IOC consensus statement: dietary supplements and the high-performance athlete

Ronald J Maughan, Louise M Burke, Jiri Dvorak, D Enette Larson-Meyer, Peter Peeling, Stuart M Phillips, Eric S Rawson, Neil P Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Lucas J C van Loon, Susan M Shirreffs, Lawrence L Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M Ali, Richard Gm Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis P Pitsiladis, Torbjørn Soligard, Uğur Erdener, Lars Engebretsen, Ronald J Maughan, Louise M Burke, Jiri Dvorak, D Enette Larson-Meyer, Peter Peeling, Stuart M Phillips, Eric S Rawson, Neil P Walsh, Ina Garthe, Hans Geyer, Romain Meeusen, Lucas J C van Loon, Susan M Shirreffs, Lawrence L Spriet, Mark Stuart, Alan Vernec, Kevin Currell, Vidya M Ali, Richard Gm Budgett, Arne Ljungqvist, Margo Mountjoy, Yannis P Pitsiladis, Torbjørn Soligard, Uğur Erdener, Lars Engebretsen

Abstract

Nutrition usually makes a small but potentially valuable contribution to successful performance in elite athletes, and dietary supplements can make a minor contribution to this nutrition programme. Nonetheless, supplement use is widespread at all levels of sport. Products described as supplements target different issues, including (1) the management of micronutrient deficiencies, (2) supply of convenient forms of energy and macronutrients, and (3) provision of direct benefits to performance or (4) indirect benefits such as supporting intense training regimens. The appropriate use of some supplements can benefit the athlete, but others may harm the athlete's health, performance, and/or livelihood and reputation (if an antidoping rule violation results). A complete nutritional assessment should be undertaken before decisions regarding supplement use are made. Supplements claiming to directly or indirectly enhance performance are typically the largest group of products marketed to athletes, but only a few (including caffeine, creatine, specific buffering agents and nitrate) have good evidence of benefits. However, responses are affected by the scenario of use and may vary widely between individuals because of factors that include genetics, the microbiome and habitual diet. Supplements intended to enhance performance should be thoroughly trialled in training or simulated competition before being used in competition. Inadvertent ingestion of substances prohibited under the antidoping codes that govern elite sport is a known risk of taking some supplements. Protection of the athlete's health and awareness of the potential for harm must be paramount; expert professional opinion and assistance is strongly advised before an athlete embarks on supplement use.

Keywords: diet; performance.

Conflict of interest statement

Competing interests: None declared.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

Figures

Figure 1
Figure 1
Hierarchy of evidence used to establish good practice focused on the issue of nutritional supplements.
Figure 2
Figure 2
Flow chart to guide informed decision making and reducing risk of antidoping rule violation during nutritional supplement use. MD, medical doctors.
Figure 3
Figure 3
Flow chart to guide informed decision making and reducing risk of antidoping rule violation during ergogenic supplement use.

References

    1. Bailey RL, Gahche JJ, Lentino CV, et al. . Dietary supplement use in the United States, 2003-2006. J Nutr 2011;141:261–6. 10.3945/jn.110.133025
    1. Fennell D. Determinants of supplement usage. Prev Med 2004;39:932–9. 10.1016/j.ypmed.2004.03.031
    1. Supplements UNood. Dietary supplement health and education act of 1994. 1994. (accessed 22 Nov 2017).
    1. Maughan RJ, Depiesse F, Geyer H. International Association of Athletics Federations. The use of dietary supplements by athletes. J Sports Sci 2007;25(Suppl 1):S103–13. 10.1080/02640410701607395
    1. Garthe I, Maughan MRJ. Athletes and Supplements - prevalance and perspectives. Int J Sport Nutr Exerc Metab. In Press 2018.
