Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review

Jack Parker, Lauren Powell, Susan Mawson, Jack Parker, Lauren Powell, Susan Mawson

Abstract

Background: With advances in technology, the adoption of wearable devices has become a viable adjunct in poststroke rehabilitation. Upper limb (UL) impairment affects up to 77% of stroke survivors impacting on their ability to carry out everyday activities. However, despite an increase in research exploring these devices for UL rehabilitation, little is known of their effectiveness.

Objective: This review aimed to assess the effectiveness of UL wearable technology for improving activity and participation in adult stroke survivors.

Methods: Randomized controlled trials (RCTs) and randomized comparable trials of UL wearable technology for poststroke rehabilitation were included. Primary outcome measures were validated measures of activity and participation as defined by the International Classification of Functioning, Disability, and Health. Databases searched were MEDLINE, Web of Science (Core collection), CINAHL, and the Cochrane Library. The Cochrane Risk of Bias Tool was used to assess the methodological quality of the RCTs and the Downs and Black Instrument for the quality of non RCTs.

Results: In the review, we included 11 studies with collectively 354 participants at baseline and 323 participants at final follow-up including control groups and participants poststroke. Participants' stroke type and severity varied. Only 1 study found significant between-group differences for systems functioning and activity (P≤.02). The 11 included studies in this review had small sample sizes ranging from 5 to 99 participants at an average (mean) age of 57 years.

Conclusions: This review has highlighted a number of reasons for insignificant findings in this area including low sample sizes and the appropriateness of the methodology for complex interventions. However, technology has the potential to measure outcomes, provide feedback, and engage users outside of clinical sessions. This could provide a platform for motivating stroke survivors to carry out more rehabilitation in the absence of a therapist, which could maximize recovery.

Trial registration: PROSPERO CRD42017057715; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=57715.

Keywords: rehabilitation; stroke; upper extremity; wearable electronic devices.

Conflict of interest statement

Conflicts of Interest: None declared.

©Jack Amy Parker, Lauren Powell, Susan Mawson. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 08.01.2020.

Figures

Figure 1
Figure 1
Article selection. WHO ICF: The World Health Organization International Classification of Functioning, Disability, and Health.

