Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus

Kylie M Wagstaff, Haran Sivakumaran, Steven M Heaton, David Harrich, David A Jans, Kylie M Wagstaff, Haran Sivakumaran, Steven M Heaton, David Harrich, David A Jans

Abstract

The movement of proteins between the cytoplasm and nucleus mediated by the importin superfamily of proteins is essential to many cellular processes, including differentiation and development, and is critical to disease states such as viral disease and oncogenesis. We recently developed a high-throughput screen to identify specific and general inhibitors of protein nuclear import, from which ivermectin was identified as a potential inhibitor of importin α/β-mediated transport. In the present study, we characterized in detail the nuclear transport inhibitory properties of ivermectin, demonstrating that it is a broad-spectrum inhibitor of importin α/β nuclear import, with no effect on a range of other nuclear import pathways, including that mediated by importin β1 alone. Importantly, we establish for the first time that ivermectin has potent antiviral activity towards both HIV-1 and dengue virus, both of which are strongly reliant on importin α/β nuclear import, with respect to the HIV-1 integrase and NS5 (non-structural protein 5) polymerase proteins respectively. Ivermectin would appear to be an invaluable tool for the study of protein nuclear import, as well as the basis for future development of antiviral agents.

Figures

Figure 1. Ivermectin inhibits Impα/β1- but not…
Figure 1. Ivermectin inhibits Impα/β1- but not Impβ1-dependent nuclear import, whereas mifepristone specifically inhibits IN nuclear accumulation
(A) Typical CLSM images of HeLa cells expressing the indicated GFP-fusion proteins 24 h after transfection, treated with or without 25 μM ivermectin or 50 μM mifepristone as indicated for 1 h before imaging. (B) Results (mean±S.E.M., n>89) for quantitative analysis of images such as those in (A) to determine the nuclear to cytoplasmic fluorescence ratio (Fn/c); *P<0.01.
Figure 2. Ivermectin is a broad-spectrum Impα/β1…
Figure 2. Ivermectin is a broad-spectrum Impα/β1 inhibitor that does not affect other nuclear import pathways
HeLa cells transfected to express the indicated GFP-fusion proteins were treated with or without 25 μM ivermectin for 1 h before live-cell imaging 24 h after transfection. Results (mean±S.E.M., n>68) were determined as described in Figure 1(B); **P<0.001.
Figure 3. Ivermectin can inhibit HIV-1 and…
Figure 3. Ivermectin can inhibit HIV-1 and DENV infection
(A) HeLa cells were infected with 200 ng (capsid protein-equivalent) of VSV-G-pseudotyped NL4-3.Luc.R-E- HIV, treated with or without the indicated agents (concentration in parentheses, μM) 2 h after infection for 6 h, then medium was removed, and cells were harvested for measurement of luciferase reporter activity. LD50 values for ivermectin and mifepristone in 50% confluent HeLa cells incubated for 24 h with each compound were 150 μM and 33 mM respectively. Results are means±S.E.M. for an average of four repeats; *P<0.05, **P<0.01. (B) AlphaScreen binding inhibition curves for DENV NS5 and the indicated Imps. Assays were performed as described in the Materials and methods section using 30 μM His6-tagged NS5 protein and 30 μM biotinylated Impα/β1, in the presence of the indicated concentrations of ivermectin, mifepristone or DMSO (vehicle) control. (C) Vero cells were treated with or without 25 μM (left) or 50 μM (right) ivermectin or mifepristone (as indicated) for 3 h before infection with DENV-2. Cell culture medium was collected and viral titres were analysed at various times after infection by plaque assay. PFU, plaque-forming units.