    1. Prasad AS. Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health. Front Nutr 2014;1:14 10.3389/fnut.2014.00014
    1. Solomons NW. Mild human zinc deficiency produces an imbalance between cell-mediated and humoral immunity. Nutr Rev 1998;56():27–8. 10.1111/j.1753-4887.1998.tb01656.x
    1. Stellingwerff T, Cox GR. Systematic review: Carbohydrate supplementation on exercise performance or capacity of varying durations. Appl Physiol Nutr Metab 2014;39:998–1011. 10.1139/apnm-2014-0027
    1. Peake JM, Neubauer O, Walsh NP, et al. . Recovery of the immune system after exercise. J Appl Physiol 2017;122:1077–87. 10.1152/japplphysiol.00622.2016
    1. Steenge GR, Simpson EJ, Greenhaff PL. Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol 2000;89:1165–71. 10.1152/jappl.2000.89.3.1165
    1. Gualano B, Roschel H, Lancha AH, et al. . In sickness and in health: the widespread application of creatine supplementation. Amino Acids 2012;43:519–29. 10.1007/s00726-011-1132-7
    1. Heaton LE, Davis JK, Rawson ES, et al. . Selected in-season nutritional strategies to enhance recovery for team sport athletes: a practical overview. Sports Med 2017;47:2201–18. 10.1007/s40279-017-0759-2
    1. Branch JD. Effect of creatine supplementation on body composition and performance: a meta-analysis. Int J Sport Nutr Exerc Metab 2003;13:198–226. 10.1123/ijsnem.13.2.198
    1. Burke LM, Peeling P. Methodologies for investigating performance changes with supplement use. Int J Sport Nutr Exerc Metab 2018. doi: 10.1123/ijsnem.2017-0325 [Epub ahead of print]. 10.1123/ijsnem.2017-0325
    1. Maughan RJ, Shirreffs SM, Vernec A. Making decisions about supplement use. Int J Sport Nutr Exerc Metab. In Press 2018.
    1. Clark A, Mach N. The Crosstalk between the gut microbiota and mitochondria during Exercise. Front Physiol 2017;8:319 10.3389/fphys.2017.00319
    1. Ribeiro IF, Miranda-Vilela AL, Klautau-Guimarães MN, et al. . The influence of erythropoietin (EPO T → G) and α-actinin-3 (ACTN3 R577X) polymorphisms on runners' responses to the dietary ingestion of antioxidant supplementation based on pequi oil (Caryocar brasiliense Camb): a before-after study. J Nutrigenet Nutrigenomics 2013;6:283–304. 10.1159/000357947
    1. Larson-Meyer DE, Woolf K, Burke LM. Assessment of nutrient status in athletes and the need for supplementation. Int J Sport Nutr Exerc Metab 2018. doi: 10.1123/ijsnem.2017-0338 [Epub ahead of print]. 10.1123/ijsnem.2017-0338
    1. Bermon S, Castell LM, Calder PC, et al. . Consensus Statement Immunonutrition and Exercise. Exerc Immunol Rev 2017;23:8–50.
    1. Nikolaidis MG, Kerksick CM, Lamprecht M, et al. . Does Vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxid Med Cell Longev 2012;2012:1–11. 10.1155/2012/707941
    1. Paulsen G, Cumming KT, Holden G, et al. . Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 2014;592:1887–901. 10.1113/jphysiol.2013.267419
    1. Powers S, Nelson WB, Larson-Meyer E. Antioxidant and Vitamin D supplements for athletes: sense or nonsense? J Sports Sci 2011;29(Suppl 1):S47–S55. 10.1080/02640414.2011.602098
    1. Hao Q, Dong BR, Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev 2015;2:CD006895 10.1002/14651858.CD006895.pub3
    1. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev 2013;6:CD001364.
    1. Hector AJ, Phillips SM. Protein recommendations for weight loss in elite athletes: a focus on body composition and performance. Int J Sport Nutr Exerc Metab 2018. doi: 10.1123/ijsnem.2017-0273 [Epub ahead of print]. 10.1123/ijsnem.2017-0273
    1. Mettler S, Zimmermann MB. Iron excess in recreational marathon runners. Eur J Clin Nutr 2010;64:490–4. 10.1038/ejcn.2010.16
    1. Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab 2011;21:357–64. 10.1123/ijsnem.21.5.357
    1. Peeling P, Binnie MJ, Goods PSR, et al. . Evidence-based supplements for the enhancement of athletic performance. Int J Sport Nutr Exerc Metab 2018. doi: 10.1123/ijsnem.2017-0343 [Epub ahead of print]. 10.1123/ijsnem.2017-0343
    1. Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab 2008;33:1319–34. 10.1139/H08-130
    1. Geller AI, Shehab N, Weidle NJ, et al. . Emergency department visits for adverse events related to dietary supplements. N Engl J Med 2015;373:1531–40. 10.1056/NEJMsa1504267
    1. Maughan RJ. Contamination of dietary supplements and positive drug tests in sport. J Sports Sci 2005;23:883–9. 10.1080/02640410400023258
    1. Geyer H, Parr MK, Mareck U, et al. . Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids - results of an international study. Int J Sports Med 2004;25:124–9. 10.1055/s-2004-819955
    1. Martínez-Sanz JM, Sospedra I, Ortiz CM, et al. . Intended or unintended doping? A review of the presence of doping substances in dietary supplements used in sports. Nutrients 2017;9:1093 10.3390/nu9101093
    1. Geyer H, Parr MK, Koehler K, et al. . Nutritional supplements cross-contaminated and faked with doping substances. J Mass Spectrom 2008;43:892–902. 10.1002/jms.1452
    1. Geyer H, Bredehoft M, Marek U, et al. . Hohe Dosen des Anabolikums Metandienon in Nahrungserganzungsmitteln. Deutsche Apotheke Zeit 2002;142:29.
