Influence of baseline neurologic severity on disease progression and the associated disease-modifying effects of tafamidis in patients with transthyretin amyloid polyneuropathy

Leslie Amass, Huihua Li, Balarama K Gundapaneni, Jeffrey H Schwartz, Denis J Keohane, Leslie Amass, Huihua Li, Balarama K Gundapaneni, Jeffrey H Schwartz, Denis J Keohane

Abstract

Background: Emerging evidence suggests that several factors can impact disease progression in transthyretin amyloid polyneuropathy (ATTR-PN). The present analysis used longitudinal data from Val30Met patients participating in the tafamidis (selective TTR stabilizer) clinical development program to evaluate the impact of baseline neurologic severity on disease progression in ATTR-PN.

Methods: A linear mixed-effects model for repeated measures (MMRM) was constructed using tafamidis and placebo data from the intent-to-treat Val30Met population of the original registration study as well as tafamidis data from the two consecutive open-label extension studies. The second extension study is ongoing, but a prospectively-planned interim analysis involving a cleaned and locked database was conducted (cut-off: December 31, 2014). Val30Met patients are presented by treatment groups as those who received tafamidis during the registration and open-label studies (T-T group), or who received placebo during the registration study and were switched to tafamidis in the open-label studies (P-T group). Neurologic functioning was assessed at baseline and subsequent visits using the Neuropathy Impairment Score-Lower Limbs (NIS-LL). The analysis focused on the disease trajectory over the first 18 months of treatment.

Results: The T-T (n = 64) and P-T (n = 61) cohorts were predominantly Caucasian and presented with early-stage neurologic disease (mean [standard deviation] baseline NIS-LL values were 8.4 [11.4] and 11.4 [13.5], respectively). The MMRM analysis demonstrated that baseline severity is an independent significant predictor of disease progression in addition to the treatment effect: patients with a lower baseline NIS-LL showed less progression than those with a higher baseline NIS-LL (p < 0.0001). Neurologic progression in the T-T group was less than in the P-T group across all levels of baseline NIS-LL (p = 0.0088), and the degree of separation increased over the 18-month period. Similar results were seen with the NIS-LL muscle weakness subscale.

Conclusions: This analysis of patients with Val30Met ATTR-PN demonstrates that neurologic disease progression strongly depends on baseline neurologic severity and illustrates the disease-modifying effect of tafamidis relative to placebo across a range of baseline levels of neurologic severity and treatment durations. These data also underscore the benefit of early diagnosis and treatment with tafamidis in delaying disease progression in ATTR-PN.

Trial registration: NCT00409175 , NCT00791492 and NCT00925002 registered 08 December 2006, 14 November 2008 (retrospectively registered), and 19 June 2009, respectively.

Keywords: ATTR; Amyloidosis; Baseline severity; Disease progression; NIS-LL; Polyneuropathy; Transthyretin; Val30Met.

Conflict of interest statement

Ethics approval and consent to participate

All studies that contributed data to the present analysis were conducted with the approval of local institutional review boards or independent ethics committees (Additional file 1: Table S1). The studies complied with the Declaration of Helsinki, the International Conference on Harmonisation Guideline for Good Clinical Practice, and local regulatory requirements. All patients provided written informed consent.

Consent for publication

Not applicable.

Competing interests

L Amass, H Li, J Schwartz, and D Keohane are employees of Pfizer and hold stock and/or stock options. B Gundapaneni, an employee of inVentiv Health, was a paid contractor to Pfizer in association with providing statistical support for this analysis and contributing to manuscript development.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
NIS-LL progression in relation to baseline severity and the effect of treatment. Baseline NIS-LL scores of 5, 15, and 25 were chosen for illustration and were used as the zero time point. Values for Months 6, 12, and 18 were estimated using the linear mixed-effects model. NIS-LL Neuropathy Impairment Score − Lower Limbs; P-T placebo-to-tafamidis; T-T tafamidis-to-tafamidis
Fig. 2
Fig. 2
NIS-LL muscle weakness progression in relation to baseline severity and the effect of treatment. Baseline NIS-LL muscle weakness scores of 5, 15, and 25 were chosen for illustration and were used as the zero time point. Values for Months 6, 12, and 18 were estimated using the linear mixed-effects model. NIS-LL Neuropathy Impairment Score − Lower Limbs; P-T placebo-to-tafamidis; T-T tafamidis-to-tafamidis

