Effects of combined training on metabolic profile, lung function, stress and quality of life in sedentary adults: A study protocol for a randomized controlled trial

José Pedro Ferreira, Pedro Duarte-Mendes, Ana M Teixeira, Fernanda M Silva, José Pedro Ferreira, Pedro Duarte-Mendes, Ana M Teixeira, Fernanda M Silva

Abstract

Background: Both physical inactivity and sedentary behavior are considered modifiable risk factors for chronic diseases and all-cause mortality. Adult office-workers spend most of their working day in sedentary behaviors, so they are particularly at high risk of developed chronic diseases (e.g., cardiovascular diseases, metabolic disorders like diabetes mellitus, …). It seems important to promote behavioral changes that could prevent or delay metabolic disease development. Evidence supports the use of exercise programs, however, to date there are several knowledge gaps and inconsistencies in the literature regarding the effects of Combined Training (i.e., aerobic plus resistance training) in sedentary healthy adults. This paper outlines an RCT designed to evaluate the effects of a 16-week combined training program on biochemical and immune markers of metabolic disease, lung function, salivary stress hormones and subjective quality of life (primary outcomes), as well as on body composition and physical fitness (secondary outcomes) in sedentary middle-aged office-workers. Furthermore, we aimed to assess the associations between the changes promoted by the exercise program and the different variables studied.

Methods and design: This is a single-blinded two-arm RCT with parallel groups. A minimum of healthy 40 office-workers aged 40-64 years will be recruited to engage in a 16-week intervention study. After baseline assessments, participants will be randomized to one of the two groups: (1) combined training group or (2) control group. Baseline assessments will be repeated after 8 weeks of intervention (mid-testing) and upon completion of the intervention (post-testing).

Discussion: This RCT involves a multi-disciplinary approach and seems to be a relevant contribution to understanding the potential role of combined training in improving the metabolic profile, lung function, stress, and quality of life in adults. The results can provide important insights for clinical recommendations and for the optimization of strategies to prevent metabolic disorders in adults with sedentary jobs.

Trial registration: This trial is registered with ClinicalTrials.gov (registration number: NCT04868240; date of registration April 30, 2021).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Study design diagram.
Fig 1. Study design diagram.

References

    1. Dieterich AV, Müller AM, Akksilp K, Sarin KC, Dabak SV, Rouyard T. Reducing sedentary behaviour and physical inactivity in the workplace: protocol for a review of systematic reviews. BMJ Open Sport Exerc Med. 2020; 6:e000909. doi: 10.1136/bmjsem-2020-000909
    1. Waters CN, Ling EP, Chu AHY, Ng SHX, Chia A, Lim YW, et al.. Assessing and understanding sedentary behaviour in office-based working adults: mixed-method approach. BMC Public Health. 2016; 16:360. doi: 10.1186/s12889-016-3023-z
    1. Prince SA, Elliott CG, Scott K, Visintini S, Reed JL. Device-measured physical activity, sedentary behaviour and cardiometabolic health and fitness across occupational groups: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2019; 16:30. doi: 10.1186/s12966-019-0790-9
    1. Powell C, Herring MP, Dowd KP, Donnelly AE, Carson BP. The cross-sectional associations between objectively measured sedentary time and cardiometabolic health markers in adults—A systematic review with meta-analysis component. Obes Rev. 2018; 19:381–395. doi: 10.1111/obr.12642
    1. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al.. Sedentary Time and Its Association with Risk for Disease Incidence, Mortality, and Hospitalization in Adults. Ann Intern Med. 2015; 162:123–132. doi: 10.7326/M14-1651
    1. Patterson R, McNamara E, Tainio M, de Sá TH, Smith AD, Sharp SJ, et al.. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018; 33:811–29. doi: 10.1007/s10654-018-0380-1 .