References

    1. GBD 2016 Stroke Collaborators Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019 May;18(5):439–58. doi: 10.1016/S1474-4422(19)30034-1.
    1. Xu X, Vestesson E, Paley L, Desikan A, Wonderling D, Hoffman A, Wolfe CD, Rudd AG, Bray BD. The economic burden of stroke care in England, Wales and Northern Ireland: Using a national stroke register to estimate and report patient-level health economic outcomes in stroke. Eur Stroke J. 2018 Mar;3(1):82–91. doi: 10.1177/2396987317746516.
    1. Kwah LK, Harvey LA, Diong J, Herbert RD. Models containing age and NIHSS predict recovery of ambulation and upper limb function six months after stroke: an observational study. J Physiother. 2013 Sep;59(3):189–97. doi: 10.1016/S1836-9553(13)70183-8.
    1. Morris JH, van Wijck F, Joice S, Donaghy M. Predicting health related quality of life 6 months after stroke: the role of anxiety and upper limb dysfunction. Disabil Rehabil. 2013 Feb;35(4):291–9. doi: 10.3109/09638288.2012.691942.
    1. Inercollegiate Stroke Working Party . National Clinical Guideline for Stroke. London: Royal College of Physicians; 2016.
    1. Fryer CE, Luker JA, McDonnell MN, Hillier SL. Self management programmes for quality of life in people with stroke. Cochrane Database Syst Rev. 2016 Aug 22;(8):CD010442. doi: 10.1002/14651858.CD010442.pub2.
    1. Powell L, Parker J, Martyn St-James M, Mawson S. The effectiveness of lower-limb wearable technology for improving activity and participation in adult stroke survivors: a systematic review. J Med Internet Res. 2016 Oct 7;18(10):e259. doi: 10.2196/jmir.5891.
    1. Wang Q, Markopoulos P, Yu B, Chen W, Timmermans A. Interactive wearable systems for upper body rehabilitation: a systematic review. J Neuroeng Rehabil. 2017 Mar 11;14(1):20. doi: 10.1186/s12984-017-0229-y.
    1. Parker J, Mountain G, Hammerton J. A review of the evidence underpinning the use of visual and auditory feedback for computer technology in post-stroke upper-limb rehabilitation. Disabil Rehabil Assist Technol. 2011;6(6):465–72. doi: 10.3109/17483107.2011.556209.
    1. Burridge JH, Lee AC, Turk R, Stokes M, Whitall J, Vaidyanathan R, Clatworthy P, Hughes A, Meagher C, Franco E, Yardley L. Telehealth, wearable sensors, and the internet: will they improve stroke outcomes through increased intensity of therapy, motivation, and adherence to rehabilitation programs? J Neurol Phys Ther. 2017 Jul;41(Suppl 3):S32–8. doi: 10.1097/NPT.0000000000000183.
    1. Morone G, Giardi S, Gooshchy S, Iosa M, Paolucci S. Wearable Devices and Virtual Reality for Neurorehabilitation: An Opportunity for Home Rehabilitation. Proceedings of the 2018 International Conference on NeuroRehabilitation; ICNR'18; October 16-20, 2018; Pisa, Italy. 2018.
    1. Rodgers MM, Alon G, Pai VM, Conroy RS. Wearable technologies for active living and rehabilitation: current research challenges and future opportunities. J Rehabil Assist Technol Eng. 2019;6:2055668319839607. doi: 10.1177/2055668319839607.
    1. Dobkin BH, Martinez C. Wearable sensors to monitor, enable feedback, and measure outcomes of activity and practice. Curr Neurol Neurosci Rep. 2018 Oct 6;18(12):87. doi: 10.1007/s11910-018-0896-5.
    1. Gebruers N, Vanroy C, Truijen S, Engelborghs S, de Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010 Feb;91(2):288–97. doi: 10.1016/j.apmr.2009.10.025.
    1. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012 Apr 20;9:21. doi: 10.1186/1743-0003-9-21.
    1. Steins D, Dawes H, Esser P, Collett J. Wearable accelerometry-based technology capable of assessing functional activities in neurological populations in community settings: a systematic review. J Neuroeng Rehabil. 2014 Mar 13;11:36. doi: 10.1186/1743-0003-11-36.
    1. Zheng H, Black ND, Harris ND. Position-sensing technologies for movement analysis in stroke rehabilitation. Med Biol Eng Comput. 2005 Jul;43(4):413–20. doi: 10.1007/bf02344720.
    1. Wang Q, Timmermans A, Chen W, Jia J, Ding L, Xiong L, Rong J, Markopoulos P. Stroke patients' acceptance of a smart garment for supporting upper extremity rehabilitation. IEEE J Transl Eng Health Med. 2018;6:2101009. doi: 10.1109/JTEHM.2018.2853549.
    1. Davies RJ, Parker J, McCullagh P, Zheng H, Nugent C, Black ND, Mawson S. A personalized self-management rehabilitation system for stroke survivors: a quantitative gait analysis using a smart insole. JMIR Rehabil Assist Technol. 2016 Nov 8;3(2):e11. doi: 10.2196/rehab.5449.
    1. Mawson S, Nasr N, Parker J, Davies R, Zheng H, Mountain G. A personalized self-management rehabilitation system with an intelligent shoe for stroke survivors: a realist evaluation. JMIR Rehabil Assist Technol. 2016 Jan 7;3(1):e1. doi: 10.2196/rehab.5079.
    1. Munoz-Organero M, Parker J, Powell L, Davies R, Mawson S. Sensor optimization in smart insoles for post-stroke gait asymmetries using total variation and L 1 distances. IEEE Sensors J. 2017;17(10):3142–51. doi: 10.1109/jsen.2017.2686641.