    1. Goodman LS, Gilman A. Pharmacological basis of therapeutics. 5th edn: Macmillan Publishing Co, 1975:1462.
    1. Solimini R, Rotolo MC, Mastrobattista L, et al. . Hepatotoxicity associated with illicit use of anabolic androgenic steroids in doping. Eur Rev Med Pharmacol Sci 2017;21:7–16.
    1. Li N, Hauser R, Holford T, et al. . Muscle-building supplement use and increased risk of testicular germ cell cancer in men from Connecticut and Massachusetts. Br J Cancer 2015;112:1247–50. 10.1038/bjc.2015.26
    1. Baume N, Avois L, Schweizer C, et al. . [13C]Nandrolone excretion in trained athletes: interindividual variability in metabolism. Clin Chem 2004;50:355–64. 10.1373/clinchem.2003.022848
    1. Watson P, Judkins C, Houghton E, et al. . Urinary nandrolone metabolite detection after ingestion of a nandrolone precursor. Med Sci Sports Exerc 2009;41:766–72. 10.1249/MSS.0b013e31818edaeb
    1. Rawson ES, Miles MP, Larson-Meyer DE. Dietary supplements for health, adaptation, and recovery in athletes. Int J Sport Nutr Exerc Metab 2018. doi: 10.1123/ijsnem.2017-0340 [Epub ahead of print]. 10.1123/ijsnem.2017-0340
    1. Hossein-nezhad A, Holick MF. Vitamin D for health: a global perspective. Mayo Clin Proc 2013;88:720–55. 10.1016/j.mayocp.2013.05.011
    1. Larson-Meyer DE, Willis KS. Vitamin D and athletes. Curr Sports Med Rep 2010;9:220–6. 10.1249/JSR.0b013e3181e7dd45
    1. Heaney RP. Vitamin D: criteria for safety and efficacy. Nutr Rev 2008;66:S178–S181. 10.1111/j.1753-4887.2008.00102.x
    1. Thomas DT, Erdman KA, Burke LM. American college of sports medicine joint position statement. Nutrition and athletic performance. Med Sci Sports Exerc 2016;48:543–68. 10.1249/MSS.0000000000000852
    1. Gibson RS. Principles of nutritional assessment. Second Edn New York, NY: Oxford University Press, 2005.
    1. Moretti D, Goede JS, Zeder C, et al. . Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015;126:1981–9. 10.1182/blood-2015-05-642223
    1. Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med 2014;44 (Suppl 2):175–84. 10.1007/s40279-014-0257-8
    1. Ganio MS, Klau JF, Casa DJ, et al. . Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 2009;23:315–24. 10.1519/JSC.0b013e31818b979a
    1. French C, McNaughton L, Davies P, et al. . Caffeine ingestion during exercise to exhaustion in elite distance runners. Revision. J Sports Med Phys Fitness 1991;31:425–32.
    1. Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci 2015;33:1076–83. 10.1080/02640414.2014.984752
    1. Talanian JL, Spriet LL. Low and moderate doses of caffeine late in exercise improve performance in trained cyclists. Appl Physiol Nutr Metab 2016;41:850–5. 10.1139/apnm-2016-0053
    1. Wiles JD, Coleman D, Tegerdine M, et al. . The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci 2006;24:1165–71. 10.1080/02640410500457687
    1. Schneiker KT, Bishop D, Dawson B, et al. . Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Med Sci Sports Exerc 2006;38:578–85. 10.1249/01.mss.0000188449.18968.62
    1. Wellington BM, Leveritt MD, Kelly VG. The effect of caffeine on repeat-high-intensity-effort performance in rugby league players. Int J Sports Physiol Perform 2017;12:206–10. 10.1123/ijspp.2015-0689
    1. Bruce CR, Anderson ME, Fraser SF, et al. . Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc 2000;32:1958–63. 10.1097/00005768-200011000-00021
    1. Maughan RJ, Griffin J. Caffeine ingestion and fluid balance: a review. J Hum Nutr Diet 2003;16:411–20. 10.1046/j.1365-277X.2003.00477.x
    1. Rawson ES, Persky AM. Mechanisms of muscular adaptations to creatine supplementation: review article. Int SportMed J 2007;8:43–53.
