clin Orthod. 2001;35(7):417.
    1. Nienkemper M, Wilmes B, Pauls A, Drescher D. Mini-implant stability at the initial healing period: a clinical pilot study. Angle Orthod. 2013;84(1):127–33. doi: 10.2319/040813-271.1.
    1. Shinohara A, Motoyoshi M, Uchida Y, Shimizu N. Root proximity and inclination of orthodontic mini-implants after placement: cone-beam computed tomography evaluation. Am J Orthod Dentofacial Orthoped. 2013;144(1):50–6. doi: 10.1016/j.ajodo.2013.02.021.
    1. Poggio PM, Incorvati C, Velo S, Carano A. “Safe zones”: a guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod. 2006;76(2):191–7.
    1. Lee K-J, Joo E, Kim K-D, Lee J-S, Park Y-C, Yu H-S. Computed tomographic analysis of tooth-bearing alveolar bone for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthoped. 2009;135(4):486–94. doi: 10.1016/j.ajodo.2007.05.019.
    1. Tominaga JY, Tanaka M, Koga Y, Gonzales C, Kobayashi M, Yoshida N. Optimal loading conditions for controlled movement of anterior teeth in sliding mechanics a 3D finite element study. Angle Orthod. 2009;79:1102–7. doi: 10.2319/111608-587R.1.
    1. Chetan S, Keluskar KM, Vasisht VN, Revankar S. En-masse retraction of the maxillary anterior teeth by applying force from four different levels—a finite element study. J Clin Diagn Res. 2014;8(9):ZC26.
    1. Upadhyay M, Yadav S, Patil S. Mini-implant anchorage for en-masse retraction of maxillary anterior teeth: a clinical cephalometric study. Am J Orthod Dentofacial Orthop. 2008;134(6):803-10.
    1. Parashar A, Aileni KR, Rachala MR, Nagam Reddy Shashidhar NR, Mallikarjun V, Parik N. Torque loss in en-masse retraction of maxillary anterior teeth using miniimplants with force vectors at different levels: 3D FEM study. J Clin Diagn Res. 2014;8(12):ZC77–80.
    1. Nelson SJ. Wheeler’s dental anatomy, physiology and occlusion. Amsterdam: Elsevier Health Sciences; 2014.
    1. Proffit WR, Fields HW, Jr, Sarver DM, et al. Contemporary orthodontics. Amsterdam: Elsevier Health Sciences; 2014.
    1. Upadhyay M, Yadav S, Nagaraj K, Patil S. Treatment effects of mini-implants for en-masse retraction of anterior teeth in bialveolar dental protrusion patients: a randomized controlled trial. Am J Orthod Dentofacial Orthoped. 2008;134(1):18–29. doi: 10.1016/j.ajodo.2007.03.025.
    1. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofacial Orthoped. 2004;126(1):42–7. doi: 10.1016/j.ajodo.2003.06.018.
    1. Kojima Y, Kawamura J, Fukui H. Finite element analysis of the effect of force directions on tooth movement in extraction space closure with miniscrew sliding mechanics. Am J Orthod Dentofacial Orthoped. 2012;142(4):501–8. doi: 10.1016/j.ajodo.2012.05.014.
    1. Park H-S, Kwon O-W, Sung J-H. Microscrew implant anchorage sliding mechanics. World J Orthod. 2005;6(3):265–74.
    1. H-s P, Yoon D-Y, C-s P, Jeoung S-H. Treatment effects and anchorage potential of sliding mechanics with titanium screws compared with the Tweed-Merrifield technique. Am J Orthod Dentofacial Orthoped. 2008;133(4):593–600. doi: 10.1016/j.ajodo.2006.02.041.
    1. Jewett JW, Serway RA. Physics for scientists and engineers with modern physics. Andover: Cengage Learning EMEA; 2008.
    1. Melsen B, Fotis V, Burstone CJ. Vertical force considerations in differential space closure. J Clin Orthod. 1990;24(11):678.
    1. Jeong G-M, Sung S-J, Lee K-J, Chun Y-S, Mo S-S. Finite-element investigation of the center of resistance of the maxillary dentition. Korean J Orthod. 2009;39(2):83–94. doi: 10.4041/kjod.2009.39.2.83.
    1. Lim JK. Gummy smile correction using mini implant. Korean J Clin Orthod. 2010;9:14–31.
    1. Lee K-J, Park Y-C, Hwang C-J, Kim Y-J, Choi T-H, Yoo H-M, et al. Displacement pattern of the maxillary arch depending on miniscrew position in sliding mechanics. Am J Orthod Dentofacial Orthoped. 2011;140(2):224–32. doi: 10.1016/j.ajodo.2010.05.020.
    1. MacGinnis M, Chu H, Youssef G, Wu KW, Machado AW, Moon W. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex—a finite element method (FEM) analysis. Prog Orthod. 2014;15:52. doi: 10.1186/s40510-014-0052-y.
    1. Heravi F, Salari S, Tanbakuchi B, Loh S, Amiri M. Effects of crown-root angle on stress distribution in the maxillary central incisors’ PDL during application of intrusive and retraction forces: a three-dimensional finite element analysis. Prog Orthod. 2013;14:26. doi: 10.1186/2196-1042-14-26.

Source: PubMed

3
Suscribir