    1. Munoz-Organero M, Parker J, Powell L, Mawson S. Assessing walking strategies using insole pressure sensors for stroke survivors. Sensors (Basel) 2016 Oct 1;16(10):pii: E1631. doi: 10.3390/s16101631.
    1. Asada H, Shaltis P, Reisner A, Rhee S, Hutchinson R. Mobile monitoring with wearable photoplethysmographic biosensors. IEEE Eng Med Biol Mag. 2003;22(3):28–40. doi: 10.1109/memb.2003.1213624.
    1. Shaltis PA, Reisner A, Asada HH. Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor. Conf Proc IEEE Eng Med Biol Soc. 2006;1:908–11. doi: 10.1109/IEMBS.2006.260027.
    1. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017 Feb;31(2):107–21. doi: 10.1177/1545968316666957.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017 Nov 20;11:CD008349. doi: 10.1002/14651858.CD008349.pub4.
    1. Eraifej J, Clark W, France B, Desando S, Moore D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev. 2017 Feb 28;6(1):40. doi: 10.1186/s13643-017-0435-5.
    1. Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015 May;96(5):934–43. doi: 10.1016/j.apmr.2015.01.013.
    1. Teasell RW, Bhogal SK, Foley NC, Speechley MR. Gait retraining post stroke. Top Stroke Rehabil. 2003;10(2):34–65. doi: 10.1310/UDXE-MJFF-53V2-EAP0.
    1. Mahmood A, Veluswamy SK, Hombali A, Mullick A, Solomon JM. Effect of transcutaneous electrical nerve stimulation on spasticity in adults with stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2019 Apr;100(4):751–68. doi: 10.1016/j.apmr.2018.10.016.
    1. Marcolino MA, Hauck M, Stein C, Schardong J, Pagnussat AD, Plentz RD. Effects of transcutaneous electrical nerve stimulation alone or as additional therapy on chronic post-stroke spasticity: systematic review and meta-analysis of randomized controlled trials. Disabil Rehabil. 2018 Oct 16;:1–13. doi: 10.1080/09638288.2018.1503736.
    1. Mills PB, Dossa F. Transcutaneous electrical nerve stimulation for management of limb spasticity: a systematic review. Am J Phys Med Rehabil. 2016 Apr;95(4):309–18. doi: 10.1097/PHM.0000000000000437.
    1. Kleim JA, Jones TA. Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res. 2008 Feb;51(1):S225–39. doi: 10.1044/1092-4388(2008/018).
    1. World Health Organisation World Health Organization. 2001. [2019-11-07]. International Classification of Functioning, Disability and Health.
    1. Geyh S, Cieza A, Schouten J, Dickson H, Frommelt P, Omar Z, Kostanjsek N, Ring H, Stucki G. ICF Core Sets for stroke. J Rehabil Med. 2004 Jul;(44 Suppl):135–41. doi: 10.1080/16501960410016776.
    1. Gottlieb A, Golander H, Bar-Tal Y, Gottlieb D. The influence of social support and perceived control on handicap and quality of life after stroke. Aging (Milano) 2001 Feb;13(1):11–5. doi: 10.1007/bf03351488.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009 Aug 18;151(4):264–9, W64. doi: 10.7326/0003-4819-151-4-200908180-00135.
    1. Godfrey A, Hetherington V, Shum H, Bonato P, Lovell NH, Stuart S. From A to Z: Wearable technology explained. Maturitas. 2018 Jul;113:40–7. doi: 10.1016/j.maturitas.2018.04.012.
    1. McKenzie JE, Brennan SE, Ryan RE, Thompson J, Johnston RV, Thomas J. Chapter 3: Defining the criteria for including studies and how they will be grouped for the synthesis. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventionsversion 6.0. London: Cochrane; 2019.
    1. Salter K, Jutai JW, Teasell R, Foley NC, Bitensky J. Issues for selection of outcome measures in stroke rehabilitation: ICF Body Functions. Disabil Rehabil. 2005 Feb 18;27(4):191–207. doi: 10.1080/09638280400008537.
    1. Platz T, Pinkowski C, van Wijck F, Kim I, di Bella P, Johnson G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clin Rehabil. 2005 Jun;19(4):404–11. doi: 10.1191/0269215505cr832oa.
    1. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92. doi: 10.1097/00004356-198112000-00001.
    1. Hsueh IP, Lee MM, Hsieh CL. Psychometric characteristics of the Barthel activities of daily living index in stroke patients. J Formos Med Assoc. 2001 Aug;100(8):526–32.
    1. Barreca S, Gowland CK, Stratford P, Huijbregts M, Griffiths J, Torresin W, Dunkley M, Miller P, Masters L. Development of the Chedoke arm and hand activity inventory: theoretical constructs, item generation, and selection. Top Stroke Rehabil. 2004;11(4):31–42. doi: 10.1310/JU8P-UVK6-68VW-CF3W.
    1. Barreca SR, Stratford PW, Lambert CL, Masters LM, Streiner DL. Test-retest reliability, validity, and sensitivity of the Chedoke arm and hand activity inventory: a new measure of upper-limb function for survivors of stroke. Arch Phys Med Rehabil. 2005 Aug;86(8):1616–22. doi: 10.1016/j.apmr.2005.03.017.
    1. Barreca SR, Stratford PW, Masters LM, Lambert CL, Griffiths J. Comparing 2 versions of the Chedoke Arm and Hand Activity Inventory with the Action Research Arm Test. Phys Ther. 2006 Feb;86(2):245–53.
