Open-label randomized controlled trial of ultra-low tidal ventilation without extracorporeal circulation in patients with COVID-19 pneumonia and moderate to severe ARDS: study protocol for the VT4COVID trial

Jean-Christophe Richard, Hodane Yonis, Laurent Bitker, Sylvain Roche, Florent Wallet, Claire Dupuis, Hassan Serrier, Laurent Argaud, Guillaume Thiery, Bertrand Delannoy, Christian Pommier, Paul Abraham, Michel Muller, Frederic Aubrun, Florian Sigaud, Guillaume Rigault, Emilie Joffredo, Mehdi Mezidi, Nicolas Terzi, Muriel Rabilloud, Jean-Christophe Richard, Hodane Yonis, Laurent Bitker, Sylvain Roche, Florent Wallet, Claire Dupuis, Hassan Serrier, Laurent Argaud, Guillaume Thiery, Bertrand Delannoy, Christian Pommier, Paul Abraham, Michel Muller, Frederic Aubrun, Florian Sigaud, Guillaume Rigault, Emilie Joffredo, Mehdi Mezidi, Nicolas Terzi, Muriel Rabilloud

Abstract

Background: Acute respiratory distress syndrome (ARDS) is a severe complication of COVID-19 pneumonia, with a mortality rate amounting to 34-50% in moderate and severe ARDS, and is associated with prolonged duration of invasive mechanical ventilation. Such as in non-COVID ARDS, harmful mechanical ventilation settings might be associated with worse outcomes. Reducing the tidal volume down to 4 mL kg-1 of predicted body weight (PBW) to provide ultra-low tidal volume ventilation (ULTV) is an appealing technique to minimize ventilator-inducted lung injury. Furthermore, in the context of a worldwide pandemic, it does not require any additional material and consumables and may be applied in low- to middle-income countries. We hypothesized that ULTV without extracorporeal circulation is a credible option to reduce COVID-19-related ARDS mortality and duration of mechanical ventilation.

Methods: The VT4COVID study is a randomized, multi-centric prospective open-labeled, controlled superiority trial. Adult patients admitted in the intensive care unit with COVID-19-related mild to severe ARDS defined by a PaO2/FiO2 ratio ≤ 150 mmHg under invasive mechanical ventilation for less than 48 h, and consent to participate to the study will be eligible. Patients will be randomized into two balanced parallels groups, at a 1:1 ratio. The control group will be ventilated with protective ventilation settings (tidal volume 6 mL kg-1 PBW), and the intervention group will be ventilated with ULTV (tidal volume 4 mL kg-1 PBW). The primary outcome is a composite score based on 90-day all-cause mortality as a prioritized criterion and the number of ventilator-free days at day 60 after inclusion. The randomization list will be stratified by site of recruitment and generated using random blocks of sizes 4 and 6. Data will be analyzed using intention-to-treat principles.

Discussion: The purpose of this manuscript is to provide primary publication of study protocol to prevent selective reporting of outcomes, data-driven analysis, and to increase transparency. Enrollment of patients in the study is ongoing.

Trial registration: ClinicalTrials.gov NCT04349618 . Registered on April 16, 2020.

Keywords: Acute respiratory distress syndrome; COVID-19; Mechanical ventilation; SARS-CoV-2; Tidal volume; Ultra-low tidal volume ventilation; Ultraprotective ventilation.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Participants’ timeline. *In mechanically ventilated patients. **In women of childbearing age. ***On days 1 and 2

