Probiotic B420 and prebiotic polydextrose improve efficacy of antidiabetic drugs in mice

Lotta K Stenman, Aurélie Waget, Céline Garret, François Briand, Rémy Burcelin, Thierry Sulpice, Sampo Lahtinen, Lotta K Stenman, Aurélie Waget, Céline Garret, François Briand, Rémy Burcelin, Thierry Sulpice, Sampo Lahtinen

Abstract

Background: Gut microbiota is now known to control glucose metabolism. Previous studies have shown that probiotics and prebiotics may improve glucose metabolism, but their effects have not been studied in combination with drug therapy. The aim of this study was to investigate whether probiotics and prebiotics combined with drug therapy affect diabetic outcomes.

Methods: Two different study designs were used to test gut microbiota modulating treatments with metformin (MET) or sitagliptin (SITA) in male C57Bl/6J mice. In Design 1, diabetes was induced with four-week feeding with a ketogenic, 72 kcal% fat diet with virtually no carbohydrates. Mice were then randomly divided into four groups (n = 10 in each group): (1) vehicle, (2) Bifidobacterium animalis ssp. lactis 420 (B420) (10(9) CFU/day), (3) MET (2 mg/mL in drinking water), or (4) MET + B420 (same doses as in the MET and B420 groups). After another 4 weeks, glucose metabolism was assessed with a glucose tolerance test. Fasting glucose, fasting insulin and HOMA-IR were also assessed. In Design 2, mice were fed the same 72 kcal% fat diet to induce diabetes, but they were simultaneously treated within their respective groups (n = 8 in each group): (1) non-diabetic healthy control, (2) vehicle, (3) SITA [3 mg/(kg*day)] (4) SITA with prebiotic polydextrose (PDX) (0.25 g/day), (5) SITA with B420 (10(9) CFU/day), and (6) SITA + PDX + B420. Glucose metabolism was assessed at 4 weeks, and weight development was monitored for 6 weeks.

Results: In Design 1, with low-dose metformin, mice treated with B420 had a significantly lower glycemic response (area under the curve) (factorial experiment, P = 0.002) and plasma glucose concentration (P = 0.02) compared to mice not treated with B420. In Design 2, SITA + PDX reduced glycaemia in the oral glucose tolerance test significantly more than SITA only (area under the curve reduced 28 %, P < 0.0001). In addition, B420, PDX or B420+PDX, together with SITA, further decreased fasting glucose concentrations compared to SITA only (-19.5, -40 and -49 %, respectively, P < 0.01 for each comparison). The effect of PDX may be due to its ability to increase portal vein GLP-1 concentrations together with SITA (P = 0.0001 compared to vehicle) whereas SITA alone had no statistically significant effect compared to vehicle (P = 0.14).

Conclusions: This study proposes that combining probiotics and/or prebiotics with antidiabetic drugs improves glycemic control and insulin sensitivity in mice. Mechanisms could be related to incretin secretion.

Keywords: Bifidobacteria; Diabetes; Gastroenterology; Metformin; Mice; Obesity; Prebiotics; Probiotics; Sitagliptin.

Figures

Fig. 1
Fig. 1
Glucose tolerance of mice after 4 weeks of treatment. Intraperitoneal glucose tolerance (A) and area under the curve (AUC) (B) of mice treated with metformin (MET) and/or Bifidobacterium animalis ssp. lactis 420 (B420) while on a high-fat diet. The oral glucose tolerance (C) and AUC (D) of mice treated with sitagliptin (SITA), polydextrose (PDX) and/or B420 while on a high-fat diet, in contrast to mice on a normal-fat diet (NFD). All data are expressed as the mean ± SEM. Groups without common letters differ significantly from one another (p < 0.05)
Fig. 2
Fig. 2
Fasted glucose (A, D), insulin (B, E) and HOMA-IR (C, F) after 4 weeks of treatment with metformin (MET), sitagliptin (SITA), polydextrose (PDX) and/or Bifidobacterium animalis ssp. lactis 420 (B420) in mice on a high-fat diet, in contrast to mice on a normal-fat diet (NFD). All data are expressed as the mean ± SEM. Groups without common letters differ significantly from one another (p < 0.05)
Fig. 3
Fig. 3
Portal vein (A) and ileal (B) GLP-1 concentrations and serum DPP-4 activity (C) after 6 weeks of treatment with sitagliptin (SITA), polydextrose (PDX) and/or Bifidobacterium animalis ssp. lactis 420 (B420) in mice on a high-fat diet, in contrast to mice on a normal-fat diet (NFD). All data are expressed as the mean ± SEM. Groups without common letters differ significantly from one another (p < 0.05)