    1. Ku P, Steptoe A, Liao Y, Hsueh M, Chen L. A cut-off daily sedentary time and all-cause mortality in adults: A meta-regression analysis involving more than 1 million participants. BMC Med. 2018; 16:74. doi: 10.1186/s12916-018-1062-2
    1. Young DR, Hivert MF, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, et al.. Sedentary Behavior and Cardiovascular Morbidity and Mortality: A Science Advisory from the American Heart Association. Circulation. 2016; 134:e262–e279. doi: 10.1161/CIR.0000000000000440
    1. Stamatakis E, Ekelund U, Ding D, Hamer M, Bauman AE, Lee I-M. Is the time right for quantitative public health guidelines on sitting? A narrative review of sedentary behaviour research paradigms and findings. Br J Sports Med. 2019; 53(6):377–382. doi: 10.1136/bjsports-2018-099131
    1. Rynders CA, Blanc S, Dejong N, Bessesen DH, Bergouignan A. Sedentary behavior is a key determinant of metabolic inflexibility. J Physiol. 2018; 596(8):1319–30. doi: 10.1113/JP273282
    1. Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017; 47(8):600–11. doi: 10.1111/eci.12781
    1. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight And Pathophysiological Mechanisms. Physiol Rev. 2017; 97:1351–1402. doi: 10.1152/physrev.00019.2016
    1. Wildman RP, Muntner P, Reynolds K, McGinn A, Rajpathak S, Wylie-Rosett J, et al.. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering. Arch Intern Med. 2008; 168(15):1617–24. doi: 10.1001/archinte.168.15.1617
    1. Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, et al.. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS ONE. 2012; 7(4):e34916–e. doi: 10.1371/journal.pone.0034916
    1. Grundy SM. Metabolic Syndrome Update. Trends Cardiovasc Med. 2016; 26(4):364–73. doi: 10.1016/j.tcm.2015.10.004
    1. Van der Berg JD, Stehouwer CD, Bosma H, van der Velde JH, Willems PJ, Savelberg HH, et al.. Associations of total amount and patterns of sedentary behaviour with type 2 diabetes and the metabolic syndrome: The Maastricht Study. Diabetologia. 2016; 59:709–18. doi: 10.1007/s00125-015-3861-8
    1. Leong A, Porneala B, Dupuis J, Florez JC, Meigs JB. Type 2 Diabetes Genetic Predisposition, Obesity, and All-Cause Mortality Risk in the U.S.: A Multiethnic Analysis. Diabetes Care. 2016; 39(4):539–46. doi: 10.2337/dc15-2080
    1. Jansson PA, Pellmé F, Hammarstedt A, Sandqvist M, Brekke H, Caidahl K, et al.. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J. 2003; 17(11):1434–40. doi: 10.1096/fj.02-1132com
    1. Sin D, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005; 127(6):1952–59. doi: 10.1378/chest.127.6.1952
    1. Dogra S, Goog J, Buman MP, Gardiner PA, Stickland MK, Coopeland JL. Movement behaviours are associated with lung function in middle-aged and older adults: a cross-sectional analysis of the Canadian Longitudinal Study on Aging. BMC Public Health. 2018; 18:818. doi: 10.1186/s12889-018-5739-4
    1. Dogra S, Good J, Gardiner PA, Copeland JL, Stickland MK, Rudoler D, et al.. Effects of replacing sitting time with physical activity on lung function: An analysis of the Canadian Longitudinal Study on Aging. Health Reports. 2019; 30(3):12–23. doi: 10.25318/82-003-x201900300002-eng
    1. Ramalho SHR, Shah AM. Lung Function and Cardiovascular Disease: A Link. Trends Cardiovas Med. 2021; 31:93–98. doi: 10.1016/j.tcm.2019.12.009
    1. An K, Salyer J, Brown RE, Kao HS, Starkweather A, Shim I. Salivary Biomarkers of Chronic Psychosocial Stress and CVD Risks: A Systematic Review. Biol Res Nurs. 2015; 18(3):1–23. doi: 10.1177/1099800415604437
    1. Gilson ND, Hall C, Renton A, Ng N, Hippel Wv. Do Sitting, Standing, or Treadmill Desks Impact Psychobiological Indicators of Work Productivity? J Phys Act Health. 2017; 14(10):793–796. doi: 10.1123/jpah.2016-0712
    1. Gubelmann C, Kuehner C, Vollenweider P, Marques-Vidal P. Association of activity status and patterns with salivary cortisol: the population-based CoLaus Study. Eur J Appl Physiol. 2018; 118:1507–1514. doi: 10.1007/s00421-018-3881-4
    1. Teychenne M, Stephens LD, Costigan SA, Olstad DL, Stubbs B, Turner AI. The association between sedentary behaviour and indicators of stress: a systematic review. BMC Public Health. 2019; 19:1357. doi: 10.1186/s12889-019-7717-x
    1. Gleeson M, Bishop NC, Stensel DJ, Linley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011; 11(9):607–15. doi: 10.1038/nri3041
    1. Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015; 25 Suppl 3:1–72. doi: 10.1111/sms.12581
    1. Garber C, Blissmer B, Deschenes M, Franklin B, Lamonte M, Lee I, et al.. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011; 43(7):1334–59. doi: 10.1249/MSS.0b013e318213fefb