    1. Barreca SR, Stratford PW, Masters LM, Lambert CL, Griffiths J, McBay C. Validation of three shortened versions of the Chedoke arm and Hand Activity Inventory. Physiother Can. 2006;58(02):148. doi: 10.3138/ptc.58.2.148. doi: 10.2310/6640.2006.00031.
    1. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil. 1969;50(6):311–9.
    1. Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001 Jul;32(7):1635–9. doi: 10.1161/01.str.32.7.1635.
    1. Uswatte G, Taub E, Morris D, Light K, Thompson PA. The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke. Neurology. 2006 Oct 10;67(7):1189–94. doi: 10.1212/01.wnl.0000238164.90657.c2.
    1. Poole JL, Whitney SL. Motor assessment scale for stroke patients: concurrent validity and interrater reliability. Arch Phys Med Rehabil. 1988 Mar;69(3 Pt 1):195–7.
    1. Duncan PW, Bode RK, Min Lai S, Perera S, Glycine Antagonist in Neuroprotection Americans Investigators Rasch analysis of a new stroke-specific outcome scale: the Stroke Impact Scale. Arch Phys Med Rehabil. 2003 Jul;84(7):950–63. doi: 10.1016/s0003-9993(03)00035-2.
    1. Adams SA, Ashburn A, Pickering RM, Taylor D. The scalability of the Rivermead Motor Assessment in acute stroke patients. Clin Rehabil. 1997 Feb;11(1):42–51. doi: 10.1177/026921559701100107.
    1. Carroll D. A quantitative test of upper extremity function. J Chronic Dis. 1965 May;18:479–91. doi: 10.1016/0021-9681(65)90030-5.
    1. Beaton DE, Wright JG, Katz JN, Upper Extremity Collaborative Group Development of the QuickDASH: comparison of three item-reduction approaches. J Bone Joint Surg Am. 2005 May;87(5):1038–46. doi: 10.2106/JBJS.D.02060.
    1. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair. 2002 Sep;16(3):232–40. doi: 10.1177/154596802401105171.
    1. O'Dell MW, Kim G, Rivera L, Fieo R, Christos P, Polistena C, Fitzgerald K, Gorga D. A psychometric evaluation of the Arm Motor Ability Test. J Rehabil Med. 2013 Jun;45(6):519–27. doi: 10.2340/16501977-1138.
    1. Price DD, McGrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain. 1983 Sep;17(1):45–56. doi: 10.1016/0304-3959(83)90126-4.
    1. Higgins JP, Altman DG. Assessing risk of bias in included studies. In: Higgins JP, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions. Hoboken, New Jersey: Wiley; 2008. pp. 187–241.
    1. Tanaka N, Saitou H, Takao T, Iizuka N, Okuno J, Yano H, Tamaoka A, Yanagi H. Effects of gait rehabilitation with a footpad-type locomotion interface in patients with chronic post-stroke hemiparesis: a pilot study. Clin Rehabil. 2012 Aug;26(8):686–95. doi: 10.1177/0269215511432356.
    1. Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health. 1998 Jun;52(6):377–84. doi: 10.1136/jech.52.6.377.
    1. Tyson S, Connell L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: a systematic review. Clin Rehabil. 2009 Nov;23(11):1018–33. doi: 10.1177/0269215509339004.
    1. Altaim T. White Rose eTheses Online. 2015. [2019-11-07]. Developing a Functional Outcome Measure for Individuals With Low Back Pain Within a Jordanian Physiotherapy Service. .
    1. de Vet HC, Terwee CB, Bouter LM. Current challenges in clinimetrics. J Clin Epidemiol. 2003 Dec;56(12):1137–41. doi: 10.1016/j.jclinepi.2003.08.012.
    1. Feinstein AR. An additional basic science for clinical medicine: IV. The development of clinimetrics. Ann Intern Med. 1983 Dec;99(6):843–8. doi: 10.7326/0003-4819-99-6-843.
    1. Kirshner B, Guyatt G. A methodological framework for assessing health indices. J Chronic Dis. 1985;38(1):27–36. doi: 10.1016/0021-9681(85)90005-0.
    1. Okasheh RO. Sheffield Hallam University Research Archive. 2011. [2019-11-07]. Clinical Measurement of Functional Outcomes of Pulmonary Rehabilitation. .
    1. Mawson SJ. Measuring physiotherapy outcome in stroke rehabilitation. Physiother. 1993;79(11):762–5. doi: 10.1016/s0031-9406(10)60057-0.
    1. Michels E. Measurement in physical therapy. On the rules for assigning numerals to observations. Phys Ther. 1983 Feb;63(2):209–15. doi: 10.1093/ptj/63.2.209.
    1. Stevens SS. On the theory of scales of measurement. Science. 1946 Jun 7;103(2684):677–80. doi: 10.1126/science.103.2684.677.
    1. Weiss PL, Rand D, Katz N, Kizony R. Video capture virtual reality as a flexible and effective rehabilitation tool. J Neuroeng Rehabil. 2004 Dec 20;1(1):12. doi: 10.1186/1743-0003-1-12.
    1. Nelson AM. Addressing the threat of evidence-based practice to qualitative inquiry through increasing attention to quality: a discussion paper. Int J Nurs Stud. 2008 Feb;45(2):316–22. doi: 10.1016/j.ijnurstu.2007.01.012.
    1. Mullen EJ, Streiner DL. The evidence for and against evidence-based practice. In: Roberts AR, Yeager K, editors. Foundations of Evidence-Based Social Work Practice. Oxford, UK: Oxford University Press; 2006. pp. 21–34.