References

    1. Hogarth C. A., Calanni S., Jans D. A., Loveland K. L. Importin α mRNAs have distinct expression profiles during spermatogenesis. Dev. Dyn. 2006;235:253–262.
    1. Moseley G. W., Filmer R. P., DeJesus M. A., Jans D. A. Nucleocytoplasmic distribution of rabies virus P-protein is regulated by phosphorylation adjacent to C-terminal nuclear import and export signals. Biochemistry (Moscow) 2007;46:12053–12061.
    1. Pryor M. J., Rawlinson S. M., Butcher R. E., Barton C. L., Waterhouse T. A., Vasudevan S. G., Bardin P. G., Wright P. J., Jans D. A., Davidson A. D. Nuclear localization of dengue virus nonstructural protein 5 through its importin α/β-recognized nuclear localization sequences is integral to viral infection. Traffic. 2007;8:795–807.
    1. Forwood J. K., Jans D. A. Nuclear import pathway of the telomere elongation suppressor TRF1: inhibition by importin α. Biochemistry (Moscow) 2002;41:9333–9340.
    1. Forwood J. K., Lam M. H., Jans D. A. Nuclear import of Creb and AP-1 transcription factors requires importin-β1 and Ran but is independent of importin-α. Biochemistry (Moscow) 2001;40:5208–5217.
    1. Lam M. H., Briggs L. J., Hu W., Martin T. J., Gillespie M. T., Jans D. A. Importin β recognizes parathyroid hormone-related protein with high affinity and mediates its nuclear import in the absence of importin α. J. Biol. Chem. 1999;274:7391–7398.
    1. Lam M. H., Thomas R. J., Loveland K. L., Schilders S., Gu M., Martin T. J., Gillespie M. T., Jans D. A. Nuclear transport of parathyroid hormone (PTH)-related protein is dependent on microtubules. Mol. Endocrinol. 2002;16:390–401.
    1. Ambrus G., Whitby L. R., Singer E. L., Trott O., Choi E., Olson A. J., Boger D. L., Gerace L. Small molecule peptidomimetic inhibitors of importin α/β mediated nuclear transport. Bioorg. Med. Chem. 2010;18:7611–7620.
    1. Cansizoglu A. E., Lee B. J., Zhang Z. C., Fontoura B. M., Chook Y. M. Structure-based design of a pathway-specific nuclear import inhibitor. Nat. Struct. Mol. Biol. 2007;14:452–454.
    1. Hintersteiner M., Ambrus G., Bednenko J., Schmied M., Knox A. J., Meisner N. C., Gstach H., Seifert J. M., Singer E. L., Gerace L., Auer M. Identification of a small molecule inhibitor of importin β mediated nuclear import by confocal on-bead screening of tagged one-bead one-compound libraries. ACS Chem. Biol. 2010;5:967–979.
    1. Hou Y., McGuinness D. E., Prongay A. J., Feld B., Ingravallo P., Ogert R. A., Lunn C. A., Howe J. A. Screening for antiviral inhibitors of the HIV integrase–LEDGF/p75 interaction using the AlphaScreen luminescent proximity assay. J. Biomol. Screening. 2008;13:406–414.
    1. Kosugi S., Hasebe M., Entani T., Takayama S., Tomita M., Yanagawa H. Design of peptide inhibitors for the importin α/β nuclear import pathway by activity-based profiling. Chem. Biol. 2008;15:940–949.
    1. Mata M. A., Satterly N., Versteeg G. A., Frantz D., Wei S., Williams N., Schmolke M., Peña-Llopis S., Brugarolas J., Forst C. V., et al. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor. Nat. Chem. Biol. 2011;7:712–719.
    1. Soderholm J. F., Bird S. L., Kalab P., Sampathkumar Y., Hasegawa K., Uehara-Bingen M., Weis K., Heald R. Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem. Biol. 2011;6:700–708.
    1. Wigle T. J., Herold J. M., Senisterra G. A., Vedadi M., Kireev D. B., Arrowsmith C. H., Frye S. V., Janzen W. P. Screening for inhibitors of low-affinity epigenetic peptide–protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J. Biomol. Screening. 2010;15:62–71.
    1. Zhang J. H., Chung T. D., Oldenburg K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screening. 1999;4:67–73.
    1. Flint S. J., Huang W., Goodhouse J., Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology. 2005;337:7–17.
    1. Kau T. R., Schroeder F., Ramaswamy S., Wojciechowski C. L., Zhao J. J., Roberts T. M., Clardy J., Sellers W. R., Silver P. A. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell. 2003;4:463–476.
    1. Kau T. R., Way J. C., Silver P. A. Nuclear transport and cancer: from mechanism to intervention. Nat. Rev. Cancer. 2004;4:106–117.
    1. Meissner T., Krause E., Vinkemeier U. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett. 2004;576:27–30.
    1. Mutka S. C., Yang W. Q., Dong S. D., Ward S. L., Craig D. A., Timmermans P. B., Murli S. Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res. 2009;69:510–517.
    1. Wagstaff K. M., Rawlinson S. M., Hearps A. C., Jans D. A. An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J. Biomol. Screening. 2011;16:192–200.
    1. Babalola O. E. Ocular onchocerciasis: current management and future prospects. Clin. Ophthalmol. 2011;5:1479–1491.