    1. Paley CA, Johnson MI. Abdominal obesity and metabolic syndrome: exercise as medicine? BMC Sports Sci Med Rehabil. 2018;10:7. doi: 10.1186/s13102-018-0097-1
    1. Wewege MA, Thom JM, Rye K-A, Parmenter BJ. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis. 2018; 274:162–71. doi: 10.1016/j.atherosclerosis.2018.05.002
    1. Magalhães JP, Santos DA, Correia IR, Hetherington-Rauth M, Ribeiro R, Raposo JF, et al.. Impact of Combined training with different exercise intensities on inflammatory and lipid markers in type 2 diabetes: a secondary analysis from a 1-year randomized controlled trial. Cardiovasc Diabetol. 2020; 19:169. doi: 10.1186/s12933-020-01136-y
    1. Yaribeygi H, Butler AE, Sahebkar. Aerobic exercise can modulate the underlying mechanisms involved in the development of diabetic complications. J cell Physiol. 2019; 234(8):1–8. doi: 10.1002/jcp.28110
    1. Nikseresht M, Agha-Alinejad H, Azarbayjani MA, Ebrahim K. Effects of Nonlinear Resistance and Aerobic Interval Training on Cytokines and Insulin Resistance in Sedentary Men who are obese. J Strength Cond Res. 2014; 28(9):2560–68. doi: 10.1519/JSC.0000000000000441
    1. Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti K, et al.. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obesity Reviews. 2015; 16:942–61. doi: 10.1111/obr.12317
    1. Tomeleri CM, Souza MF, Burini RC, Cavaglieri CR, Ribeiro AS, Antunes M, et al.. Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. J Diabetes. 2018: 10(4):328–37. doi: 10.1111/1753-0407.12614
    1. Oliveira PFA, Gadelha AB, Gauche R, Paiva FML, Bottaro M, Vianna LC, et al.. Resistance training improves isokinetic strength and metabolic syndrome-related phenotypes in postmenopausal women. Clin Interv Aging. 2015; 10:1299–1304. doi: 10.2147/CIA.S87036
    1. Forti LN, Roie EV, Njemini R, Coudyzer W, Beyer I, Delecluse C, et al.. Effects of resistance training at different loads on inflammatory markers in young adults. Eur J Appl Physiol. 2017; 117:511–519. doi: 10.1007/s00421-017-3548-6
    1. Bassi D, Mendes RG, Arakelian VM, Caruso FCR, Cabiddu R, B JC Júnior, et al.. Potential Effects on Cardiorespiratory and Metabolic Status After a Concurrent Strength and Endurance Training Program in Diabetes Patients—a Randomized Controlled Trial. Sports Med. 2016; 2:31. doi: 10.1186/s40798-016-0052-1
    1. Rossi FE, Diniz TA, Neves LM, Fortaleza ACS, Gerosa-Neto J, Inoue DS, et al.. The beneficial effects of aerobic and concurrent training on metabolic profile and body composition after detraining: a 1-year follow-up in postmenopausal women. Eur J Clin Nutr. 2017; 71(5):638–45. doi: 10.1038/ejcn.2016.263
    1. Martins FM, Souza AP, Nunes PRP, Michelin MA, Murta EFC, Resende EAMR, et al.. High-intensity body weight training is comparable to combined training in changes in muscle mass, physical performance, inflammatory markers and metabolic health in postmenopausal women at high risk for type 2 diabetes mellitus: A randomized controlled clinical trial. Exp Gerontol. 2018; 107:108–15. doi: 10.1016/j.exger.2018.02.016
    1. Ha M, Son W. Combined exercise is a modality for improving insulin resistance and aging-related hormone biomarkers in elderly Korean women. Exp Gerontol. 2018; 114:13–18. doi: 10.1016/j.exger.2018.10.012
    1. Earnest CP, Johannsen NM, Swift DL, Gillison FB, Mikus CR, Lucia A, et al.. Aerobic and Strength Training in Concomitant Metabolic Syndrome and Type 2 Diabetes. Med Sci Sports Exerc. 2014; 46(7):1293–1301. doi: 10.1249/MSS.0000000000000242
    1. Salcedo PA, Lindheimer JB, Klein-Adams JC, Stotolongo AM, Falvo MJ. Effects of Exercise Training on Pulmonary Function in Adults with Chronic Lung Disease: A Meta-Analysis of Randomized Controlled Trials. Arch Phys Med Rehabil. 2018; 99(12):2561–69. doi: 10.1016/j.apmr.2018.03.014
    1. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009; 5(7):374–81. doi: 10.1038/nrendo.2009.106
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al.. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013; 346:e7586. doi: 10.1136/bmj.e7586
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel groups randomized trials. Lancet. 2010; 375(9721):1136. doi: 10.1016/S0140-6736(10)60456-4
    1. Hecksteden A, Faude O, Meyer T, Donath L. How to Construct, Conduct and Analyze an Exercise Training Study? Front Physiol. 2018; 9:1007. doi: 10.3389/fphys.2018.01007
    1. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on exercise reporting template (CERT): explanation and elaboration statement. Br J Sports Med. 2016; 96:1514–1524. doi: 10.1136/bjsports-2016-096651
    1. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.