    1. Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, Chen C, Ng YS, Chew E. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015 Mar;96(3 Suppl):S79–87. doi: 10.1016/j.apmr.2014.08.008.
    1. Bach P, Knoblich G, Gunter TC, Friederici AD, Prinz W. Action comprehension: deriving spatial and functional relations. J Exp Psychol Hum Percept Perform. 2005 Jun;31(3):465–79. doi: 10.1037/0096-1523.31.3.465.
    1. Cameirão MS, Badia SB, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012 Oct;43(10):2720–8. doi: 10.1161/STROKEAHA.112.653196.
    1. Carey JR, Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey L, Rundquist P, Ugurbil K. Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain. 2002 Apr;125(Pt 4):773–88. doi: 10.1093/brain/awf091.
    1. Germanotta M, Cruciani A, Pecchioli C, Loreti S, Spedicato A, Meotti M, Mosca R, Speranza G, Cecchi F, Giannarelli G, Padua L, Aprile I. Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. J Neuroeng Rehabil. 2018 May 16;15(1):39. doi: 10.1186/s12984-018-0385-8.
    1. Hayward KS, Barker RN, Brauer SG, Lloyd D, Horsley SA, Carson RG. SMART Arm with outcome-triggered electrical stimulation: a pilot randomized clinical trial. Top Stroke Rehabil. 2013;20(4):289–98. doi: 10.1310/tsr2004-289.
    1. Hussain I, Salvietti G, Spagnoletti G, Malvezzi M, Cioncoloni D, Rossi S, Prattichizzo D. A soft supernumerary robotic finger and mobile arm support for grasping compensation and hemiparetic upper limb rehabilitation. Robot Auton Syst. 2017;93:1–12. doi: 10.1016/j.robot.2017.03.015. doi: 10.1016/j.robot.2017.03.015.
    1. Kairy D, Veras M, Archambault P, Hernandez A, Higgins J, Levin MF, Poissant L, Raz A, Kaizer F. Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient's home: study protocol of a randomized clinical trial. Contemp Clin Trials. 2016 Mar;47:49–53. doi: 10.1016/j.cct.2015.12.006.
    1. Kim T, Kim S, Lee B. Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup Ther Int. 2016 Mar;23(1):39–47. doi: 10.1002/oti.1403.
    1. Kim GJ, Hinojosa J, Rao AK, Batavia M, O'Dell MW. Randomized trial on the effects of attentional focus on motor training of the upper extremity using robotics with individuals after chronic stroke. Arch Phys Med Rehabil. 2017 Oct;98(10):1924–31. doi: 10.1016/j.apmr.2017.06.005.
    1. Kimberley TJ, Lewis SM, Auerbach EJ, Dorsey LL, Lojovich JM, Carey JR. Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp Brain Res. 2004 Feb;154(4):450–60. doi: 10.1007/s00221-003-1695-y.
    1. Kiper P, Agostini M, Luque-Moreno C, Tonin P, Turolla A. Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. Biomed Res Int. 2014;2014:752128. doi: 10.1155/2014/752128. doi: 10.1155/2014/752128.
    1. Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 2014 Feb;13(2):159–66. doi: 10.1016/S1474-4422(13)70305-3.
    1. Lee JM, Jung J, Park KW, Shin E, Oh SK, Bae J, Rhew JY, Lee N, Kim D, Kim U, Han J, Lee SE, Yang H, Kang H, Koo B, Kim S, Cho YK, Shin W, Lim Y, Rha S, Kim S, Lee SY, Kim Y, Chae I, Cha KS, Kim H. Harmonizing Optimal Strategy for Treatment of coronary artery diseases--comparison of REDUCtion of prasugrEl dose or POLYmer TECHnology in ACS patients (HOST-REDUCE-POLYTECH-ACS RCT): study protocol for a randomized controlled trial. Trials. 2015 Sep 15;16:409. doi: 10.1186/s13063-015-0925-5.
    1. Lemmens RJ, Timmermans AA, Janssen-Potten YJ, Pulles SA, Geers RP, Bakx WG, Smeets RJ, Seelen HA. Accelerometry measuring the outcome of robot-supported upper limb training in chronic stroke: a randomized controlled trial. PLoS One. 2014;9(5):e96414. doi: 10.1371/journal.pone.0096414.
    1. Leonardis D, Barsotti M, Loconsole C, Solazzi M, Troncossi M, Mazzotti C, Castelli VP, Procopio C, Lamola G, Chisari C, Bergamasco M, Frisoli A. An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation. IEEE Trans Haptics. 2015;8(2):140–51. doi: 10.1109/TOH.2015.2417570.
    1. Li H, Huang G, Lin Q, Zhao J, Lo WA, Mao Y, Chen L, Zhang Z, Huang D, Li L. Combining movement-related cortical potentials and event-related desynchronization to study movement preparation and execution. Front Neurol. 2018;9:822. doi: 10.3389/fneur.2018.00822. doi: 10.3389/fneur.2018.00822.
    1. Linder SM, Rosenfeldt AB, Reiss A, Buchanan S, Sahu K, Bay CR, Wolf SL, Alberts JL. The home stroke rehabilitation and monitoring system trial: a randomized controlled trial. Int J Stroke. 2013 Jan;8(1):46–53. doi: 10.1111/j.1747-4949.2012.00971.x.
    1. Lo AC, Guarino PD, Richards LG, Haselkorn JK, Wittenberg GF, Federman DG, Ringer RJ, Wagner TH, Krebs HI, Volpe BT, Bever CT, Bravata DM, Duncan PW, Corn BH, Maffucci AD, Nadeau SE, Conroy SS, Powell JM, Huang GD, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med. 2010 May 13;362(19):1772–83. doi: 10.1056/NEJMoa0911341.