    1. Volek JS, Rawson ES. Scientific basis and practical aspects of creatine supplementation for athletes. Nutrition 2004;20(7-8):609–14. 10.1016/j.nut.2004.04.014
    1. Buford TW, Kreider RB, Stout JR, et al. . International Society of Sports Nutrition position stand: creatine supplementation and exercise. J Int Soc Sports Nutr 2007;4:6 10.1186/1550-2783-4-6
    1. Lanhers C, Pereira B, Naughton G, et al. . Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med 2017;47:163–73. 10.1007/s40279-016-0571-4
    1. Hultman E, Soderlund K, Timmons JA, et al. . Muscle creatine loading in men. J Appl Physiol 1996;81:232–7. 10.1152/jappl.1996.81.1.232
    1. Maganaris CN, Maughan RJ. Creatine supplementation enhances maximum voluntary isometric force and endurance capacity in resistance trained men. Acta Physiol Scand 1998;163:279–87. 10.1046/j.1365-201x.1998.00395.x
    1. Cooper R, Naclerio F, Allgrove J, et al. . Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 2012;9:33 10.1186/1550-2783-9-33
    1. Kreider RB, Kalman DS, Antonio J, et al. . International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr 2017;14:18 10.1186/s12970-017-0173-z
    1. Deminice R, Rosa FT, Franco GS, et al. . Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 2013;29:1127–32. 10.1016/j.nut.2013.03.003
    1. Schilling BK, Stone MH, Utter A, et al. . Creatine supplementation and health variables: a retrospective study. Med Sci Sports Exerc 2001;33:183–8. 10.1097/00005768-200102000-00002
    1. Powers ME, Arnold BL, Weltman AL, et al. . Creatine Supplementation Increases Total Body Water Without Altering Fluid Distribution. J Athl Train 2003;38:44–50.
    1. Bailey SJ, Winyard P, Vanhatalo A, et al. . Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 2009;107:1144–55. 10.1152/japplphysiol.00722.2009
    1. Thompson C, Wylie LJ, Fulford J, et al. . Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur J Appl Physiol 2015;115:1825–34. 10.1007/s00421-015-3166-0
    1. Wylie LJ, Bailey SJ, Kelly J, et al. . Influence of beetroot juice supplementation on intermittent exercise performance. Eur J Appl Physiol 2016;116:415–25. 10.1007/s00421-015-3296-4
    1. Jones AM. Dietary Nitrate Supplementation and Exercise Performance. Sports Medicine 2014;44:35–45. 10.1007/s40279-014-0149-y
    1. Bailey SJ, Varnham RL, DiMenna FJ, et al. . Inorganic nitrate supplementation improves muscle oxygenation, O₂ uptake kinetics, and exercise tolerance at high but not low pedal rates. J Appl Physiol 2015;118:1396–405. 10.1152/japplphysiol.01141.2014
    1. Bailey SJ, Fulford J, Vanhatalo A, et al. . Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 2010;109:135–48. 10.1152/japplphysiol.00046.2010
    1. Hoon MW, Jones AM, Johnson NA, et al. . The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol Perform 2014;9:615–20. 10.1123/ijspp.2013-0207
    1. Thompson C, Vanhatalo A, Jell H, et al. . Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide 2016;61:55–61. 10.1016/j.niox.2016.10.006
    1. Jones AM. Influence of dietary nitrate on the physiological determinants of exercise performance: a critical review. Appl Physiol Nutr Metab 2014;39:1019–28. 10.1139/apnm-2014-0036
    1. McMahon NF, Leveritt MD, Pavey TG. The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: a systematic review and meta-analysis. Sports Med 2017;47:735-756 10.1007/s40279-016-0617-7
    1. Reynolds CME, Halpenny C, Hughes C, et al. . Acute ingestion of beetroot juice does not improve repeated sprint performance in male team sport athletes. Proc Nutr Soc 2016;75:E97 10.1017/S0029665116001129
    1. Wylie LJ, Kelly J, Bailey SJ, et al. . Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Appl Physiol 2013;115:325–36. 10.1152/japplphysiol.00372.2013