    1. Victoria J., Trujillo R. Topical ivermectin: a new successful treatment for scabies. Pediatr. Dermatol. 2001;18:63–65.
    1. Strycharz J. P., Yoon K. S., Clark J. M. A new ivermectin formulation topically kills permethrin-resistant human head lice (Anoplura: Pediculidae) J. Med. Entomol. 2008;45:75–81.
    1. Hearps A. C., Jans D. A. HIV-1 integrase is capable of targeting DNA to the nucleus via an importin α/β-dependent mechanism. Biochem. J. 2006;398:475–484.
    1. Efthymiadis A., Briggs L. J., Jans D. A. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J. Biol. Chem. 1998;273:1623–1628.
    1. Truant R., Cullen B. R. The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin β-dependent nuclear localization signals. Mol. Cell. Biol. 1999;19:1210–1217.
    1. Cai Y., Gao Y., Sheng Q., Miao S., Cui X., Wang L., Zong S., Koide S. S. Characterization and potential function of a novel testis-specific nucleoporin BS-63. Mol. Reprod. Dev. 2002;61:126–134.
    1. Wagstaff K. M., Glover D. J., Tremethick D. J., Jans D. A. Histone-mediated transduction as an efficient means for gene delivery. Mol. Ther. 2007;15:721–731.
    1. Rawlinson S. M., Pryor M. J., Wright P. J., Jans D. A. CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J. Biol. Chem. 2009;284:15589–15597.
    1. Poon I. K., Oro C., Dias M. M., Zhang J., Jans D. A. Apoptin nuclear accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells. Cancer Res. 2005;65:7059–7064.
    1. Poon I. K., Oro C., Dias M. M., Zhang J. P., Jans D. A. A tumor cell-specific nuclear targeting signal within chicken anemia virus VP3/apoptin. J. Virol. 2005;79:1339–1341.
    1. Wagstaff K. M., Jans D. A. Intramolecular masking of nuclear localization signals: analysis of importin binding using a novel AlphaScreen-based method. Anal. Biochem. 2006;348:49–56.
    1. Hubner S., Xiao C. Y., Jans D. A. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J. Biol. Chem. 1997;272:17191–17195.
    1. Xiao C. Y., Hubner S., Jans D. A. SV40 large tumor antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localization sequence. J. Biol. Chem. 1997;272:22191–22198.
    1. Wagstaff K. M., Fan J. Y., De Jesus M. A., Tremethick D. J., Jans D. A. Efficient gene delivery using reconstituted chromatin enhanced for nuclear targeting. FASEB J. 2008;22:2232–2242.
    1. Gualano R. C., Pryor M. J., Cauchi M. R., Wright P. J., Davidson A. D. Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J. Gen. Virol. 1998;79:437–446.
    1. Pryor M. J., Gualano R. C., Lin B., Davidson A. D., Wright P. J. Growth restriction of dengue virus type 2 by site-specific mutagenesis of virus-encoded glycoproteins. J. Gen. Virol. 1998;79:2631–2639.
    1. Alvisi G., Ripalti A., Ngankeu A., Giannandrea M., Caraffi S. G., Dias M. M., Jans D. A. Human cytomegalovirus DNA polymerase catalytic subunit pUL54 possesses independently acting nuclear localization and ppUL44 binding motifs. Traffic. 2006;7:1322–1332.
    1. Cimica V., Chen H. C., Iyer J. K., Reich N. C. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-β1. PLoS ONE. 2011;6:e20188.
    1. Kaur G., Jans D. A. Dual nuclear import mechanisms of sex determining factor SRY: intracellular Ca2+ as a switch. FASEB J. 2011;25:665–675.
    1. Lam M. H., Hu W., Xiao C. Y., Gillespie M. T., Jans D. A. Molecular dissection of the importin β1-recognized nuclear targeting signal of parathyroid hormone-related protein. Biochem. Biophys. Res. Commun. 2001;282:629–634.
    1. Jakel S., Albig W., Kutay U., Bischoff F. R., Schwamborn K., Doenecke D., Gorlich D. The importin β/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J. 1999;18:2411–2423.
    1. Langer T. Nuclear transport of histone 2b in mammalian cells is signal- and energy-dependent and different from the importin α/β-mediated process. Histochem. Cell Biol. 2000;113:455–465.
    1. Mosammaparast N., Guo Y., Shabanowitz J., Hunt D. F., Pemberton L. F. Pathways mediating the nuclear import of histones H3 and H4 in yeast. J. Biol. Chem. 2002;277:862–868.
    1. Mingot J. M., Kostka S., Kraft R., Hartmann E., Gorlich D. Importin 13: a novel mediator of nuclear import and export. EMBO J. 2001;20:3685–3694.
    1. Fulcher A. J., Jans D. A. Regulation of nucleocytoplasmic trafficking of viral proteins: an integral role in pathogenesis? Biochim. Biophys. Acta. 2011;1813:2176–2190.
    1. Ghildyal R., Ho A., Wagstaff K. M., Dias M. M., Barton C. L., Jans P., Bardin P., Jans D. A. Nuclear import of the respiratory syncytial virus matrix protein is mediated by importin beta1 independent of importin α. Biochemistry (Moscow) 2005;44:12887–12895.
    1. Tavassoli A. Targeting the protein–protein interactions of the HIV lifecycle. Chem. Soc. Rev. 2011;40:1337–1346.

Source: PubMed

3
Sottoscrivi