    1. Bull FC, AlAnsari SS, Biddle S, Borodulin K, Buman M, Cardon G, et al.. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020; 54:1451–1462. doi: 10.1136/bjsports-2020-102955
    1. World Medical Association. World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310:2191–2194. doi: 10.1001/jama.2013.281053
    1. Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2016 update. Int J Sports Med. 2015; 36:1121–24. doi: 10.1055/s-0035-1565186
    1. Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007; 39:175–91. doi: 10.3758/bf03193146
    1. American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription. 10th ed. Philadelphia: Wolters Kluwer Health; 2018.
    1. Haff GG, Triplett NT. Essentials of Strength Training and Conditioning/ National Strength and Conditioning Association. 4th ed. Champaign, IL: Human Kinetics; 2016.
    1. Brellenthin AG, Lanningham-Foster LM, Kohut ML, Li Y, Church TS, Blair SN, et al.. Comparison of the Cardiovascular Benefits of Resistance, Aerobic, and Combined Exercise (CardioRACE): Rationale, design, and methods. Am Heart J. 2019; 217:101–11. doi: 10.1016/j.ahj.2019.08.008
    1. Tavoian D, Russ DW, Law TD, Simon JE, Chase PJ, Guseman EH, et al.. A Randomized Clinical Trial Comparing Three Different Exercise Strategies for Optimizing Aerobic Capacity and Skeletal Muscle Performance in Older Adults: Protocol for the DART Study. Front Med. 2019; 6:236. doi: 10.3389/fmed.2019.00236
    1. Connelly J, Kirk A, Masthoff J, MacRury S. The use of technology to promote physical activity in type 2 diabetes management: a systematic review. Diabet Med. 2013; 30(12):1420–32. doi: 10.1111/dme.12289
    1. Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N. S. W. Public Health Bull. 2011; 22:78–83. doi: 10.1071/NB10056
    1. Karvonen MJ, Kentala E, Mustala. The effects of training on heart rate a longitudinal study. Ann Med Exp Biol Fenn. 1957; 35(3):307–15.
    1. Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc. 2007; 39(5):822–9. doi: 10.1097/mss.0b013e31803349c6
    1. Shariat A, Cleland JA, Danaee M, Alizadeh R, Sangelaji B, Kargarfard M, et al.. Borg CR-10 scale as a new approach to monitoring office exercise training. Work. 2018; 60(4):549–54. doi: 10.3233/WOR-182762
    1. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982; 14:377–81.