    1. Lancha Junior AH, Painelli VS, Saunders B, et al. . Nutritional strategies to modulate intracellular and extracellular buffering capacity during high-intensity exercise. Sports Med 2015;45 (Suppl 1):71–81. 10.1007/s40279-015-0397-5
    1. Saunders B, Elliott-Sale K, Artioli GG, et al. . β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med 2017;51 10.1136/bjsports-2016-096396
    1. Baguet A, Bourgois J, Vanhee L, et al. . Important role of muscle carnosine in rowing performance. J Appl Physiol 2010;109:1096–101. 10.1152/japplphysiol.00141.2010
    1. Chung W, Shaw G, Anderson ME, et al. . Effect of 10 week beta-alanine supplementation on competition and training performance in elite swimmers. Nutrients 2012;4:1441–53. 10.3390/nu4101441
    1. Nassis GP, Sporer B, Stathis CG. β-alanine efficacy for sports performance improvement: from science to practice. Br J Sports Med 2017;51 10.1136/bjsports-2016-097038
    1. Bellinger PM. β-Alanine supplementation for athletic performance: an update. J Strength Cond Res 2014;28:1751–70. 10.1519/JSC.0000000000000327
    1. Hobson RM, Saunders B, Ball G, et al. . Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids 2012;43:25–37. 10.1007/s00726-011-1200-z
    1. Katz A, Costill DL, King DS, et al. . Maximal exercise tolerance after induced alkalosis. Int J Sports Med 1984;5:107–10. 10.1055/s-2008-1025890
    1. Mainwood GW, Worsley-Brown P. The effects of extracellular pH and buffer concentration on the efflux of lactate from frog sartorius muscle. J Physiol 1975;250:1–22. 10.1113/jphysiol.1975.sp011040
    1. Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med 2011;41:801–14. 10.2165/11591440-000000000-00000
    1. Siegler JC, Marshall PW, Bray J, et al. . Sodium bicarbonate supplementation and ingestion timing: does it matter? J Strength Cond Res 2012;26:1953–8. 10.1519/JSC.0b013e3182392960
    1. Lambert CP, Greenhaff PL, Ball D, et al. . Influence of sodium bicarbonate ingestion on plasma ammonia accumulation during incremental exercise in man. Eur J Appl Physiol Occup Physiol 1993;66:49–54. 10.1007/BF00863399
    1. Douroudos II, Fatouros IG, Gourgoulis V, et al. . Dose-related effects of prolonged NaHCO3 ingestion during high-intensity exercise. Med Sci Sports Exerc 2006;38:1746–53. 10.1249/01.mss.0000230210.60957.67
    1. Burke LM. Practical considerations for bicarbonate loading and sports performance. Nestle Nutr Inst Workshop Ser 2013;75:15–26. 10.1159/000345814
    1. Mc Naughton L, Thompson D. Acute versus chronic sodium bicarbonate ingestion and anaerobic work and power output. J Sports Med Phys Fitness 2001;41:456–62.
    1. Carr AJ, Slater GJ, Gore CJ, et al. . Effect of sodium bicarbonate on (HCO3-), pH, and gastrointestinal symptoms. Int J Sport Nutr Exerc Metab 2011;21:189–94. 10.1123/ijsnem.21.3.189
    1. Requena B, Zabala M, Padial P, et al. . Sodium bicarbonate and sodium citrate: ergogenic aids? J Strength Cond Res 2005;19:213–24. 10.1519/13733.1
    1. He CS, Aw Yong XH, Walsh NP, et al. . Is there an optimal vitamin D status for immunity in athletes and military personnel? Exerc Immunol Rev 2016;22:42–64.
    1. Gleeson M, Bishop NC, Oliveira M, et al. . Daily probiotic’s (Lactobacillus casei Shirota) reduction of infection incidence in athletes. Int J Sport Nutr Exerc Metab 2011;21:55–64. 10.1123/ijsnem.21.1.55
    1. Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013;1:CD000980 10.1002/14651858.CD000980.pub4
    1. Nieman DC, Henson DA, McAnulty SR, et al. . Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol 2002;92:1970–7. 10.1152/japplphysiol.00961.2001
    1. Walsh NP, Gleeson M, Shephard RJ, et al. . Position statement. part one: immune function and exercise. Exerc Immunol Rev 2011;17:6–63.