    1. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil. 2002 Jul;83(7):952–9. doi: 10.1053/apmr.2001.33101.
    1. Lum PS, Burgar CG, Van der Loos M, Shor PC, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J Rehabil Res Dev. 2006;43(5):631–42. doi: 10.1682/jrrd.2005.02.0044.
    1. Masiero S, Celia A, Armani M, Rosati G. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging Clin Exp Res. 2006 Dec;18(6):531–5.
    1. Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil. 2007 Feb;88(2):142–9. doi: 10.1016/j.apmr.2006.10.032.
    1. Masiero S, Armani M, Rosati G. Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J Rehabil Res Dev. 2011;48(4):355–66. doi: 10.1682/jrrd.2010.04.0063.
    1. Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabil Neural Repair. 2014 May;28(4):377–86. doi: 10.1177/1545968313513073.
    1. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015 Jun;96(6):981–90. doi: 10.1016/j.apmr.2014.10.022.
    1. McNulty PA, Thompson-Butel AG, Faux SG, Lin G, Katrak PH, Harris LR, Shiner CT. The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial. Int J Stroke. 2015 Dec;10(8):1253–60. doi: 10.1111/ijs.12594.
    1. Metzger J, Lambercy O, Califfi A, Dinacci D, Petrillo C, Rossi P, Conti FM, Gassert R. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot. J Neuroeng Rehabil. 2014 Nov 15;11:154. doi: 10.1186/1743-0003-11-154.
    1. Orihuela-Espina F, Roldán GF, Sánchez-Villavicencio I, Palafox L, Leder R, Sucar LE, Hernández-Franco J. Robot training for hand motor recovery in subacute stroke patients: a randomized controlled trial. J Hand Ther. 2016;29(1):51–7; quiz 57. doi: 10.1016/j.jht.2015.11.006.
    1. Prange GB, Kottink AI, Buurke JH, Eckhardt MM, van Keulen-Rouweler BJ, Ribbers GM, Rietman JS. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2015 Feb;29(2):174–82. doi: 10.1177/1545968314535985.
    1. Piron L, Turolla A, Agostini M, Zucconi C, Cortese F, Zampolini M, Zannini M, Dam M, Ventura L, Battauz M, Tonin P. Exercises for paretic upper limb after stroke: a combined virtual-reality and telemedicine approach. J Rehabil Med. 2009 Nov;41(12):1016–102. doi: 10.2340/16501977-0459.
    1. Rand D, Givon N, Weingarden H, Nota A, Zeilig G. Eliciting upper extremity purposeful movements using video games: a comparison with traditional therapy for stroke rehabilitation. Neurorehabil Neural Repair. 2014 Oct;28(8):733–9. doi: 10.1177/1545968314521008.
    1. Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F, Damiani C, Franceschini M. Recovery of hand function with robot-assisted therapy in acute stroke patients. Int J Rehabil Res. 2014;37(3):236–42. doi: 10.1097/mrr.0000000000000059.
    1. Saposnik G, Mamdani M, Bayley M, Thorpe KE, Hall J, Cohen LG, Teasell R, EVREST Steering Committee. EVREST Study Group for the Stroke Outcome Research Canada Working Group Effectiveness of Virtual Reality Exercises in STroke Rehabilitation (EVREST): rationale, design, and protocol of a pilot randomized clinical trial assessing the Wii gaming system. Int J Stroke. 2010 Feb;5(1):47–51. doi: 10.1111/j.1747-4949.2009.00404.x.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, Shaw J, Hall J, Nord P, Dukelow S, Nilanont Y, de Los Rios F, Olmos L, Levin M, Teasell R, Cohen A, Thorpe K, Laupacis A, Bayley M, Stroke Outcomes Research Canada Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016 Sep;15(10):1019–27. doi: 10.1016/S1474-4422(16)30121-1.
    1. Takahashi K, Domen K, Sakamoto T, Toshima M, Otaka Y, Seto M, Irie K, Haga B, Takebayashi T, Hachisuka K. Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke. 2016 May;47(5):1385–8. doi: 10.1161/STROKEAHA.115.012520.
    1. Timmermans AA, Lemmens RJ, Monfrance M, Geers RP, Bakx W, Smeets RJ, Seelen HA. Effects of task-oriented robot training on arm function, activity, and quality of life in chronic stroke patients: a randomized controlled trial. J Neuroeng Rehabil. 2014 Mar 31;11:45. doi: 10.1186/1743-0003-11-45.
    1. Tomić TJ, Savić AM, Vidaković AS, Rodić SZ, Isaković MS, Rodríguez-de-Pablo C, Keller T, Konstantinović LM. ArmAssist robotic system versus matched conventional therapy for poststroke upper limb rehabilitation: a randomized clinical trial. Biomed Res Int. 2017;2017:7659893. doi: 10.1155/2017/7659893. doi: 10.1155/2017/7659893.
    1. Türkbey TA, Kutlay S, Gök H. Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: a single-blind randomized controlled pilot study. J Rehabil Med. 2017 Jan 19;49(1):22–9. doi: 10.2340/16501977-2183.
    1. Vanoglio F, Bernocchi P, Mulè C, Garofali F, Mora C, Taveggia G, Scalvini S, Luisa A. Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clin Rehabil. 2017 Mar;31(3):351–60. doi: 10.1177/0269215516642606.
    1. Volpe BT, Lynch D, Rykman-Berland A, Ferraro M, Galgano M, Hogan N, Krebs HI. Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke. Neurorehabil Neural Repair. 2008;22(3):305–10. doi: 10.1177/1545968307311102.