References

    1. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2020;47:60-73. 10.1007/s00134-020-06294-x.
    1. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with COVID-19 - preliminary report. N Engl J Med. 2020;384:693-704. 10.1056/NEJMoa2021436.
    1. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175(2):160–166. doi: 10.1164/rccm.200607-915OC.
    1. Chauvelot L, Bitker L, Dhelft F, Mezidi M, Orkisz M, Davila Serrano E, Penarrubia L, Yonis H, Chabert P, Folliet L, David G, Provoost J, Lecam P, Boussel L, Richard JC. Quantitative-analysis of computed tomography in COVID-19 and non COVID-19 ARDS patients: a case-control study. J Crit Care. 2020;60:169–176. doi: 10.1016/j.jcrc.2020.08.006.
    1. Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, Brower RG, Pronovost PJ, Colantuoni E. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome. A prospective cohort study. Am J Respir Crit Care Med. 2015;191(2):177–185. doi: 10.1164/rccm.201409-1598OC.
    1. Terragni PP, Del Sorbo L, Mascia L, Urbino R, Martin EL, Birocco A, et al. Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology. 2009;111(4):826–835. doi: 10.1097/ALN.0b013e3181b764d2.
    1. Bein T, Weber-Carstens S, Goldmann A, Müller T, Staudinger T, Brederlau J, Muellenbach R, Dembinski R, Graf BM, Wewalka M, Philipp A, Wernecke KD, Lubnow M, Slutsky AS. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS : the prospective randomized Xtravent-study. Intensive Care Med. 2013;39(5):847–856. doi: 10.1007/s00134-012-2787-6.
    1. Richard JC, Marque S, Gros A, Muller M, Prat G, Beduneau G, et al. Feasibility and safety of ultra-low tidal volume ventilation without extracorporeal circulation in moderately severe and severe ARDS patients. Intensive Care Med. 2019;45(11):1590–1598. doi: 10.1007/s00134-019-05776-x.
    1. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND. Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307:2526–2533.
    1. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT, National Heart, Lung, and Blood Institute ARDS Clinical Trials Network Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351(4):327–336. doi: 10.1056/NEJMoa032193.
    1. Papazian L, Aubron C, Brochard L, Chiche J-D, Combes A, Dreyfuss D, Forel JM, Guérin C, Jaber S, Mekontso-Dessap A, Mercat A, Richard JC, Roux D, Vieillard-Baron A, Faure H. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. doi: 10.1186/s13613-019-0540-9.
    1. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. doi: 10.1164/rccm.201703-0548ST.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, et al. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166(10):1338–1344. doi: 10.1164/rccm.2107138.
    1. Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, Protti A, Gotti M, Chiurazzi C, Carlesso E, Chiumello D, Quintel M. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567–1575. doi: 10.1007/s00134-016-4505-2.
    1. Pendlebury ST, Welch SJV, Cuthbertson FC, Mariz J, Mehta Z, Rothwell PM. Telephone assessment of cognition after transient ischemic attack and stroke: modified telephone interview of cognitive status and telephone Montreal Cognitive Assessment versus face-to-face Montreal Cognitive Assessment and neuropsychological battery. Stroke. 2013;44(1):227–229. doi: 10.1161/STROKEAHA.112.673384.
    1. Ware JE, Gandek B. Overview of the SF-36 Health Survey and the International Quality of Life Assessment (IQOLA) Project. J Clin Epidemiol. 1998;51(11):903–912. doi: 10.1016/S0895-4356(98)00081-X.
    1. Weiss DS, Marmar CR. The impact of event scale-revised. In: Wilson J, Keane TM, editors. Assess Psychol Trauma PTSD. New-York: Guilford; 1996. pp. 399–411.
    1. Aziz MA, Kenford S. Comparability of telephone and face-to-face interviews in assessing patients with posttraumatic stress disorder. J Psychiatr Pract. 2004;10(5):307–313. doi: 10.1097/00131746-200409000-00004.
    1. García M, Rohlfs I, Vila J, Sala J, Pena A, Masiá R, Marrugat J, REGICOR Investigators Comparison between telephone and self-administration of Short Form Health Survey Questionnaire (SF-36) Gac Sanit. 2005;19(6):433–439. doi: 10.1016/S0213-9111(05)71393-5.
    1. Acion L, Peterson JJ, Temple S, Arndt S. Probabilistic index: an intuitive non-parametric approach to measuring the size of treatment effects. Stat Med. 2006;25(4):591–602. doi: 10.1002/sim.2256.
    1. International Committee of Medical Journal Editors (ICMJE) International Committee of Medical Journal Editors (ICMJE): uniform requirements for manuscripts submitted to Biomedical Journals: writing and editing for biomedical publication. Haematologica. 2004;89:264.

Source: PubMed

3
Tilaa