    1. Brinkworth GD, Buckley JD. Concentrated bovine colostrum protein supplementation reduces the incidence of self-reported symptoms of upper respiratory tract infection in adult males. Eur J Nutr 2003;42:228–32. 10.1007/s00394-003-0410-x
    1. Davison G, Diment BC. Bovine colostrum supplementation attenuates the decrease of salivary lysozyme and enhances the recovery of neutrophil function after prolonged exercise. Br J Nutr 2010;103:1425–32. 10.1017/S0007114509993503
    1. Nieman DC, Henson DA, Gross SJ, et al. . Quercetin reduces illness but not immune perturbations after intensive exercise. Med Sci Sports Exerc 2007;39:1561–9. 10.1249/mss.0b013e318076b566
    1. Gleeson M. Immunological aspects of sport nutrition. Immunol Cell Biol 2016;94:117–23. 10.1038/icb.2015.109
    1. Castell LM, Poortmans JR, Newsholme EA. Does glutamine have a role in reducing infections in athletes? Eur J Appl Physiol Occup Physiol 1996;73:488–90. 10.1007/BF00334429
    1. Walsh NP, Blannin AK, Robson PJ, et al. . Glutamine, exercise and immune function. Links and possible mechanisms. Sports Med 1998;26:177–91.
    1. Dulson DK, Bishop NC. Effect of a high and low dose of caffeine on human lymphocyte activation in response to antigen stimulation. Appl Physiol Nutr Metab 2016;41:224–7. 10.1139/apnm-2015-0456
    1. Walker GJ, Finlay O, Griffiths H, et al. . Immunoendocrine response to cycling following ingestion of caffeine and carbohydrate. Med Sci Sports Exerc 2007;39:1554–60. 10.1249/mss.0b013e3180a74228
    1. Linde K, Barrett B, Wölkart K, et al. . Echinacea for preventing and treating the common cold. Cochrane Database Syst Rev 2006;1:CD000530 10.1002/14651858.CD000530.pub2
    1. Karsch-Völk M, Barrett B, Linde K. Echinacea for preventing and treating the common cold. JAMA 2015;313:618–9. 10.1001/jama.2014.17145
    1. Jakeman JR, Lambrick DM, Wooley B, et al. . Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 2017;117:575–82. 10.1007/s00421-017-3543-y
    1. Mickleborough TD. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 2013;23:83–96. 10.1123/ijsnem.23.1.83
    1. Meydani SN, Han SN, Hamer DH. Vitamin E and respiratory infection in the elderly. Ann N Y Acad Sci 2004;1031:214–22. 10.1196/annals.1331.021
    1. Hemilä H, Virtamo J, Albanes D, et al. . Physical activity and the common cold in men administered vitamin E and beta-carotene. Med Sci Sports Exerc 2003;35:1815–20. 10.1249/01.MSS.0000093616.60899.92
    1. Nieman DC, Henson DA, McMahon M, et al. . Beta-glucan, immune function, and upper respiratory tract infections in athletes. Med Sci Sports Exerc 2008;40:1463–71. 10.1249/MSS.0b013e31817057c2
    1. Volman JJ, Ramakers JD, Plat J. Dietary modulation of immune function by beta-glucans. Physiol Behav 2008;94:276–84. 10.1016/j.physbeh.2007.11.045
    1. Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci 1992;83:367–74. 10.1042/cs0830367
    1. Hultman E, Söderlund K, Timmons JA, et al. . Muscle creatine loading in men. J Appl Physiol 1996;81:232–7. 10.1152/jappl.1996.81.1.232