    1. Matthews DR, Hosker JP, Rudenski As, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28:412–419. doi: 10.1007/BF00280883
    1. Bellagambi FG, Lomonaco T, Salvo P, Vivaldi F, Hangouët M, Ghimenti S, et al.. Saliva sampling: Methods and devices. An overview. Trends in Analyt Chem. 2020; 124:115781. doi: 10.1016/j.trac.2019.115781
    1. Chennaoui M, Bougard C, Drogou C, Langrume C, Miller C, Gomez-Merino D, et al.. Stress Biomarkers, Mood States, and Sleep during a Major Competition: “Success” and “Failure” Athlete’s Profile of High-Level Swimmers. Front Physiol. 2016; 7:94. doi: 10.3389/fphys.2016.00094
    1. Teixeira AM, Ferreira JP, Hogervorst E, Braga MF, Bandelow S, Rama L, et al.. Study Protocol on Hormonal Mediation of Exercise on Cognition, Stress and Immunity (PRO-HMECSI): Effects of Different Exercise Programmes in Institutionalized Elders. Front Public Health. 2016; 4:133. doi: 10.3389/fpubh.2016.00133
    1. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, et al.. Measurement of Blood Pressure in Humans. A Scientific Statement from the American Heart Association. Hypertension. 2019; 73:e35–e66. doi: 10.1161/HYP.0000000000000087
    1. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al.. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005; 111(5):697–716. doi: 10.1161/01.CIR.0000154900.76284.F6
    1. Miller M, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al.. Standardization of spirometry. Eur Respir J. 2005; 26(2):319–38. doi: 10.1183/09031936.05.00034805
    1. Miller MR. Structural and Physiological Age-Associated Changes in Aging Lungs. Semin Respir Crit Care Med. 2010; 31(5):521–7. doi: 10.1055/s-0030-1265893
    1. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al.. Multi-ethnic reference values for spirometry for the 3–95 year age range: the global lung function 2012 equations. Eur Respir J. 2012; 40(6):1324–43. doi: 10.1183/09031936.00080312
    1. The WHOQOL Group. Development of the WHOQOL: Rationale and current status. Int J Ment Health. 1994; 23(3), 24–56. doi: 10.1080/00207411.1994.11449286
    1. Canavarro MC., Simões MR, Vaz Serra A, Pereira M, Rijo D, Quartilho MJ, et al.. Instrumento de avaliação da qualidade de vida da Organização Mundial de Saúde: WHOQOL-Bref. In: Simões M, Machado C, Gonçalves M, Almeida L, editors. Avaliação psicológica: Instrumentos validados para a população portuguesa (Vol. III). Coimbra: Quarteto Editora; 2007. pp. 77–100.
    1. Canavarro MC, Vaz Serra A, Pereira M, Simões MR, Quartilho MJ, Rijo D, et al.. WHOQOL disponível para Portugal: Desenvolvimento dos instrumentos de avaliação da qualidade de vida da Organização Mundial de Saúde (WHOQOL-100 e WHOQOL-BREF). In: Canavarro MC, Vaz Serra A, editors. Qualidade de vida e saúde: Uma abordagem na perspectiva da Organização Mundial de Saúde. Lisboa: Fundação Calouste Gulbenkian; 2010. pp. 171–190.
    1. Diener E, Emmons R, Larsen R, Griffin S. The Satisfaction With Life Scale. J Pers Assess. 1985; 49:71–75. doi: 10.1207/s15327752jpa4901_13
    1. Figueiras T, Santana P, Corte Real N, Dias C, Brustad R, Fonseca A. Análise da Estrutura Factorial e da invariância da versão portuguesa da Satisfaction With Life Scale (SWLSp) quando aplicada a adultos de ambos os sexos. Rev Port Ciênc Desporto. 2010; 10(3):11–30. doi: 10.5628/rpcd.10.03.11
    1. Cohen S, Kamarch T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983; 24:385–96. doi: 10.2307/2136404
    1. Trigo M, Canudo N, Branco F, Silva D. Estudo das propriedades psicométricas da Perceived Stress Scale (PSS) na População Portuguesa. Psychologica. 2010; 53:353–378. doi: 10.14195/1647-8606_53_17
    1. Ware JE Jr., Sherbourne CD. The MOS 36-Item Short-Form Health Survey (SF-36). I. Conceptual Framework and Item Selection. Medical Care. 1992; 30:473–483.
    1. Ferreira PL. Criação da versão portuguesa do MOS SF-36. Parte I: adaptação cultural e linguística. Acta Med Port. 2000; 13:55–66.
    1. Ferreira PL. Criação da versão portuguesa do MOS SF36. Parte II: testes de validação. Acta Med Port. 2000; 13:119–127.
    1. Lohman TG, Roche AF. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics; 1988.
    1. Centers for Disease Control and Prevention. Anthropometry procedures manual. CDC; 2007.
    1. National Institutes of Heatlh. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults–the evidence report. National Institutes of Health. Obes Res. 1998; 6 (Suppl 2):51S–209S.