References

    1. Plante-Bordeneuve V. Update in the diagnosis and management of transthyretin familial amyloid polyneuropathy. J Neurol. 2014;261:1227–1233. doi: 10.1007/s00415-014-7373-0.
    1. Coelho T, Inês M, Concieção I, Saramago P, de Carvalho M, Costa J. Temporal trends in transthyretin familial amyloid polyneuropathy survival over a century. Int J Clin Neurosci Ment Health. 2016;3:P130.
    1. Schmidt HH, Waddington-Cruz M, Botteman MF, Carter JA, Chopra AS, Hopps M, et al. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy. Muscle Nerve. 2018;57:829–837. doi: 10.1002/mus.26034.
    1. Benson MD, Kincaid JC. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve. 2007;36:411–423. doi: 10.1002/mus.20821.
    1. Rowczenio DM, Noor I, Gillmore JD, Lachmann HJ, Whelan C, Hawkins PN, et al. Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat. 2014;35:E2403–E2412. doi: 10.1002/humu.22619.
    1. Mariani LL, Lozeron P, Theaudin M, Mincheva Z, Signate A, Ducot B, et al. Genotype-phenotype correlation and course of transthyretin familial amyloid polyneuropathies in France. Ann Neurol. 2015;78:901–916. doi: 10.1002/ana.24519.
    1. Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99:1847–1854. doi: 10.1097/TP.0000000000000574.
    1. Suhr OB, Larsson M, Ericzon BG, Wilczek HE. Survival after transplantation in patients with mutations other than Val30Met: extracts from the FAP world transplant registry. Transplantation. 2016;100:373–381. doi: 10.1097/TP.0000000000001021.
    1. Waddington Cruz M, Amass L, Keohane D, Schwartz J, Li H, Gundapaneni B. Early intervention with tafamidis provides long term (5.5 year) delay of neurologic progression in transthyretin familial amyloid polyneuropathy. Amyloid. 2016;23:178–183. doi: 10.1080/13506129.2016.1207163.
    1. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Plante-Bordeneuve V, Lozeron P, et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79:785–792. doi: 10.1212/WNL.0b013e3182661eb1.
    1. Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Plante-Bordeneuve V, Suhr OB, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260:2802–14.
    1. Barroso FA, Judge DP, Ebede B, Li H, Stewart M, Amass L, et al. Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin familial amyloid polyneuropathy: results up to 6 years. Amyloid. 2017;24:194–204. doi: 10.1080/13506129.2017.1357545.
    1. Coelho T, Merlini G, Bulawa CE, Fleming JA, Judge DP, Kelly JW, et al. Mechanism of action and clinical application of tafamidis in hereditary transthyretin amyloidosis. Neurol Ther. 2016;5:1–25. doi: 10.1007/s40120-016-0040-x.
    1. Coelho T, Vinik A, Vinik EJ, Tripp T, Packman J, Grogan DR. Clinical measures in transthyretin familial amyloid polyneuropathy. Muscle Nerve. 2017;55:323–332. doi: 10.1002/mus.25257.
    1. Ando Y, Sekijima Y, Obayashi K, Yamashita T, Ueda M, Misumi Y, et al. Effects of tafamidis treatment on transthyretin (TTR) stabilization, efficacy, and safety in Japanese patients with familial amyloid polyneuropathy (TTR-FAP) with Val30Met and non-Val30Met: a phase III, open-label study. J Neurol Sci. 2016;362:266–271. doi: 10.1016/j.jns.2016.01.046.

Source: PubMed

3
Tilaa