    1. Wei XJ, Tong KY, Hu XL. The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training. Int J Rehabil Res. 2011 Dec;34(4):349–56. doi: 10.1097/MRR.0b013e32834d330a.
    1. Ang KK, Guan C, Chua K, Ang BT, Kuah C, Wang C, Phua K, Chin Z, Zhang H. Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5549–52. doi: 10.1109/IEMBS.2010.5626782.
    1. Barker RN, Hayward KS, Carson RG, Lloyd D, Brauer SG. SMART arm training with outcome-triggered electrical stimulation in subacute stroke survivors with severe arm disability: a randomized controlled trial. Neurorehabil Neural Repair. 2017 Dec;31(12):1005–16. doi: 10.1177/1545968317744276.
    1. Huang Y, Lai WP, Qian Q, Hu X, Tam EW, Zheng Y. Translation of robot-assisted rehabilitation to clinical service: a comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke. Biomed Eng Online. 2018 Jun 25;17(1):91. doi: 10.1186/s12938-018-0516-2.
    1. Hwang CH, Seong JW, Son D. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2012 Aug;26(8):696–704. doi: 10.1177/0269215511431473.
    1. Kim H, Miller LM, Fedulow I, Simkins M, Abrams GM, Byl N, Rosen J. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. IEEE Trans Neural Syst Rehabil Eng. 2013 Mar;21(2):153–64. doi: 10.1109/TNSRE.2012.2207462.
    1. Liao W, Wu C, Hsieh Y, Lin K, Chang W. Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clin Rehabil. 2012 Feb;26(2):111–20. doi: 10.1177/0269215511416383.
    1. Page SJ, Hill V, White S. Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial. Clin Rehabil. 2013 Jun;27(6):494–503. doi: 10.1177/0269215512464795.
    1. Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. J Neuroeng Rehabil. 2015 Apr 25;12:42. doi: 10.1186/s12984-015-0033-5.
    1. Kumar D, Gubbi J, Yan B, Palaniswami M. Motor recovery monitoring in post acute stroke patients using wireless accelerometer and cross-correlation. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6703–6. doi: 10.1109/EMBC.2013.6611094.
    1. Bergmann J, Krewer C, Bauer. Koenig A, Riener R, Müller F. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2018 Jun;54(3):397–407. doi: 10.23736/S1973-9087.17.04735-9.
    1. Cannell J, Jovic E, Rathjen A, Lane K, Tyson AM, Callisaya ML, Smith ST, Ahuja KD, Bird M. The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial. Clin Rehabil. 2018 Feb;32(2):191–200. doi: 10.1177/0269215517720790.
    1. Cruz VT, Bento V, Ruano L, Ribeiro DD, Fontão L, Mateus C, Barreto R, Colunas M, Alves A, Cruz B, Branco C, Rocha NP, Coutinho P. Motor task performance under vibratory feedback early poststroke: single center, randomized, cross-over, controlled clinical trial. Sci Rep. 2014 Jul 11;4:5670. doi: 10.1038/srep05670. doi: 10.1038/srep05670.
    1. Lin L, Lin Y, Lin Z, Chuang L, Hsu W, Lin Y. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study. Eur J Phys Rehabil Med. 2018 Jun;54(3):388–96. doi: 10.23736/S1973-9087.17.04691-3.
    1. Shimodozono M, Noma T, Matsumoto S, Miyata R, Etoh S, Kawahira K. Repetitive facilitative exercise under continuous electrical stimulation for severe arm impairment after sub-acute stroke: a randomized controlled pilot study. Brain Inj. 2014;28(2):203–10. doi: 10.3109/02699052.2013.860472.
    1. Sullivan JE, Hurley D, Hedman LD. Afferent stimulation provided by glove electrode during task-specific arm exercise following stroke. Clin Rehabil. 2012 Nov;26(11):1010–20. doi: 10.1177/0269215512442915.
    1. Curado MR, Cossio EG, Broetz D, Agostini M, Cho W, Brasil FL, Yilmaz O, Liberati G, Lepski G, Birbaumer N, Ramos-Murguialday A. Residual upper arm motor function primes innervation of paretic forearm muscles in chronic stroke after brain-machine interface (BMI) training. PLoS One. 2015;10(10):e0140161. doi: 10.1371/journal.pone.0140161.
    1. Lee MM, Cho H, Song CH. The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. Am J Phys Med Rehabil. 2012 Aug;91(8):689–96, quiz 697. doi: 10.1097/PHM.0b013e31824fa86d.
    1. Chen H, Chen CC, Hsueh I, Huang S, Hsieh C. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009 Jun;23(5):435–40. doi: 10.1177/1545968308331146.
    1. Lang CE, Edwards DF, Birkenmeier RL, Dromerick AW. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch Phys Med Rehabil. 2008 Sep;89(9):1693–700. doi: 10.1016/j.apmr.2008.02.022.
    1. Hsieh Y, Wang C, Wu S, Chen P, Sheu C, Hsieh C. Establishing the minimal clinically important difference of the Barthel Index in stroke patients. Neurorehabil Neural Repair. 2007;21(3):233–8. doi: 10.1177/1545968306294729.
    1. AbilityLab Home | Shirley Ryan AbilityLab. 2019. [2019-09-23]. Rivermead Motor Assessment. .
    1. AbilityLab Home | Shirley Ryan AbilityLab. 2019. [2019-09-23]. Chedoke Arm and Hand Activity Inventory. .