    1. Sykes K, Roberts A. The Chester step test—a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy. 2004; 90(4):183–88. doi: 10.1016/j.physio.2004.03.008
    1. Sykes K. Chester Step Test. Occupational Medicine. 2018; 68(1):70–71. doi: 10.1093/occmed/kqx180
    1. Rikli R, Jones J. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999; 7:129–61. doi: 10.1123/japa.7.2.129
    1. Hoeger WWK, Hopkins D. A Comparison of the Sit and Reach and the Modified Sit and Reach in the Measurement of Flexibility in Women. Res Q Exerc Sport. 1992; 63(2):191–195. doi: 10.1080/02701367.1992.10607580
    1. Lemmink KAPM, Kemper HCF, Greef MHG, Rispens P, Stevens M. The Validity of the Sit-and-Reach Test and the Modified Sit-and-Reach Test in Middle-Aged to Older Men and Women. Res Q Exerc Sport. 2003; 74(3):331–36. doi: 10.1080/02701367.2003.10609099
    1. Migueles JH, Cadenas-Sanchez C, Ekelund U, Nyström CD, Mora-Gonzalez J, Löf M, et al.. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017; 47(9):1821–1845. doi: 10.1007/s40279-017-0716-0
    1. Aadland E, Ylvisåker E. Reliability ofthe Actigraph GT3X+ Accelerometer in Adults under Free-Living Conditions. PLoS ONE. 2015; 10(8):e0134606. doi: 10.1371/journal.pone.0134606
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008; 40(1):181–8. doi: 10.1249/mss.0b013e31815a51b3
    1. AlEssa B.H, Chomistek K.A, Hankinson S.E., Barnett J.B., Rood J; Matthews C.E, et al.. Objective Measures of Physical Activity and Cardiometabolic and Endocrine Biomarkers. Med Sci Sports Exerc. 2017; 49(9): 1817–25. doi: 10.1249/MSS.0000000000001287
    1. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011; 14:411–16. doi: 10.1016/j.jsams.2011.04.003
    1. Brzycki M. Strength testing: Predicting a one-rep max from reps-to-fatigue. JPERD. 1993; 64(1):88–90. doi: 10.1080/07303084.1993.10606684
    1. Willett W. Food frequency methods. In: Willett WC editors. Nutritional Epidemiology. 2nd ed. New York: Oxford University Press; 1998. pp. 74–100.
    1. Lopes C. Alimentação e Enfarte Agudo do Miocárdio: Um Estudo Caso-controlo de Base Populacional. PhD Tehsis, Universidade do Porto. 2000. .
    1. Lopes C, Aro A, Azevedo A, Ramos E, Barros H. Intake and adipose tissue composition of fatty acids and risk of myocardial infarction in a male Portuguese community sample. J Am Diet Assoc. 2007; 107:276–286. doi: 10.1016/j.jada.2006.11.008
    1. Gregório MJ, Rodrigues AM, Salvador C, Dias SS, de Sousa RD, Mendes JM, et al.. Validation of the Telephone-Administered Version of the Mediterranean Diet Adherence Screener (MEDAS) Questionnaire. Nutrients. 2020; 12(5):1511. doi: 10.3390/nu12051511
    1. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric pratice research. Psychiatry Res. 1989; 28:193–213. doi: 10.1016/0165-1781(89)90047-4
    1. João KA, Becker NB, Jesus SN, Martins RIS. Validation of the Portuguese version of the Pittsburgh Sleep Quality Index (PSQI-PT). Psychiatry Res. 2017; 247: 225–229. doi: 10.1016/j.psychres.2016.11.042
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. New York: Lawrence Erlbaum Associates, Publishers; 1988.
    1. Hinkle D, Wiersma W, Jurs S. Applied Statistics for the Behavioral Sciences. 5th ed. Boston: Houghton Mifflin; 2003.
    1. Yohannes AM, Tampubolon G. Changes in lung function in older people from the English longitudinal study of ageing. Expert Rev Respir Med. 2014; 8(4):515–21. doi: 10.1586/17476348.2014.919226
    1. Fogarty AW, Britton JR, Jones S, Lewis SA, McKeever T. A prospective study of systemic inflammation and decline in lung function in a general population. Thorax. 2007; 62(6):515.
    1. de Vries JD, van Hooff MLM, Geurts SAE, Kompier MAJ. Exercise to reduce work-related fatigue among employees: a randomized controlled trial. Scand J Work Environ Health. 2017; 43(4): 337–349. doi: 10.5271/sjweh.3634

Source: PubMed

3
Tilaa