    1. Rawson ES, Volek JS. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance. J Strength Cond Res 2003;17:822–31.
    1. Rawson ES, Clarkson PM, Tarnopolsky MA. Perspectives on exertional rhabdomyolysis. Sports Med 2017;47:33–49. 10.1007/s40279-017-0689-z
    1. Gualano B, Rawson ES, Candow DG, et al. . Creatine supplementation in the aging population: effects on skeletal muscle, bone and brain. Amino Acids 2016;48:1793–805. 10.1007/s00726-016-2239-7
    1. Rae CD, Bröer S. Creatine as a booster for human brain function. How might it work? Neurochem Int 2015;89:249–59. 10.1016/j.neuint.2015.08.010
    1. Rawson ES, Venezia AC. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids 2011;40:1349–62. 10.1007/s00726-011-0855-9
    1. Cook CJ, Crewther BT, Kilduff LP, et al. . Skill execution and sleep deprivation: effects of acute caffeine or creatine supplementation - a randomized placebo-controlled trial. J Int Soc Sports Nutr 2011;8:2 10.1186/1550-2783-8-2
    1. Sakellaris G, Kotsiou M, Tamiolaki M, et al. . Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. J Trauma 2006;61:322–9. 10.1097/01.ta.0000230269.46108.d5
    1. Sakellaris G, Nasis G, Kotsiou M, et al. . Prevention of traumatic headache, dizziness and fatigue with creatine administration. A pilot study. Acta Paediatr 2008;97:31–4. 10.1111/j.1651-2227.2007.00529.x
    1. Sullivan PG, Geiger JD, Mattson MP, et al. . Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 2000;48:723–9. 10.1002/1531-8249(200011)48:5<723::AID-ANA5>;2-W
    1. Szcześniak KA, Ostaszewski P, Fuller JC, et al. . Dietary supplementation of β-hydroxy-β-methylbutyrate in animals - a review. J Anim Physiol Anim Nutr 2015;99:405–17. 10.1111/jpn.12234
    1. Rowlands DS, Thomson JS. Effects of beta-hydroxy-beta-methylbutyrate supplementation during resistance training on strength, body composition, and muscle damage in trained and untrained young men: a meta-analysis. J Strength Cond Res 2009;23:836–46. 10.1519/JSC.0b013e3181a00c80
    1. Lowery RP, Joy JM, Rathmacher JA, et al. . Interaction of beta-hydroxy-beta-methylbutyrate free acid and adenosine triphosphate on muscle mass, strength, and power in resistance trained individuals. J Strength Cond Res 2016;30:1843–54. 10.1519/JSC.0000000000000482
    1. Wilson JM, Lowery RP, Joy JM, et al. . The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol 2014;114:1217–27. 10.1007/s00421-014-2854-5
    1. Wilson JM, Lowery RP, Joy JM, et al. . β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr 2013;110:538–44. 10.1017/S0007114512005387
    1. Phillips SM, Aragon AA, Arciero PJ, et al. . Changes in body composition and performance with supplemental HMB-FA+ATP. J Strength Cond Res 2017:e71–e72. 10.1519/JSC.0000000000001760
    1. Deutz NE, Pereira SL, Hays NP, et al. . Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr 2013;32:704–12. 10.1016/j.clnu.2013.02.011
    1. Wilkinson DJ, Hossain T, Hill DS, et al. . Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 2013;591:2911–23. 10.1113/jphysiol.2013.253203
    1. Barrett EC, McBurney MI, Ciappio ED. ω-3 fatty acid supplementation as a potential therapeutic aid for the recovery from mild traumatic brain injury/concussion. Adv Nutr 2014;5:268–77. 10.3945/an.113.005280
    1. Erdman J, Oria M, Pillsbury L. Nutrition and traumatic brain injury: improving acute and subacute health coutcomes in military personnel. Washington, DC: National Academies Press, 2011.
    1. Tipton KD. Nutritional support for exercise-induced injuries. Sports Med 2015;45 (Suppl 1):93–104. 10.1007/s40279-015-0398-4
    1. Lewis M, Ghassemi P, Hibbeln J. Therapeutic use of omega-3 fatty acids in severe head trauma. Am J Emerg Med 2013;31:273.e5–8. 10.1016/j.ajem.2012.05.014
    1. Roberts L, Bailes J, Dedhia H, et al. . Surviving a mine explosion. J Am Coll Surg 2008;207:276–83. 10.1016/j.jamcollsurg.2008.02.015
    1. Smith GI, Atherton P, Reeds DN, et al. . Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clin Sci 2011;121:267–78. 10.1042/CS20100597
    1. Smith GI, Atherton P, Reeds DN, et al. . Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 2011;93:402–12. 10.3945/ajcn.110.005611
    1. Gray P, Chappell A, Jenkinson AM, et al. . Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int J Sport Nutr Exerc Metab 2014;24:206–14. 10.1123/ijsnem.2013-0081
    1. Jouris KB, McDaniel JL, Weiss EP. The effect of Omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J Sports Sci Med 2011;10:432–8.