References

    1. Neves AL, Coelho J, Couto L, Leite-Moreira A, Roncon-Albuquerque R., Jr Metabolic endotoxemia: a molecular link between obesity and cardiovascular risk. J Mol Endocrinol. 2013;51(2):R51–R64. doi: 10.1530/JME-13-0079.
    1. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi: 10.2337/db07-1403.
    1. Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, et al. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012;61(4):543–553. doi: 10.1136/gutjnl-2011-301012.
    1. Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012;7(3):e34233. doi: 10.1371/journal.pone.0034233.
    1. Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J, Ferreira CL, et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr. 2012;31(5):735–740. doi: 10.1016/j.clnu.2012.02.009.
    1. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–572. doi: 10.1002/emmm.201100159.
    1. Burcelin R, Serino M, Chabo C, Garidou L, Pomie C, Courtney M, et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes Obes Metab. 2013;15(Suppl 3):61–70. doi: 10.1111/dom.12157.
    1. Luche E, Cousin B, Garidou L, Serino M, Waget A, Barreau C, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab. 2013;2(3):281–291. doi: 10.1016/j.molmet.2013.06.005.
    1. Burcelin R, Garidou L, Pomie C. Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol. 2012;24(1):67–74. doi: 10.1016/j.smim.2011.11.011.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi: 10.1038/nature05414.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–1023. doi: 10.1038/4441022a.
    1. D’Aversa F, Tortora A, Ianiro G, Ponziani FR, Annicchiarico BE, Gasbarrini A. Gut microbiota and metabolic syndrome. Intern Emerg Med. 2013;8(Suppl 1):S11–S15. doi: 10.1007/s11739-013-0916-z.
    1. Hartstra AV, Bouter KE, Backhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–165. doi: 10.2337/dc14-0769.
    1. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588(22):4223–4233. doi: 10.1016/j.febslet.2014.09.039.
    1. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–546. doi: 10.1038/nature12506.
    1. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–588. doi: 10.1038/nature12480.
    1. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Moller K, Svendsen KD, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr. 2010;104(12):1831–1838. doi: 10.1017/S0007114510002874.
    1. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916. doi: 10.1053/j.gastro.2012.06.031.
    1. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50(11):2374–2383. doi: 10.1007/s00125-007-0791-0.
    1. Russo F, Riezzo G, Chiloiro M, De Michele G, Chimienti G, Marconi E, et al. Metabolic effects of a diet with inulin-enriched pasta in healthy young volunteers. Curr Pharm Des. 2010;16(7):825–831. doi: 10.2174/138161210790883570.
    1. Kondo S, Xiao JZ, Satoh T, Odamaki T, Takahashi S, Sugahara H, et al. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem. 2010;74(8):1656–1661. doi: 10.1271/bbb.100267.
    1. Park DY, Ahn YT, Park SH, Huh CS, Yoo SR, Yu R, et al. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One. 2013;8(3):e59470. doi: 10.1371/journal.pone.0059470.
    1. Dehghan P, Gargari BP, Jafar-Abadi MA, Aliasgharzadeh A. Inulin controls inflammation and metabolic endotoxemia in women with type 2 diabetes mellitus: a randomized-controlled clinical trial. Int J Food Sci Nutr. 2014;65(1):117–123. doi: 10.3109/09637486.2013.836738.
    1. Stenman LK, Waget A, Garret C, Klopp P, Burcelin R, Lahtinen S. Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef Microb. 2014;5(4):437–445. doi: 10.3920/BM2014.0014.
    1. Ibarra A, Astbury NM, Olli K, Alhoniemi E, Tiihonen K. Effects of polydextrose on different levels of energy intake. A systematic review and meta-analysis. Appetite. 2015;87:30–37. doi: 10.1016/j.appet.2014.12.099.
    1. Jie Z, Bang-Yao L, Ming-Jie X, Hai-Wei L, Zu-Kang Z, Ting-Song W, et al. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr. 2000;72(6):1503–1509.
    1. Schwab U, Louheranta A, Torronen A, Uusitupa M. Impact of sugar beet pectin and polydextrose on fasting and postprandial glycemia and fasting concentrations of serum total and lipoprotein lipids in middle-aged subjects with abnormal glucose metabolism. Eur J Clin Nutr. 2006;60(9):1073–1080. doi: 10.1038/sj.ejcn.1602421.
    1. Duncan LJ, Seaton DA. The treatment of diabetes mellitus with metformin. Br J Clin Pract. 1962;16:129–132.
    1. Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B. Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab. 2002;282(4):E834–E842. doi: 10.1152/ajpendo.00332.2001.
    1. Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10(3):143–156. doi: 10.1038/nrendo.2013.256.
    1. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153(1):228–239. doi: 10.1016/j.cell.2013.02.035.
    1. Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63(5):727–735. doi: 10.1136/gutjnl-2012-303839.
    1. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110(22):9066–9071. doi: 10.1073/pnas.1219451110.
    1. Burcelin R. The antidiabetic gutsy role of metformin uncovered? Gut. 2014;63(5):706–707. doi: 10.1136/gutjnl-2013-305370.
    1. Lovshin JA, Drucker DJ. Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(5):262–269. doi: 10.1038/nrendo.2009.48.
    1. Waget A, Cabou C, Masseboeuf M, Cattan P, Armanet M, Karaca M, et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology. 2011;152(8):3018–3029. doi: 10.1210/en.2011-0286.
    1. Nielsen R, Wiggers H, Halbirk M, Botker H, Holst JJ, Schmitz O, et al. Metabolic effects of short-term GLP-1 treatment in insulin resistant heart failure patients. Exp Clin Endocrinol Diabetes. 2012;120(5):266–272. doi: 10.1055/s-0032-1304605.
    1. Putaala H, Salusjarvi T, Nordstrom M, Saarinen M, Ouwehand AC, Bech Hansen E, et al. Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res Microbiol. 2008;159(9–10):692–698. doi: 10.1016/j.resmic.2008.08.002.
    1. Garidou L, Pomie C, Klopp P, Waget A, Charpentier J, Aloulou M, et al. The gut microbiota regulates intestinal CD4 T cells expressing ROR-gamma-t and controls metabolic disease. Cell Metab. 2015;22(1):100–112. doi: 10.1016/j.cmet.2015.06.001.
    1. Habbout A, Li N, Rochette L, Vergely C. Postnatal overfeeding in rodents by litter size reduction induces major short- and long-term pathophysiological consequences. J Nutr. 2013;143(5):553–562. doi: 10.3945/jn.112.172825.
    1. Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC. Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology. 2010;151(12):5617–5623. doi: 10.1210/en.2010-0684.

Source: PubMed

3
Sottoscrivi