    1. Dixon D, Johnston M, McQueen M, Court-Brown C. The Disabilities of the Arm, Shoulder and Hand Questionnaire (DASH) can measure the impairment, activity limitations and participation restriction constructs from the International Classification of Functioning, Disability and Health (ICF) BMC Musculoskelet Disord. 2008 Aug 20;9:114. doi: 10.1186/1471-2474-9-114.
    1. Franchignoni F, Vercelli S, Giordano A, Sartorio F, Bravini E, Ferriero G. Minimal clinically important difference of the disabilities of the arm, shoulder and hand outcome measure (DASH) and its shortened version (QuickDASH) J Orthop Sports Phys Ther. 2014 Jan;44(1):30–9. doi: 10.2519/jospt.2014.4893.
    1. Fulk GD, Ludwig M, Dunning K, Golden S, Boyne P, West T. How much change in the stroke impact scale-16 is important to people who have experienced a stroke? Top Stroke Rehabil. 2010;17(6):477–83. doi: 10.1310/tsr1706-477.
    1. Cameirão M, Badia S, Duarte E, Verschure PF. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci. 2011;29(5):287–98. doi: 10.3233/RNN-2011-0599.
    1. Nijenhuis SM, Prange-Lasonder GB, Stienen AH, Rietman JS, Buurke JH. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clin Rehabil. 2017 Feb;31(2):207–16. doi: 10.1177/0269215516629722.
    1. Lannin NA, Cusick A, Hills C, Kinnear B, Vogel K, Matthews K, Bowring G. Upper limb motor training using a Saebo orthosis is feasible for increasing task-specific practice in hospital after stroke. Aust Occup Ther J. 2016 Dec;63(6):364–72. doi: 10.1111/1440-1630.12330.
    1. Wolf SL, Sahu K, Bay RC, Buchanan S, Reiss A, Linder S, Rosenfeldt A, Alberts J. The HAAPI (Home Arm Assistance Progression Initiative) Trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabil Neural Repair. 2015;29(10):958–68. doi: 10.1177/1545968315575612.
    1. Alon G, Levitt AF, McCarthy PA. Functional electrical stimulation (FES) may modify the poor prognosis of stroke survivors with severe motor loss of the upper extremity: a preliminary study. Am J Phys Med Rehabil. 2008 Aug;87(8):627–36. doi: 10.1097/PHM.0b013e31817fabc1.
    1. Yuzer GF, Dönmez B, Özgirgin N. A randomized controlled study: effectiveness of functional electrical stimulation on wrist and finger flexor spasticity in hemiplegia. J Stroke Cerebrovasc Dis. 2017 Jul;26(7):1467–71. doi: 10.1016/j.jstrokecerebrovasdis.2017.03.011.
    1. Villafañe JH, Taveggia G, Galeri S, Bissolotti L, Mullè C, Imperio G, Valdes K, Borboni A, Negrini S. Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial. Hand (N Y) 2018 Jan;13(1):95–102. doi: 10.1177/1558944717692096.
    1. Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, Reinkensmeyer DJ. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014 Apr 30;11:76. doi: 10.1186/1743-0003-11-76.
    1. Prange-Lasonder G, Radder B, Kottink AI, Melendez-Calderon A, Buurke J, Rietman J. Applying a soft-robotic glove as assistive device and training tool with games to support hand function after stroke: Preliminary results on feasibility and potential clinical impact. IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1401–6. doi: 10.1109/ICORR.2017.8009444.
    1. Barry JG, Ross SA, Woehrle J. Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: a pilot study. J Neurol Phys Ther. 2012 Mar;36(1):17–24. doi: 10.1097/NPT.0b013e318246203e.
    1. Knutson JS, Gunzler DD, Wilson RD, Chae J. Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis: a randomized trial. Stroke. 2016 Oct;47(10):2596–602. doi: 10.1161/STROKEAHA.116.013791.
    1. Cramer SC. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Ann Neurol. 2008 Mar;63(3):272–87. doi: 10.1002/ana.21393.
    1. Church G, Parker J, Powell L, Mawson S. The effectiveness of group exercise for improving activity and participation in adult stroke survivors: a systematic review. Physiotherapy. 2019 Jan 19; doi: 10.1016/j.physio.2019.01.005.
    1. Stroke Association. 2017. [2019-11-07]. State of the Nation: Stroke Statistics. .
    1. Beaton DE, Boers M, Wells GA. Many faces of the minimal clinically important difference (MCID): a literature review and directions for future research. Curr Opin Rheumatol. 2002 Mar;14(2):109–14. doi: 10.1097/00002281-200203000-00006.
    1. Akobeng AK. Understanding randomised controlled trials. Arch Dis Child. 2005 Aug;90(8):840–4. doi: 10.1136/adc.2004.058222.
    1. Bonell C, Fletcher A, Morton M, Lorenc T, Moore L. Realist randomised controlled trials: a new approach to evaluating complex public health interventions. Soc Sci Med. 2012 Dec;75(12):2299–306. doi: 10.1016/j.socscimed.2012.08.032.
    1. Pawson R, Tilley N. Realistic Evaluation. Thousand Oaks, CA: Sage; 1997.
    1. Moore G. Cramming more components onto integrated circuits. Proc IEEE. 1998;86(1):82–5. doi: 10.1109/jproc.1998.658762.
    1. National Institute of Health and Care Excellence (NICE) 2019. [2019-11-07]. Evidence standards framework for digital health technologies. .

Source: PubMed

3
Sottoscrivi