    1. Close GL, Hamilton DL, Philp A, et al. . New strategies in sport nutrition to increase exercise performance. Free Radic Biol Med 2016;98:144–58. 10.1016/j.freeradbiomed.2016.01.016
    1. Close GL, Russell J, Cobley JN, et al. . Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci 2013;31:344–53. 10.1080/02640414.2012.733822
    1. Owens DJ, Sharples AP, Polydorou I, et al. . A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab 2015;309:E1019–31. 10.1152/ajpendo.00375.2015
    1. Owens DJ, Webber D, Impey SG, et al. . Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males. Eur J Appl Physiol 2014;114:1309–20. 10.1007/s00421-014-2865-2
    1. Ruohola JP, Laaksi I, Ylikomi T, et al. . Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J Bone Miner Res 2006;21:1483–8. 10.1359/jbmr.060607
    1. Lappe J, Cullen D, Haynatzki G, et al. . Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res 2008;23:741–9. 10.1359/jbmr.080102
    1. Shaw G, Lee-Barthel A, Ross ML, et al. . Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am J Clin Nutr 2017;105:136–43. 10.3945/ajcn.116.138594
    1. Clark KL, Sebastianelli W, Flechsenhar KR, et al. . 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr Med Res Opin 2008;24:1485–96. 10.1185/030079908X291967
    1. McAlindon TE, Nuite M, Krishnan N, et al. . Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial. Osteoarthritis Cartilage 2011;19:399–405. 10.1016/j.joca.2011.01.001
    1. McFarlin BK, Venable AS, Henning AL, et al. . Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin 2016;5:72–8. 10.1016/j.bbacli.2016.02.003
    1. Nicol LM, Rowlands DS, Fazakerly R, et al. . Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur J Appl Physiol 2015;115:1769–77. 10.1007/s00421-015-3152-6
    1. Sciberras JN, Galloway SD, Fenech A, et al. . The effect of turmeric (Curcumin) supplementation on cytokine and inflammatory marker responses following 2 hours of endurance cycling. J Int Soc Sports Nutr 2015;12:5 10.1186/s12970-014-0066-3
    1. Coelho Rabello Lima L, Oliveira Assumpção C, Prestes J, et al. . Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and inflammation in humans. Nutr Hosp 2015;32:1885–93. 10.3305/nh.2015.32.5.9709
    1. Bell PG, McHugh MP, Stevenson E, et al. . The role of cherries in exercise and health. Scand J Med Sci Sports 2014;24:477–90. 10.1111/sms.12085
    1. Morton RW, Murphy KT, McKellar SR, et al. . A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med 2018;52:376–84. 10.1136/bjsports-2017-097608
    1. Cermak NM, Res PT, de Groot LC, et al. . Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr 2012;96:1454–64. 10.3945/ajcn.112.037556
    1. Aguiar AF, Grala AP, da Silva RA, et al. . Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino Acids 2017;49:1255–62. 10.1007/s00726-017-2427-0
    1. Wycherley TP, Moran LJ, Clifton PM, et al. . Effects of energy-restricted high-protein, low-fat compared with standard-protein, low-fat diets: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012;96:1281–98. 10.3945/ajcn.112.044321
    1. Krieger JW, Sitren HS, Daniels MJ, et al. . Effects of variation in protein and carbohydrate intake on body mass and composition during energy restriction: a meta-regression 1. Am J Clin Nutr 2006;83:260–74.
    1. Onakpoya I, Hunt K, Wider B, et al. . Pyruvate supplementation for weight loss: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2014;54:17–23. 10.1080/10408398.2011.565890
    1. Tian H, Guo X, Wang X, et al. . Chromium picolinate supplementation for overweight or obese adults. Cochrane Database Syst Rev 2013;11:Cd010063.
    1. Jurgens TM, Whelan AM, Killian L, et al. . Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst Rev 2012;12:Cd008650 10.1002/14651858.CD008650.pub2
    1. Kucukgoncu S, Zhou E, Lucas KB, et al. . Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials. Obes Rev 2017;18:594–601. 10.1111/obr.12528
    1. Onakpoya IJ, Posadzki PP, Watson LK, et al. . The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized clinical trials. Eur J Nutr 2012;51:127–34. 10.1007/s00394-011-0253-9
    1. Onakpoya I, Posadzki P, Ernst E. The efficacy of glucomannan supplementation in overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. J Am Coll Nutr 2014;33:70–8. 10.1080/07315724.2014.870013
    1. Zhang YY, Liu W, Zhao TY, et al. . Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: a meta-analysis of randomized clinical trials. J Nutr Health Aging 2017;21:187–92. 10.1007/s12603-016-0755-5
    1. Jull AB, Ni Mhurchu C, Bennett DA, et al. . Chitosan for overweight or obesity. Cochrane Database Syst Rev 2008;3:Cd003892.

Source: PubMed

3
Sottoscrivi